Susceptibility to Oxygen Desaturation During Bronchoscopy in Elderly Patients with Pulmonary Fibrosis

Naofumi Shinagawaa, Koichi Yamazakia, Ichiro Kinoshitab, Shigeaki Ogurac, Masaharu Nishimuraa

aFirst Department of Medicine, bDepartment of Medical Oncology, Hokkaido University School of Medicine, and cDepartment of Respiratory Disease, Sapporo City General Hospital, Sapporo, Japan.

Correspondence to: Koichi Yamazaki, MD, PhD, First Department of Medicine, Hokkaido University School of Medicine, North 15, West 7, Kitaku, Sapporo 060-8638, Japan

E-mail: kyamazak@med.hokudai.ac.jp

Fax: +81-11-706-7899

Phone: +81-11-706-5911

Running Title: Desaturation during Bronchoscopy
Key words:

Bronchoscopy; oxygen desaturation; pulmonary fibrosis; interstitial pneumonia
Abstract

Background: Fiber-optic flexible bronchoscopy (FFB) is a frequently performed procedure for the diagnosis and treatment of pulmonary disorders. However, hypoxemia occasionally occurs during FFB.

Objectives: We attempted to examine the causes of arterial oxygen desaturation during FFB.

Methods: We studied 336 patients who underwent FFB without intervention between June 1, 2001 and September 30, 2002. Arterial oxygen saturation (SpO₂) was continuously monitored using oximetry with a recording system. We analyzed the relationship between a reduction in SpO₂ during FFB and various clinical parameters or background lung diseases.

Results: Of the 336 patients, 73 (22%) had an episode of oxygen desaturation (SpO₂ < 90 over 10 seconds). Of patients over 80 years old, 55% had an episode of oxygen desaturation, which was significantly higher than 27% observed in the patients of 80 and less than 80 years old (P < 0.05). Patients with pulmonary fibrosis had a higher risk of desaturation (55%),
compared to patients with other complications or patients without any complication (P < 0.05). Multivariable analysis revealed that both age and pulmonary fibrosis were independent predictors of oxygen desaturation.

However, the majority of the patients (94%) did not require routine oxygen supplementation.

Conclusion: Although FFB is safe and does not require oxygen supplementation in most cases, age over 80 years and pulmonary fibrosis are high risk factors for significant oxygen desaturation during FFB.
Introduction

Fiber-optic flexible bronchoscopy (FFB) is a safe and frequently performed procedure for the diagnosis and treatment of pulmonary disorders. However, hypoxemia has been shown to occur during FFB procedures. Hypoxemia can occur by several mechanisms including oversedation, suctioning during the procedure, which can remove oxygen or decrease lung volumes below functional residual capacity, and increased ventilation-perfusion mismatching by bronchospasm, bleeding, and instillation of fluids. Hypoxemia is one of the most dangerous complications because it has the potential to cause cardiac arrhythmia [1].

Since the pulse oximeter became commercially available, monitoring of oxygen saturation during procedures has become routine in most institutions. The British Thoracic Society recommends that patients should be monitored by oximetry and that oxygen supplementation should be administered as necessary to achieve an oxygen saturation of at least 90% to reduce the risk
of significant arrhythmias during the procedure and also in the postoperative recovery period.

Patients with complicating lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) have increased risks of oxygen desaturation during FFB [2]. However, Jones et al. argued that the majority of patients, especially those with a forced expiratory volume in one second (FEV1) above 1 L, did not require routine oxygen supplementation [3].

In the present study, we evaluated the arterial oxygen saturation (SpO₂) of patients during the FFB procedure without interventions and analyzed the relationship between oxygen desaturation and spirometric parameters or complicating lung diseases.

Materials and Methods

Subjects and study design

At Hokkaido University Hospital, 336 patients underwent screening FFB without intervention between June 1, 2001 and September 30, 2002. These
patients were 231 men and 105 women with an average age of 62.1 years (range, 18 to 87 years). Approximately 90% of these patients underwent FFB because of localized pulmonary lesions or hemoptysis. Of these 336 patients, 257 underwent a spirogram within 3 weeks before or after bronchoscopy. However, we excluded the pulmonary function test (PFT) data of those patients who may have had their PFT data altered by the FFB procedure, such as those with bronchial asthma and atelectasis.

The data included slow vital capacity (VC), %VC, FEV1, FEV1/forced vital capacity (FVC), functional residual capacity (FRC), %FRC, diffusing capacity for carbon monoxide (DLco), %DLco, DLco/alveolar volume (DLco/VA), and %DLco/ VA.

Complicating lung diseases such as COPD [4,5], asthma, pulmonary fibrosis [6-8], sarcoidosis, post-lobectomy, atelectasis, and pneumoconiosis were also reviewed from the patients’ medical records retrospectively.

Chronic obstructive pulmonary disease was diagnosed following the GOLD guideline [9]. The diagnosis of pulmonary fibrosis was based on chest
computed tomography (CT) findings, which were characterized by ground-glass opacities, linear interstitial opacities, coarse reticular-nodular shadows, and honeycombing. We used a multidetector CT scanner (Aquilion Multi 4-detector, Toshiba, Tokyo, Japan) for all CT examinations. Conventional whole lung CT images were acquired of 5-mm thick sections. If complicating lung diseases were suspected from conventional CT images, high resolution CT (HRCT) with 1.0-mm thick sections was performed for those lesions. The HRCT parameters were as follows: 1.0 mm collimation, 135 – 149 kVp, 100 mA, rotation time 1.0 sec.

The differential diagnoses included idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia (NSIP), IPF associated with collagen vascular disease (CVD), farmer’s lung, and other idiopathic interstitial pneumonias (IIPs). Sarcoidosis was diagnosed according to the ATS guidelines [10].
Fiber-optic flexible bronchoscopy

In our unit, supplemental oxygen is not routinely given to the patients undergoing FFB. If, however, there was a sustained fall in oxygen saturation during the procedure (i.e., < 90% for 30 sec or < 80% immediately), supplemental oxygen was administered nasally at a flow rate between 2 and 5 L/min to maintain SpO₂ > 90%. Lidocaine was given for local anesthesia to all patients. Pentazocine (15 mg) and atropine sulfate (0.5 mg) were administered intramuscularly. Fiber-optic flexible bronchoscopy procedures were performed by seven pulmonary fellows who each had more than 5 years of FFB training and who were directly supervised and assisted by the pulmonary faculty in attendance.

Monitoring of arterial oxygen saturation during fiber-optic flexible bronchoscopy

Arterial oxygen saturation (SpO₂) was continuously monitored using oximetry with a finger probe (PULSOX-5™; Konica Minolta Holdings, Inc.,
Tokyo, Japan). The data were recorded, stored, and later analyzed using PULSOX SpO₂ Analysis Version 2.0a™ software (Stowood Scientific Instruments, Oxford, UK). Total examination time, average SpO₂, duration of SpO₂ < 90, duration of SpO₂ < 80, and minimum SpO₂ were measured. The total examination time was the period between the insertion of the bronchoscope and the end of the fluoroscopic screening (not including transbronchial biopsy and bronchoalveolar lavage). Oxygen desaturation was defined to be present when SpO₂ < 90 continued more than 10 seconds.

Statistical analysis

All data were processed using standard statistical methods with StatView™ version 5.0 software (SAS Institute Inc., Cary, NC, USA). Results were presented as mean ± standard deviation (SD). Two by two frequency tables and the Pearson’s correlation coefficient test were used to estimate the relationship between the values obtained in spirometry tests and SpO₂. Logistic regression analysis was applied for multivariable analysis of risk
factors for desaturation. A p value of < 0.05 was regarded as significant.

Results

All FFB examinations were performed without any complications. The average total time of screening FFB without intervention was 9.7 min. Of the 336 patients, 73 patients (22%) had an episode of desaturation (SpO$_2$ < 90% over 10 seconds) during FFB procedures. Among them, 19 patients (6%) required oxygen supplementation.

First, we analyzed the association between percentages of SpO$_2$ < 90 and age. Of the patients over 80 years old, 55% had an episode of SpO$_2$ < 90 (compared to patients of 80 and less than 80 years old, 27%, p < 0.05) and oxygen supplementation was required for 18% of patients over 80 years old (compared to patients of 80 and less than 80 years old, 5%, p = 0.067).

However, there were no statistical relationships between oxygen desaturation and various clinical parameters (height, weight, body mass
index (BMI), VC, %VC, FEV1, FEV1/FVC, FRC, %FRC, DLco, %DLco, DLco/VA, and %DLco/VA). Patients with a FEV1 \(\leq 1.0 \) l had a higher risk of oxygen desaturation compared to those with a FEV1 > 1.0 l, but the difference was not significant (50% vs. 24%, \(p = 0.056 \)). There was no significant relationship between oxygen desaturation and arterial oxygen saturation at rest.

We next examined the association between oxygen desaturation and the presence of complicating lung disease (Table 1). Among several complicating lung disorders, pulmonary fibrosis was the highest risk factor for oxygen desaturation. Of the patients with pulmonary fibrosis, 55% had an episode of oxygen desaturation, significantly higher than patients with other complicating lung diseases or no complications (\(P < 0.05 \)). There were no significant differences in age, FEV1, or other various clinical parameters (height, weight, BMI, VC, %VC, FEV1/FVC, FRC, %FRC, DLco, %DLco, DLco/VA, and %DLco/VA) between patients with pulmonary fibrosis and other patients. However, elderly patients with pulmonary fibrosis seemed to
have a higher risk of oxygen desaturation. Among four patients over 75 years old with pulmonary fibrosis, three had an episode of oxygen desaturation (Table 2). The fourth patient, who was 81 years old, had an episode of oxygen desaturation for a total of 280 seconds during FFB and needed oxygen supplementation.

Multivariate analysis revealed that age (over 80 years old) and the presence of pulmonary fibrosis were independent predictors of oxygen desaturation (Table 3).

Discussion

In the present study, we analyzed the relationship between oxygen desaturation during FFB and various clinical parameters or complicating lung diseases. As a result, age and pulmonary fibrosis were identified as significant risk factors of oxygen desaturation. Although the number of patients might be small, this is the first report to suggest the association
between pulmonary fibrosis and oxygen desaturation during FFB.

As one of the mechanisms accounting for hypoxemia in patients with pulmonary fibrosis, low functional residual capacity (FRC) should be considered. However, in the present study, there was no significant difference between the level of FRC in patients with pulmonary fibrosis and that of the other patients (data not shown). On the other hand, it was reported that FRC increased during the FFB examination by the augmentation of airway resistance from FFB insertion [11]. Moreover, it was speculated that increased FRC maintained airway patency and prevented decreases in \(\text{SpO}_2 \). However, FRC might not increase in the case of pulmonary fibrosis compared to other complicating diseases because of low lung compliance by the fibrosis, although we did not examine FRC during FFB in the present study.

The British Thoracic Society guidelines recommend checking the spirometric parameters of patients with suspected COPD before FFB, and if the COPD is found to be severe (FEV1 < 40% or \(\text{SpO}_2 < 93\% \)), the patients should have
arterial blood gas tensions measured. Oxygen supplementation may lead to
an increase in the arterial PCO₂ level; in cases in which the
pre-bronchoscopy arterial PCO₂ is raised, oxygen supplementation should
be given with extreme caution. Other conditions that may complicate FFB are
asthma, advanced patient age, a history of myocardial infarction, raised
intracranial pressure, and hemoptysis [2]. However, pulmonary fibrosis has
not been proposed as a high-risk disease of oxygen desaturation during FFB
procedures. The precise reason is not clear, perhaps due to the difficulty in
diagnosing pulmonary fibrosis. Pulmonary fibrosis includes a wide spectrum
of pulmonary abnormalities and inflammatory diseases of the pulmonary
interstitium. In this study, when we defined pulmonary fibrosis only from
chest CT findings, the relationship between oxygen desaturation during FFB
and pulmonary fibrosis emerged.

A number of studies have shown a high incidence of lung cancer in patients
with idiopathic pulmonary fibrosis compared to control subjects [12, 13].

Patients with pulmonary fibrosis should frequently receive FFB and thus,
should receive closer attention regarding oxygen desaturation during FFB.

Supplemental oxygen is given to all patients during FFB in some institutes [14, 15]. However, the data in the present study indicated that the majority of our patients (94%) did not require routine oxygen supplementation, supporting the findings of Jones and colleagues [3].

In conclusion, although FFB is generally safe without oxygen supplement, age (over 80 years old) and pulmonary fibrosis are two high risk factors for oxygen desaturation during FFB.
References

15. McCain TW, Dunagan DP, Adair NE, Chin RJ. Prospective randomized trial comparing oxygen administration during nasal flexible bronchoscopy. Chest 2001; 120:1671-1674
Table 1. Complicated lung disease and SpO₂ < 90

<table>
<thead>
<tr>
<th>Complications</th>
<th>No.</th>
<th>Age (years)*</th>
<th>FEV₁ (l)*</th>
<th>No. (%) of SpO₂ < 90†</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>59</td>
<td>68.0 ± 8.9</td>
<td>2.00 ± 0.71</td>
<td>15 (25%)</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>23</td>
<td>44.7 ± 18.8</td>
<td>2.65 ± 0.71</td>
<td>6 (26%)</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>18</td>
<td>67.8 ± 7.8</td>
<td>2.05 ± 0.59</td>
<td>10 (56%) ‡</td>
</tr>
<tr>
<td>Post-lobectomy</td>
<td>16</td>
<td>61.4 ± 12.8</td>
<td>1.79 ± 0.60</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>15</td>
<td>65.9 ± 8.6</td>
<td>1.78 ± 0.54</td>
<td>3 (20%)</td>
</tr>
<tr>
<td>Others§</td>
<td>48</td>
<td>60.5 ± 18.2</td>
<td>2.26 ± 0.60</td>
<td>8 (17%)</td>
</tr>
<tr>
<td>No complication</td>
<td>157</td>
<td>61.8 ± 12.9</td>
<td>2.42 ± 0.68</td>
<td>44 (28%)</td>
</tr>
</tbody>
</table>

* Mean ± SD.

† Number of patients who had SpO₂ < 90 over 10 second during FFB.

‡ P < 0.05 compared with no complication.

§ included patients with bronchial asthma, pneumoconiosis, old pulmonary tuberculosis, etc.
Table 2. Characteristics of the patients with pulmonary fibrosis

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Sex</th>
<th>Clinical Diagnosis</th>
<th>VC (l)</th>
<th>%VC (%)</th>
<th>FEV1 (l)</th>
<th>FRC (l)</th>
<th>%DLco (%)</th>
<th>%DLco/VA (%)</th>
<th>SpO2<90 (sec)</th>
<th>SpO2 (%)</th>
<th>O2 Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower than 75 years old</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>F</td>
<td>IPs</td>
<td>2.16</td>
<td>88.5</td>
<td>1.93</td>
<td>1.81</td>
<td>62.2</td>
<td>95.3</td>
<td>0</td>
<td>95.9</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>F</td>
<td>IP associated with CVD</td>
<td>1.75</td>
<td>72.3</td>
<td>1.46</td>
<td>1.83</td>
<td>32.0</td>
<td>43.7</td>
<td>0</td>
<td>95.2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>M</td>
<td>IPs</td>
<td>3.22</td>
<td>97.6</td>
<td>2.26</td>
<td>N.D.</td>
<td>86.6</td>
<td>81.3</td>
<td>0</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>M</td>
<td>IPs</td>
<td>4.29</td>
<td>128.8</td>
<td>3.26</td>
<td>3.98</td>
<td>87.6</td>
<td>71.3</td>
<td>10</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>M</td>
<td>IPs</td>
<td>2.94</td>
<td>89.1</td>
<td>2.59</td>
<td>2.21</td>
<td>73.4</td>
<td>85.7</td>
<td>10</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>M</td>
<td>IPs</td>
<td>2.66</td>
<td>83.6</td>
<td>2.60</td>
<td>3.38</td>
<td>63.0</td>
<td>57.8</td>
<td>0</td>
<td>98.5</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>M</td>
<td>IPs</td>
<td>3.94</td>
<td>122.7</td>
<td>2.82</td>
<td>N.D.</td>
<td>76.8</td>
<td>63.9</td>
<td>40</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>M</td>
<td>IPs</td>
<td>4.25</td>
<td>127.2</td>
<td>3.23</td>
<td>4.73</td>
<td>63.5</td>
<td>43.6</td>
<td>0</td>
<td>96.8</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>M</td>
<td>IPs</td>
<td>2.71</td>
<td>83.4</td>
<td>1.62</td>
<td>N.D.</td>
<td>45.2</td>
<td>42.0</td>
<td>45</td>
<td>95.2</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>M</td>
<td>IPs</td>
<td>3.23</td>
<td>97.9</td>
<td>2.22</td>
<td>3.11</td>
<td>63.5</td>
<td>49.6</td>
<td>70</td>
<td>97.3</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>M</td>
<td>IPs</td>
<td>3.19</td>
<td>97.9</td>
<td>2.70</td>
<td>3.43</td>
<td>82.2</td>
<td>69.6</td>
<td>0</td>
<td>97.2</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>M</td>
<td>IPF</td>
<td>2.98</td>
<td>95.8</td>
<td>2.50</td>
<td>3.31</td>
<td>63.1</td>
<td>58.2</td>
<td>15</td>
<td>97.7</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>M</td>
<td>NSIP</td>
<td>1.70</td>
<td>53.0</td>
<td>1.54</td>
<td>1.79</td>
<td>33.5</td>
<td>61.8</td>
<td>95</td>
<td>95.9</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>M</td>
<td>Farmer's lung</td>
<td>4.14</td>
<td>119.0</td>
<td>2.93</td>
<td>3.29</td>
<td>63.3</td>
<td>49.3</td>
<td>0</td>
<td>95.2</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>M</td>
<td>IPs</td>
<td>1.84</td>
<td>56.8</td>
<td>1.52</td>
<td>3.34</td>
<td>119.1</td>
<td>110.0</td>
<td>0</td>
<td>94.9</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>F</td>
<td>Drug induced pneumonia</td>
<td>1.33</td>
<td>63.3</td>
<td>1.01</td>
<td>N.D.</td>
<td>43.6</td>
<td>74.4</td>
<td>30</td>
<td>94.7</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>F</td>
<td>IP associated with CVD</td>
<td>1.67</td>
<td>68.2</td>
<td>1.43</td>
<td>1.51</td>
<td>40.6</td>
<td>70.8</td>
<td>0</td>
<td>94.9</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>F</td>
<td>IPs</td>
<td>1.76</td>
<td>86.7</td>
<td>1.25</td>
<td>N.D.</td>
<td>83.2</td>
<td>107.6</td>
<td>25</td>
<td>94.1</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>M</td>
<td>IPs</td>
<td>2.79</td>
<td>91.8</td>
<td>2.21</td>
<td>3.01</td>
<td>63.4</td>
<td>48.3</td>
<td>280</td>
<td>93.8</td>
<td>+</td>
</tr>
</tbody>
</table>

Abbreviations: IPs; idiopathic interstitial pneumonias, IPF; idiopathic pulmonary fibrosis, NSIP; nonspecific interstitial pneumonia, CVD; collagen vascular disease, N.D.; not determined
Table 3. Multivariable analysis of features associated with SpO₂ < 90

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 80</td>
<td>5.68</td>
<td>1.54 to 20.96</td>
<td>0.009</td>
</tr>
<tr>
<td>Pulmonary Fibrosis</td>
<td>2.76</td>
<td>1.05 to 7.26</td>
<td>0.039</td>
</tr>
</tbody>
</table>