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Development of magnetohydrodynamic
simulation code using the constrained

interpolation profile method
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Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku,

Sapporo 060-8628, Japan

(Received 15 August 2005 and accepted 27 December 2005)

Abstract. A three-dimensional magnetohydrodynamic (MHD) simulation code has
been newly developed. In this code, the physical variables are defined in the
staggered mesh system and each of the MHD equations is split into the advection
phase and the non-advection phase. The constrained interpolation profile method,
which gives a highly accurate solution with less numerical diffusion, is applied to
the calculation for the advection phase. In contrast, the non-advection phase is
calculated using the finite difference method. The developed code is tested for the
relaxation processes of the mass density, plasma pressure and magnetic field in the
Large Helical Device (LHD).

1. Introduction
For the realization of the nuclear fusion reactor, it is important to understand
the magnetohydrodynamic (MHD) equilibria and the stability. In helical devices,
such as the Large Helical Device (LHD) [1] at the National Institute for Fusion
Science (NIFS) of the National Institute of Natural Sciences (NINS) in Japan,
the systematic three-dimensional (3D) MHD studies are also needed for successful
operations. The fully 3D equilibrium analysis [2–4] and the fully 3D nonlinear
MHD stability simulation [5] for the LHD plasmas have been made. The results
of these studies, however, do not completely agree with the results of the LHD
experiments. Thus, there is a need to develop a new MHD simulation code which
properly reproduces the experiment results.
The constrained interpolation profile (CIP) method [6] is one of the numerical

schemes to solve the nonlinear hyperbolic equations. Highly accurate and stable
solutions with less numerical diffusion can be given in hydrodynamic and space
plasma simulations using the method [7, 8]. In the present study, a new 3D MHD
simulation code based on the CIP method is under development to analyze the
LHD experiment results.

2. Numerical model
In this study, the following normalized MHD equations are solved:

∂ρ

∂t
+ (V · ∇)ρ = −ρ(∇ · V), (2.1)
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Figure 1. Location of (a) scalar and (b) vector quantities in the staggered mesh system.
i,j and k represent the labels of R, φ and Z directions, respectively.

∂V
∂t

+ (V · ∇)V = −1
ρ
(∇P − J× B), (2.2)

∂P

∂t
+ (V · ∇)P = −γP (∇ · V), (2.3)

∂B
∂t

= −∇ × E, (2.4)

E = η J− V× B, (2.5)

and

J = ∇ × B, (2.6)

where ρ, V, P , B, J and E are the mass density, velocity, pressure, magnetic field,
current density and electric field, respectively. The quantities γ and η are the
specific-heat ratio and the resistivity.
Equations (2.1)–(2.3) are split into two phases, i.e. the advection phase and the

non-advection phase. The CIPmethod is applied to the calculation for the advection
phase. In contrast, the non-advection phase is calculated using the finite differ-
ence method. The induction equation (2.4) is also solved with the finite difference
method.
The cylindrical coordinate system (R,φ, Z) is adopted, and the number of grid

points are set to be 56, 490 and 56 in each direction. The physical variables are
defined in the staggered mesh system as shown in Fig. 1 [9]. In this system, the
scalar quantities such as ρ and P are located at the center of the zone. One assumes
here that the components of both velocity and magnetic field, V and B, are located
at the same face. E are located along the zone edge. Through the above definition,
the constraint ∇ · B = 0 is preserved in the finite difference computation of (2.4).
V and B at the undefined grid points are required to calculate E in (2.5). The

Lorentz force J × B and ρ are also required to deal with the momentum
equation (2.2). These quantities are interpolated from the corresponding values
and their first spatial derivatives at the neighboring grid points in the sense of the
cubic Hermite interpolation.
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Figure 2. Bird’s-eye view of (a) mass density, (b) pressure, (c) speed, and (d) magnetic field
strength on the horizontally elongated plan at t = 0.2. i and j are the labels of R and
Z directions. VA is the Alfvén speed and Bax the magnetic field strength on the vacuum
magnetic axis.

Initial values of ρ and P are set as

ρ = ρ0(1 − r8), (2.7)

and

P = P0(1 − r8)(1 − r2), (2.8)

where r is the normalized minor radius, while ρ0 and P0 denote the mass density
and the pressure on the magnetic axis. The vacuum magnetic field calculated using
the KMAG code [10] in the Rax = 3.6 m case is used as the initial condition. One
also assumes V = 0 at the initial state.

3. Test calculation
A numerical test has been made for the relaxation processes of ρ, P and B which
started with the above-described initial conditions (ρ0 = 1, P0 = 0.016). It is noted
that P0 = 0.016 represents βax = 3.2%. Bird’s eye views of ρ, P , |B| and |V| on
the horizontally elongated plane at t = 0.2 are shown in Fig. 2. Unfortunately,
no reasonable quantities can be obtained by the present code. Even after a short
time, |V| and |B| have diverged. This shows that there are some problems in the
computation of (2.2) and (2.4). So, the present code requires some conditions to
prevent V and B from diverging. In addition, an improved method to interpolate
V and B at the undefined grid points should be developed.

4. Summary and future plans
AMHD simulation code has been newly developed. In this code, the MHD equations
are split into the advection and non-advection phases, which are respectively solved
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by the CIP and finite difference method. The developed code has been applied to
the LHD plasma, however, reasonable quantities have not been obtained for the
time being.
Our future plans are as follows

(a) The viscosity term will be added to (2.2) and (2.3) to prevent V from diverging.

(b) The method of characteristic constrained transport (MOCCT) scheme [8, 11]
will be adopted to estimate the quantities at the undefined grid points.

(c) The precision of the finite difference computation will be raised.

(d) After completion of this simulation code, the equilibrium pressure in the peri-
pheral region of the LHD will be studied. The peripheral pressure profile ob-
tained by the LHD experiments has not been reconstructed by any equilibrium
codes. We will also study the nonlinear stability/instability in the LHD.
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