

HOKKAIDO UNIVERSITY

Title	Molecular structure of caffeine as determined by gas electron diffraction aided by theoretical calculations
Author(s)	Egawa, Toru; Kamiya, Akemi; Takeuchi, Hiroshi; Konaka, Shigehiro
Citation	Journal of Molecular Structure, 825(1-3), 151-157 https://doi.org/10.1016/j.molstruc.2006.04.024
Issue Date	2006-12-15
Doc URL	http://hdl.handle.net/2115/17171
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	supplementary.pdf (supplementary(補遺))

Molecular structure of caffeine as determined by gas electron diffraction aided by theoretical calculations

Toru Egawa^{*}, Akemi Kamiya, Hiroshi Takeuchi and Shigehiro Konaka Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received

)

Numerical data are listed in the following tables.

- Table S1: The leveled total intensities (I_T) and the backgrounds (I_B) for caffeine.
- Table S2: Definitions of the symmetry coordinates with the corresponding scale factors, c_i , of caffeine expressed in terms of internal coordinates.
- Table S3:
 Observed and calculated vibrational wavenumbers (in cm⁻¹) and assignment of caffeine.
- Table S4: Potential constants (in cm⁻¹) for the internal rotation of caffeine.
- Table S5: r_a distances and mean amplitudes of caffeine (in Å).
- Table S6: The correlation matrix for caffeine.

^{*} Corresponding author. Phone: +81-11-706-3506; Fax: +81-11-706-4924.

E-mail address: egawa@sci.hokudai.ac.jp

S	IT	IB	S	I _T	IB	S	I _T	IB
4.468	0.7518	1.01511	14.716	1.0298	1.00121	24.620	1.0065	1.00905
4.671	0.8150	1.01654	14.914	1.0159	1.00088	24.809	1.0051	1.00998
4.874	0.9091	1.01825	15.112	1.0065	1.00055	24.999	1.0038	1.01080
5.077	1.0210	1.01992	15.310	1.0016	1.00032	25.188	1.0031	1.01171
5.279	1.1445	1.02177	15.508	1.0020	1.00018	25.376	1.0024	1.01252
5.482	1.2532	1.02408	15.705	1.0020	0.99994	25.565	1.0035	1.01352
5.684	1.3277	1.02615	15.903	0.9997	0.99979	25.753	1.0061	1.01450
5.887	1.3465	1.02878	16.100	0.9938	0.99953	25.941	1.0090	1.01528
6.089	1.3011	1.03127	16.298	0.9858	0.99927	26.129	1.0116	1.01635
6.292	1.2168	1.03281	16.495	0.9785	0.99920	26.317	1.0132	1.01732
6.494	1.1280	1.03401	16.692	0.9733	0.99901	26.504	1.0161	1.01837
6.696	1.0609	1.03497	16.888	0.9717	0.99882	26.692	1.0180	1.01952
6.898	1.0219	1.03548	17.085	0.9739	0.99872	26.879	1.0206	1.02046
7.101	0.9936	1.03575	17.282	0.9793	0.99861	27.065	1.0240	1.02150
7.303	0.9640	1.03576	17.478	0.9853	0.99849	27.252	1.0268	1.02274
7.505	0.9319	1.03534	17.674	0.9915	0.99826	27.438	1.0302	1.02387
7.707	0.9110	1.03478	17.870	0.9976	0.99823	27.625	1.0317	1.02520
7.908	0.9044	1.03387	18.066	1.0024	0.99809	27.810	1.0344	1.02643
8.110	0.9150	1.03263	18.262	1.0066	0.99814	27.996	1.0349	1.02766
8.312	0.9414	1.03096	18.457	1.0103	0.99799	28.182	1.0364	1.02910
8.514	0.9745	1.02945	18.653	1.0131	0.99793	28.367	1.0375	1.03044
8.715	1.0096	1.02792	18.848	1.0159	0.99778	28.552	1.0378	1.03198
8.917	1.0352	1.02656	19.043	1.0178	0.99782	28.736	1.0381	1.03334
9.118	1.0541	1.02509	19.238	1.0171	0.99776	28.921	1.0365	1.03500
9.319	1.0579	1.02410	19.432	1.0136	0.99780	29.105	1.0370	1.03657
9.520	1.0504	1.02299	19.627	1.0081	0.99785	29.289	1.0365	1.03824
9.722	1.0368	1.02187	19.821	1.0019	0.99780	29.473	1.0369	1.03993
9.923	1.0264	1.02075	20.015	0.9969	0.99795	29.657	1.0377	1.04164
10.124	1.0250	1.01972	20.209	0.9945	0.99801	29.840	1.0383	1.04355
10.324	1.0384	1.01849	20.403	0.9926	0.99818	30.023	1.0394	1.04537
10.525	1.0586	1.01737	20.597	0.9918	0.99835	30.206	1.0411	1.04731
10.726	1.0740	1.01615	20.790	0.9899	0.99853	30.389	1.0436	1.04925
10.926	1.0761	1.01513	20.984	0.9882	0.99882	30.571	1.0459	1.05131
11.127	1.0630	1.01393	21.177	0.9867	0.99901	30.753	1.0494	1.05328
11.327	1.0400	1.01293	21.370	0.9871	0.99921	30.935	1.0526	1.05546
11.527	1.0136	1.01184	21.562	0.9885	0.99953	31.117	1.0561	1.05754
11.728	0.9904	1.010//	21.755	0.9911	1.00004	31.298	1.0592	1.05973
11.928	0.9727	1.00981	21.947	0.9933	1.00037	31.479	1.0630	1.06203
12.128	0.9664	1.00897	22.140	0.9961	1.00080	31.660	1.0661	1.06433
12.327	0.9686	1.00804	22.332	0.9998	1.00124	31.841	1.0683	1.06663
12.527	0.9733	1.00722	22.523	1.0043	1.00169	32.021	1.0707	1.06903
12.727	0.9753	1.00642	22.715	1.0087	1.00224	32.201	1.0736	1.0/133
12.926	0.9734	1.00573	22.906	1.0130	1.00279	32.381	1.0763	1.07572
13.125	0.9/14	1.00505	23.098	1.0151	1.00345	32.301	1.0795	1.07040
13.325	0.9755	1.00438	23.289	1.0101	1.00400	32.740	1.0824	1.07848
13.524	0.9900	1.00382	23.479	1.0162	1.00400	32.920	1.0840	1.08093
13.723	1.0120	1.00327	23.070	1.0126	1.00542	33.099 22 777	1.0800	1.08540
13.922	1.0332	1.00283	23.800	1.0130	1.00007	33.211 22 156	1.08/9	1.08393
14.120	1.04/4	1.00240	24.051	1.0117	1.00082	33.430 22.624	1.0900	1.08833
14.319	1.0301	1.00197	24.241	1.0099	1.00/0/	33.034 33.010	1.0919	1.09093
14.71/	1.0447	1.00134	2 4 .4JU	1.0000	1.00001	55.012	1.0740	1.07343

Table S1. The leveled total intensities (I_T) and the backgrounds (I_B) for caffeine ^a

^a The *s*-values ($s = (4\pi/\lambda)\sin(\theta/2)$) are in Å⁻¹ units. The molecular scattering intensity, M(s) is calculated as $M(s) = (I_T(s) - I_B(s)) / I_B(s)$.

Si	c_i	Definitions ^a
A'		
s_1	0.95	$r(N_3-C_4)$
<i>s</i> ₂	0.95	$r(C_2-N_3)$
<i>s</i> ₃	0.95	$r(N_1-C_2)$
<i>S</i> 4	0.95	$r(N_1-C_6)$
<i>S</i> ₅	0.95	$r(C_5-C_6)$
<i>s</i> ₆	0.95	$r(C_4 = C_5)$
<i>S</i> ₇	0.95	$r(C_{5}-N_{7})$
<i>s</i> ₈	0.95	$r(N_7-C_8)$
S 9	0.95	$r(C_8 = N_9)$
s_{10}	0.95	$r(N_9-C_4)$
s_{11}	0.95	$r(N_3-C_{12})$
<i>s</i> ₁₂	0.90	$r(C_2=O_{11})$
<i>s</i> ₁₃	0.95	$r(N_1-C_{10})$
s_{14}	0.90	$r(C_6 = O_{13})$
<i>s</i> ₁₅	0.95	$r(N_7-C_{14})$
<i>s</i> ₁₆	0.90	$r(C_8-H_{15})$
s_{17}	0.90	$r(C_{12}-H_{19}) + r(C_{12}-H_{20}) + r(C_{12}-H_{21})$
<i>s</i> ₁₈	0.90	$2 r(C_{12}-H_{19}) - r(C_{12}-H_{20}) - r(C_{12}-H_{21})$
<i>S</i> ₁₉	0.90	$r(C_{10}-H_{16}) + r(C_{10}-H_{17}) + r(C_{10}-H_{18})$
<i>s</i> ₂₀	0.90	$2 r(C_{10}-H_{16}) - r(C_{10}-H_{17}) - r(C_{10}-H_{18})$
<i>s</i> ₂₁	0.90	$r(C_{14}-H_{22}) + r(C_{14}-H_{23}) + r(C_{14}-H_{24})$
<i>s</i> ₂₂	0.90	2 $r(C_{14}-H_{22}) - r(C_{14}-H_{23}) - r(C_{14}-H_{24})$
<i>s</i> ₂₃	0.95	$1.41 \angle (C_5 = C_4 - N_3) - 1.41 \angle (N_3 - C_4 - N_9) - 0.82 \angle (C_4 - N_3 - C_2)$
		+ 0.41 \angle (C ₄ -N ₃ -C ₁₂) + 0.41 \angle (C ₂ -N ₃ -C ₁₂) - 0.82 \angle (N ₃ -C ₂ -N ₁)
		$+ \ 0.41 \ \angle (N_3 \text{-} C_2 \text{=} O_{11}) + 0.41 \ \angle (N_1 \text{-} C_2 \text{=} O_{11}) + 1.63 \ \angle (C_2 \text{-} N_1 \text{-} C_6)$

Table S2. Definitions of the symmetry coordinates with the corresponding scale factors, c_i , of caffeine expressed in terms of internal coordinates

(3)

$$\begin{array}{l} - \ 0.82 \ \angle (C_2 - N_1 - C_{10}) - 0.82 \ \angle (C_6 - N_1 - C_{10}) - 0.82 \ \angle (N_1 - C_6 - C_5) \\ + \ 0.41 \ \angle (N_1 - C_6 = O_{13}) + 0.41 \ \angle (C_5 - C_6 = O_{13}) - 0.71 \ \angle (C_6 - C_5 = C_4) \\ + \ 0.71 \ \angle (C_6 - C_5 - N_7) \end{array}$$

$$\begin{array}{ll} s_{24} & 0.98 & 1.41 \angle (C_5 = C_4 \cdot N_3) - 1.41 \angle (N_3 \cdot C_4 \cdot N_9) - 0.82 \angle (C_4 \cdot N_3 \cdot C_2) \\ & + 0.41 \angle (C_4 \cdot N_3 \cdot C_{12}) + 0.41 \angle (C_2 \cdot N_3 \cdot C_{12}) + 0.82 \angle (N_3 \cdot C_2 \cdot N_1) \\ & - 0.41 \angle (N_3 \cdot C_2 = O_{11}) - 0.41 \angle (N_1 \cdot C_2 = O_{11}) - 1.63 \angle (C_2 \cdot N_1 \cdot C_6) \\ & + 0.82 \angle (C_2 \cdot N_1 \cdot C_{10}) + 0.82 \angle (C_6 \cdot N_1 \cdot C_{10}) + 0.82 \angle (N_1 \cdot C_6 \cdot C_5) \\ & - 0.41 \angle (N_1 \cdot C_6 = O_{13}) - 0.41 \angle (C_5 \cdot C_6 = O_{13}) - 0.71 \angle (C_6 \cdot C_5 = C_4) \\ & + 0.71 \angle (C_6 \cdot C_5 \cdot N_7) \end{array}$$

$$\begin{split} s_{25} & 0.98 & 0.82 \angle (C_4 \text{-} N_3 \text{-} C_2) \text{-} 0.41 \angle (C_4 \text{-} N_3 \text{-} C_{12}) \text{-} 0.41 \angle (C_2 \text{-} N_3 \text{-} C_{12}) \\ & - 0.82 \angle (N_3 \text{-} C_2 \text{-} N_1) + 0.41 \angle (N_3 \text{-} C_2 \text{=} O_{11}) + 0.41 \angle (N_1 \text{-} C_2 \text{=} O_{11}) \\ & + 0.82 \angle (N_1 \text{-} C_6 \text{-} C_5) \text{-} 0.41 \angle (N_1 \text{-} C_6 \text{=} O_{13}) \text{-} 0.41 \angle (C_5 \text{-} C_6 \text{=} O_{13}) \\ & - 0.71 \angle (C_6 \text{-} C_5 \text{=} C_4) + 0.71 \angle (C_6 \text{-} C_5 \text{-} N_7) \end{split}$$

$$\begin{split} s_{26} & 0.98 & -0.41 \angle (C_5 = C_4 - N_3) + 0.82 \angle (C_5 - C_4 - N_9) - 0.41 \angle (N_3 - C_4 - N_9) \\ & -0.41 \angle (C_6 - C_5 = C_4) - 0.41 \angle (C_6 - C_5 - N_7) + 0.82 \angle (N_7 - C_5 - C_4) \\ & -1.63 \angle (C_5 - N_7 - C_8) + 0.82 \angle (C_5 - N_7 - C_{14}) + 0.82 \angle (C_8 - N_7 - C_{14}) \\ & +1.63 \angle (N_7 - C_8 = N_9) - 0.82 \angle (N_7 - C_8 - H_{15}) - 0.82 \angle (N_9 = C_8 - H_{15}) \\ & -2 \angle (C_4 - N_9 = C_8) \end{split}$$

$$\begin{split} s_{27} & 0.98 & 0.41 \angle (C_5 = C_4 - N_3) - 0.82 \angle (C_5 = C_4 - N_9) + 0.41 \angle (N_3 - C_4 - N_9) \\ & - 0.41 \angle (C_6 - C_5 = C_4) - 0.41 \angle (C_6 - C_5 - N_7) + 0.82 \angle (N_7 - C_5 = C_4) \\ & - 0.82 \angle (C_5 - N_7 - C_8) + 0.41 \angle (C_5 - N_7 - C_{14}) + 0.41 \angle (C_8 - N_7 - C_{14}) \\ & + \angle (C_4 - N_9 = C_8) \end{split}$$

$$s_{28}$$
 0.98 \angle (C₄-N₃-C₁₂) - \angle (C₂-N₃-C₁₂)

$$s_{29}$$
 0.98 \angle (N₃-C₂=O₁₁) - \angle (N₁-C₂=O₁₁)

$$s_{30}$$
 0.98 \angle (C₂-N₁-C₁₀) - \angle (C₆-N₁-C₁₀)

$$s_{31}$$
 0.98 \angle (N₁-C₆=O₁₃) - \angle (C₅-C₆=O₁₃)

$$s_{32}$$
 0.98 \angle (C₅-N₇-C₁₄) - \angle (C₈-N₇-C₁₄)

$$s_{33}$$
 0.98 \angle (N₇-C₈-H₁₅) - \angle (N₉=C₈-H₁₅)

$$\begin{split} s_{34} & 0.95 \quad \angle (N_3\text{-}C_{12}\text{-}H_{19}) + \angle (N_3\text{-}C_{12}\text{-}H_{20}) + \angle (N_3\text{-}C_{12}\text{-}H_{21}) - \angle (H_{20}\text{-}C_{12}\text{-}H_{21}) \\ & - \angle (H_{19}\text{-}C_{12}\text{-}H_{21}) - \angle (H_{19}\text{-}C_{12}\text{-}H_{20}) \end{split}$$

$$\begin{array}{rl} s_{35} & 0.95 & 2 \angle (N_3 - C_{12} - H_{19}) - \angle (N_3 - C_{12} - H_{20}) - \angle (N_3 - C_{12} - H_{21}) \\ s_{36} & 0.95 & 2 \angle (H_{20} - C_{12} - H_{21}) - \angle (H_{19} - C_{12} - H_{20}) \\ s_{37} & 0.95 & \angle (N_1 - C_{10} - H_{16}) + \angle (N_1 - C_{10} - H_{17}) + \angle (N_1 - C_{10} - H_{18}) - \angle (H_{17} - C_{10} - H_{18}) \\ & - \angle (H_{16} - C_{10} - H_{18}) - \angle (H_{16} - C_{10} - H_{17}) \end{array}$$

$$s_{38}$$
 0.95 2 \angle (N₁-C₁₀-H₁₆) - \angle (N₁-C₁₀-H₁₇) - \angle (N₁-C₁₀-H₁₈)

$$s_{39}$$
 0.95 2 \angle (H₁₇-C₁₀-H₁₈) - \angle (H₁₆-C₁₀-H₁₈) - \angle (H₁₆-C₁₀-H₁₇)

$$\begin{split} s_{40} & 0.95 \quad \angle (N_7\text{-}C_{14}\text{-}H_{22}) + \angle (N_7\text{-}C_{14}\text{-}H_{23}) + \angle (N_7\text{-}C_{14}\text{-}H_{24}) - \angle (H_{23}\text{-}C_{14}\text{-}H_{24}) \\ & - \angle (H_{22}\text{-}C_{14}\text{-}H_{24}) - \angle (H_{22}\text{-}C_{14}\text{-}H_{23}) \end{split}$$

$$s_{41}$$
 0.95 2 \angle (N₇-C₁₄-H₂₂) - \angle (N₇-C₁₄-H₂₃) - \angle (N₇-C₁₄-H₂₄)

$$s_{42}$$
 0.95 2 \angle (H₂₃-C₁₄-H₂₄) - \angle (H₂₂-C₁₄-H₂₄) - \angle (H₂₂-C₁₄-H₂₃)

A"

S59

$$\begin{array}{rcl} s_{43} & 0.90 & r(C_{12}-H_{20}) - r(C_{12}-H_{21}) \\ s_{44} & 0.90 & r(C_{10}-H_{17}) - r(C_{10}-H_{18}) \\ s_{45} & 0.90 & r(C_{14}-H_{23}) - r(C_{14}-H_{24}) \\ s_{46} & 0.95 & \angle(N_3-C_{12}-H_{20}) - \angle(N_3-C_{12}-H_{21}) \\ s_{47} & 0.95 & \angle(H_{19}-C_{12}-H_{21}) - \angle(H_{19}-C_{12}-H_{20}) \\ s_{48} & 0.95 & \angle(N_1-C_{10}-H_{17}) - \angle(N_1-C_{10}-H_{18}) \\ s_{49} & 0.95 & \angle(H_{16}-C_{10}-H_{18}) - \angle(H_{16}-C_{10}-H_{17}) \\ s_{50} & 0.95 & \angle(N_7-C_{14}-H_{23}) - \angle(N_7-C_{14}-H_{24}) \\ s_{51} & 0.95 & \angle(H_{22}-C_{14}-H_{24}) - \angle(H_{22}-C_{14}-H_{23}) \\ s_{52} & 0.98 & \tau(N_3-C_4) - \tau(C_2-N_3) + \tau(N_1-C_2) - \tau(N_1-C_6) + \tau(C_5-C_6) - \tau(C_4=C_5) \\ s_{53} & 0.98 & \tau(N_3-C_4) - \tau(N_1-C_2) + \tau(N_1-C_6) - \tau(C_4=C_5) \\ s_{54} & 0.98 & -\tau(N_3-C_4) + 2\tau(C_2-N_3) - \tau(N_1-C_6) - \tau(N_9-C_4) \\ s_{56} & 1.00 & \omega(C_4-N_9) - \omega(C_5-N_7) \\ s_{57} & 1.03 & \omega(C_4-N_9) + \omega(C_5-N_7) \\ s_{58} & 0.98 & \tau(N_3-C_{12}) \\ s_{59} & 0.98 & \tau(N_3-C_{12}) \\ \end{array}$$

S ₆₆	1.03	ω (C ₈ -H ₁₅)
<i>s</i> ₆₅	1.03	ω (N ₇ -C ₁₄)
<i>s</i> ₆₄	1.02	ω (C ₆ =O ₁₃)
<i>s</i> ₆₃	1.03	ω (N ₁ -C ₁₀)
<i>s</i> ₆₂	1.00	ω (C ₂ =O ₁₁)
<i>s</i> ₆₁	1.03	ω (N ₃ -C ₁₂)
<i>s</i> ₆₀	0.98	au (N ₇ -C ₁₄)

^a Normalization factors are omitted. Abbreviations used: r, stretching; \angle , bending; τ , torsion; ω , out of plane bending. See Fig. 1 for the atom numberings.

	Vobs	V _{calc}	PED ^b						
Δ'	a								
Л	3113	3094	s1c(100)						
v 1	с с	5071	510(100)						
V_2		3034	$s_{20}(97)$						
<i>V</i> 3	3039	3024	s ₁₈ (97)						
	d								
<i>V</i> 4		3002	<i>s</i> ₂₂ (101)						
V_5		2919	<i>s</i> ₁₉ (96)						
V ₆	2957	2916	$s_{21}(99)$						
	с								
\mathcal{V}_7		2915	<i>s</i> ₁₇ (96)						
V_8	1698	1714	$s_{12}(51)$	$s_{14}(31)$					
V9	1654	1681	$s_{14}(41)$	$s_{12}(35)$	$s_5(14)$	$s_{25}(12)$			
V_{10}	1599	1599	$s_6(44)$	$s_1(32)$					
v_{11}	1552	1553	<i>s</i> ₇ (16)	$s_{33}(12)$	$s_{10}(11)$				
v_{12}		1502	<i>s</i> ₈ (26)	$s_{42}(21)$	$s_{27}(10)$	$s_{33}(10)$			
v_{13}	1488	1483	$s_{36}(44)$	$s_{42}(28)$					
V_{14}		1479	<i>s</i> ₃₉ (68)	$s_{38}(12)$					
V_{15}		1463	$s_{42}(32)$	$s_{36}(22)$					
V_{16}	1431	1436	$s_{34}(35)$	<i>s</i> ₄₀ (18)	<i>s</i> ₃₇ (11)				
v_{17}	1409	1426	$s_{40}(65)$	$s_{34}(24)$					
V_{18}		1414	<i>s</i> ₃₇ (55)	<i>s</i> ₃₄ (29)					
V_{19}	1391	1393	<i>s</i> ₇ (27)	<i>s</i> ₃₇ (14)	<i>s</i> ₉ (13)				
V_{20}	1359	1362	<i>s</i> ₈ (25)	<i>s</i> ₉ (15)					
V_{21}	1327	1340	$s_9(19)$	$s_{13}(14)$	$s_{10}(13)$	$s_4(12)$	$s_{37}(10)$		

Table S3. Observed and calculated vibrational wavenumbers (in cm⁻¹) and assignment of caffeine

V_{22}	1283	1281	$s_2(21)$	$s_{11}(19)$	$s_{10}(19)$	$s_5(15)$	
V ₂₃	1251	1249	$s_{38}(21)$	<i>s</i> ₃₃ (19)	<i>s</i> ₄ (17)	<i>s</i> ₃ (11)	
V_{24}	1241	1242	<i>s</i> ₃₃ (19)	<i>s</i> ₃ (17)	$s_{38}(15)$		
V ₂₅	1214	1219	$s_{15}(15)$	$s_{11}(14)$	$s_{24}(11)$	$s_{35}(10)$	
V_{26}	1191	1190	$s_{35}(20)$	$s_{10}(17)$	<i>s</i> ₃₃ (16)	$s_{13}(10)$	
V_{27}	1073	1069	$s_{35}(22)$	$s_2(15)$	$s_{13}(12)$		
V_{28}		1064	$s_{41}(54)$	s ₈ (20)			
V_{29}	1021	1023	$s_{38}(24)$	<i>s</i> ₃ (23)	<i>s</i> ₄ (22)	$s_{26}(11)$	$s_{11}(10)$
V_{30}	974	976	$s_{11}(27)$	$s_{13}(16)$	$s_{27}(15)$	<i>s</i> ₄ (11)	
<i>V</i> ₃₁	927	928	$s_{13}(20)$	$s_{31}(12)$	$s_{26}(10)$		
V32	801	803	$s_{29}(26)$	$s_{27}(16)$	$s_{31}(15)$		
V33		744	$s_{15}(21)$	$s_{26}(19)$	$s_{24}(15)$		
<i>V</i> ₃₄	643	636	$s_{24}(34)$	$s_{15}(12)$			
V35	555	544	<i>s</i> ₃ (11)	<i>s</i> ₄ (11)	$s_{11}(10)$		
V36	483	476	$s_{25}(23)$	$s_{23}(20)$	$s_{27}(12)$		
V37	444	438	$s_{25}(27)$	$s_{23}(21)$			
V38	420 ^e	403	$s_{29}(34)$				
V39	391	390	$s_{31}(45)$	$s_{32}(18)$			
V_{40}		350	$s_{30}(52)$	$s_{32}(10)$			
v_{41}	314	292	$s_{28}(64)$				
<i>V</i> ₄₂		206	$s_{32}(32)$	$s_{23}(15)$			

A''

<i>V</i> 43		2992	$s_{45}(101)$	
\mathcal{V}_{44}		2983	$s_{44}(100)$	
V45		2979	$s_{43}(100)$	
V_{46}	1470	1470	s ₄₉ (94)	
V47		1460	s ₄₇ (94)	
V_{48}	1454	1450	$s_{51}(92)$	$s_{50}(11)$
V 49	1134	1133	<i>s</i> ₄₈ (86)	

V_{50}		1130	$s_{46}(86)$						
<i>V</i> 51		1126	$s_{50}(88)$						
V52	$850^{\rm f}$	848	$s_{66}(115)$	s55(34)					
V53	740	749	$s_{56}(70)$	$s_{62}(50)$	$s_{64}(33)$				
<i>V</i> 54		741	s ₅₆ (111)	$s_{62}(52)$	$s_{64}(29)$	$s_{52}(13)$			
V55	698	704	$s_{56}(45)$	$s_{64}(43)$	$s_{55}(12)$	<i>s</i> ₅₇ (11)			
V56	609	620	$s_{56}(43)$	$s_{55}(34)$	$s_{65}(19)$				
V57	367	361	$s_{61}(29)$	$s_{57}(27)$	$s_{55}(25)$	$s_{65}(20)$	$s_{52}(10)$		
V58		281	$s_{63}(71)$						
V59	223	219	$s_{65}(49)$	$s_{56}(43)$	$s_{52}(29)$	$s_{61}(29)$	s ₅₇ (21)	$s_{53}(20)$	$s_{55}(15)$
V_{60}		159	$s_{52}(112)$	$s_{56}(57)$	$s_{57}(37)$	$s_{63}(18)$	$s_{61}(13)$		
V ₆₁		128	$s_{52}(29)$	$s_{56}(25)$	$s_{61}(24)$	$s_{54}(23)$	<i>s</i> ₅₇ (16)	<i>s</i> ₅₃ (16)	
V ₆₂		113	<i>s</i> ₅₃ (66)	<i>s</i> ₅₉ (54)	$s_{56}(24)$				
V ₆₃		97	s ₅₃ (114)	$s_{59}(70)$	$s_{52}(20)$	$s_{63}(13)$	$s_{48}(11)$	$s_{49}(10)$	
v_{64}		90	s ₅₄ (93)	<i>s</i> ₅₉ (15)	<i>s</i> ₅₃ (11)				
V ₆₅		41	s ₅₈ (339)	$s_{46}(137)$	$s_{47}(62)$	$s_{61}(62)$	$s_{60}(29)$	$s_{52}(25)$	s ₅₆ (19)
			<i>s</i> ₄₃ (18)	$s_{65}(12)$	<i>s</i> ₆₃ (11)				
V ₆₆		32	$s_{60}(437)$	$s_{65}(248)$	s ₅₅ (150)	$s_{56}(102)$	s ₅₇ (78)	$s_{50}(74)$	$s_{58}(48)$
			s ₅₄ (28)	s ₅₂ (26)	$s_{45}(22)$	s ₅₁ (19)	s ₄₆ (19)	<i>s</i> ₅₃ (18)	

^a Solid FT-Raman (Ref. [20]).

^b Potential energy distribution (%). The values less than 10% are not shown. See Table S2 for the definitions of the coordinates.

^c Solid FT-Raman (Ref. [3]).

^d Solid FT-Raman. Readout from the spectrum chart shown in Ref. [3].

^e Solid FT-IR (Ref. [4]).

^f Solid FT-Raman (Ref. [4]).

Parameter ^b	$N_1 - C_{10}$	N ₃ -C ₁₂	N7-C14
В	5.283	5.286	5.308
V_3	107.850	+33.174	+26.771
V_6	20.850	+12.450	-8.050
V_9	1.646	-1.474	+2.729
<i>V</i> ₁₂	-3.225	-0.425	-1.425

Table S4. Potential constants (in cm⁻¹) for the internal rotation of caffeine ^a

^a Obtained from the B3LYP/6-31G** calculations.

^b See eqs. (1) and (3) for the definitions.

Atom pair ^a	r _a	l _{calc}	l _{obs} ^b	Group
$N_1 - C_2$	1.408	0.049	0.054 (5)	1
$N_1 \cdots N_3$	2.365	0.057	0.056 (11)	2
$N_1 \! \cdots \! C_4$	2.695	0.065	0.062 (12)	3
$N_1 \cdots C_5$	2.344	0.058	0.057	2
$N_1 - C_6$	1.406	0.051	0.055	1
$N_1 \! \cdots \! N_7$	3.683	0.066	0.090 (8)	4
$N_1 {\cdots} C_8$	4.415	0.064	0.086 (11)	5
$N_1 \cdots N_9$	4.037	0.068	0.090	5
$N_1 - C_{10}$	1.462	0.051	0.055	1
$N_1 {\cdots} O_{11}$	2.277	0.057	0.056	2
$N_1 {\cdots} C_{12}$	3.687	0.071	0.094	4
$N_1 {\cdots} O_{13}$	2.299	0.057	0.057	2
$N_1 {\cdots} C_{14}$	4.542	0.106	0.128	5
$C_2 - N_3$	1.381	0.048	0.052	1
$C_2 \cdots C_4$	2.384	0.057	0.056	2
$C_2 \cdots C_5$	2.787	0.064	0.061	3
$C_2 \cdots C_6$	2.520	0.060	0.060	2
$C_2 \cdots N_7$	4.113	0.065	0.088	5
$C_2 \cdots C_8$	4.431	0.063	0.085	5
$C_2 \cdots N_9$	3.664	0.066	0.090	4
$C_2 \cdots C_{10}$	2.407	0.070	0.069	2
$C_2 = O_{11}$	1.202	0.039	0.043	1
$C_2 \cdots C_{12}$	2.421	0.071	0.070	2
$C_2 \cdots O_{13}$	3.606	0.064	0.088	4
$C_2 \cdots C_{14}$	5.271	0.092	0.115	5
$N_3 - C_4$	1.375	0.045	0.049	1
$N_3 \cdots C_5$	2.400	0.056	0.055	2
$N_3 \cdots C_6$	2.878	0.063	0.061	3
$N_3 {\cdots} N_7$	3.489	0.056	0.080	4
$N_3 \cdots C_8$	3.423	0.058	0.082	4
$N_3 \cdots N_9$	2.439	0.061	0.060	2
$N_3 {\cdots} C_{10}$	3.659	0.070	0.094	4
$N_3 {\cdots} O_{11}$	2.263	0.056	0.055	2
		(11)		

Table S5. r_a distances and mean amplitudes of caffeine (in Å)

(11)

N ₃ -C ₁₂	1.456	0.051	0.055	1
$N_3 \cdots O_{13}$	4.077	0.064	0.087	5
$N_3 \cdots C_{14}$	4.845	0.072	0.095	5
$C_4 = C_5$	1.380	0.045	0.049	1
$C_4 \cdots C_6$	2.476	0.057	0.057	2
$C_4 \cdots N_7$	2.176	0.050	0.050	2
$C_4 \cdots C_8$	2.086	0.050	0.050	2
$C_4 - N_9$	1.357	0.046	0.051	1
$C_4 \cdots C_{10}$	4.144	0.073	0.096	5
$C_4 \cdots O_{11}$	3.487	0.060	0.084	4
$C_4 \cdots C_{12}$	2.466	0.068	0.068	2
$C_4 \cdots O_{13}$	3.592	0.062	0.086	4
$C_4 \cdots C_{14}$	3.588	0.064	0.088	4
$C_{5}-C_{6}$	1.444	0.048	0.052	1
C ₅ -N ₇	1.372	0.046	0.051	1
$C_5 \cdots C_8$	2.176	0.051	0.050	2
$C_5 \cdots N_9$	2.264	0.052	0.051	2
$C_5 \cdots C_{10}$	3.696	0.069	0.093	4
$C_5 \cdots O_{11}$	3.983	0.065	0.088	5
$C_5 \cdots C_{12}$	3.729	0.069	0.093	4
$C_5 \cdots O_{13}$	2.361	0.059	0.058	2
$C_5 \cdots C_{14}$	2.519	0.071	0.070	2
$C_6 \cdots N_7$	2.569	0.064	0.064	2
$C_6 \cdots C_8$	3.595	0.063	0.087	4
$C_6 \cdots N_9$	3.627	0.060	0.084	4
$C_6 \cdots C_{10}$	2.451	0.069	0.068	2
$C_6 \cdots O_{11}$	3.587	0.065	0.089	4
$C_6 \cdots C_{12}$	4.319	0.072	0.095	5
C ₆ =O ₁₃	1.207	0.039	0.044	1
$C_6 \cdots C_{14}$	3.202	0.109	0.106	3
N ₇ -C ₈	1.360	0.045	0.049	1
$N_7 \cdots N_9$	2.228	0.050	0.049	2
$N_7 \cdots C_{10}$	4.970	0.080	0.103	5
$N_7 \cdots O_{11}$	5.305	0.067	0.089	5
$N_7 \cdots C_{12}$	4.618	0.079	0.102	5
$N_7 \cdots O_{13}$	3.067	0.093	0.090	3
		(12)		

$N_{7}-C_{14}$	1.454	0.050	0.054	1
$C_8 = N_9$	1.296	0.044	0.048	1
$C_8 \cdots C_{10}$	5.821	0.074	0.097	5
$C_8 \cdots O_{11}$	5.558	0.066	0.089	5
$C_8 \cdots C_{12}$	4.185	0.097	0.120	5
$C_8 \cdots O_{13}$	4.313	0.086	0.109	5
$C_8 \cdots C_{14}$	2.518	0.071	0.070	2
C ₈ -H ₁₅	1.071	0.077	0.081	1
$N_9 \cdots C_{10}$	5.485	0.076	0.099	5
$N_9 \cdots O_{11}$	4.681	0.072	0.095	5
$N_9 \cdots C_{12}$	2.952	0.102	0.100	3
$N_9 \cdots O_{13}$	4.611	0.071	0.093	5
$N_9 \cdots C_{14}$	3.617	0.065	0.089	4
C_{10} ···O_{11}	2.651	0.099	0.097	3
C_{10} ··· C_{12}	4.815	0.091	0.114	5
C_{10} ···O_{13}	2.761	0.096	0.094	3
$C_{10} {\cdots} C_{14}$	5.609	0.130	0.152	5
C ₁₀ -H ₁₆	1.077	0.078	0.082	1
C ₁₀ –H _{17, 18}	1.080	0.078	0.083	1
O_{11} ··· C_{12}	2.709	0.104	0.101	3
$O_{11} \cdots O_{13}$	4.560	0.072	0.095	5
$O_{11} \cdots C_{14}$	6.456	0.095	0.118	5
C_{12} ···O_{13}	5.515	0.073	0.096	5
$C_{12} \cdots C_{14}$	6.038	0.086	0.109	5
C ₁₂ -H ₁₉	1.078	0.078	0.082	1
C ₁₂ -H _{20, 21}	1.081	0.078	0.083	1
$O_{13} \cdots C_{14}$	3.149	0.149	0.147	3
C ₁₄ -H ₂₂	1.080	0.078	0.082	1
C ₁₄ -H _{23, 24}	1.079	0.078	0.082	1

^a See Fig. 1 for the atom numberings. Non-bonded $N \cdots H$, $C \cdots H$, $O \cdots H$ and $H \cdots H$ pairs are not listed although they were included in the data analysis.

^b Numbers in parentheses are estimated error limits (3σ) referring to the last significant digit.

Parameter ^a	k	r_1	r_2	<i>r</i> ₃	r_4	r_5	<i>r</i> ₆	$ heta_1$	θ_2
k	1.00								
r_1	-0.05	1.00							
r_2	0.19	-0.44	1.00						
r_3	-0.39	0.20	-0.12	1.00					
r_4	-0.12	-0.56	-0.37	0.03	1.00				
r_5	-0.52	-0.03	-0.46	0.33	0.55	1.00			
r_6	-0.57	0.14	-0.28	0.52	0.21	0.59	1.00		
$ heta_1$	-0.01	0.43	-0.38	0.32	-0.16	0.09	0.18	1.00	
$ heta_2$	-0.22	0.09	-0.44	0.25	0.35	0.43	0.29	0.40	1.00
θ_3	0.10	0.17	0.03	-0.18	-0.28	-0.26	-0.17	0.04	-0.68
$ heta_4$	0.04	-0.36	0.66	0.02	-0.15	-0.10	-0.05	-0.33	0.02
$ heta_5$	-0.02	0.38	-0.57	0.22	0.05	0.04	0.11	0.62	0.04
$ heta_6$	-0.01	0.29	0.32	-0.02	-0.61	-0.27	-0.19	0.18	-0.22
l_1	0.28	0.77	-0.02	0.08	-0.85	-0.50	-0.18	0.36	-0.19
l_2	0.27	0.52	-0.02	0.18	-0.56	-0.22	-0.04	0.41	-0.17
l_3	0.05	0.13	0.10	0.08	-0.28	-0.18	-0.06	0.10	-0.26
l_4	0.23	-0.10	0.46	-0.20	-0.28	-0.26	-0.23	-0.52	-0.40
l_5	0.04	0.08	-0.12	-0.05	-0.02	-0.04	-0.04	0.08	0.09
Parameter ^a	θ_3	$ heta_4$	θ_5	$ heta_6$	l_1	l_2	l_3	l_4	l_5
$ heta_3$	1.00								
$ heta_4$	-0.49	1.00							
$ heta_5$	0.39	-0.86	1.00						
$ heta_6$	0.11	0.23	-0.01	1.00					
l_1	0.27	-0.13	0.23	0.44	1.00				
l_2	0.04	-0.01	0.23	0.38	0.65	1.00			
l_3	0.03	-0.09	0.20	0.21	0.25	0.50	1.00		
l_4	0.20	0.37	-0.51	0.07	0.11	-0.05	-0.10	1.00	
l_5	-0.05	-0.15	0.15	0.02	0.07	0.05	0.06	-0.18	1.00

Table S6. The correlation matrix for caffeine

^a See Table 2 for the definitions of the structural parameters. k is the index of resolution. l_1 to l_5 are the mean amplitudes for the groups 1 to 5, respectively (see Table S5).