

Title	オホーツク海南半部における海氷の生成についての一考察						
Author(s)	田畑, 忠司						
Citation	低温科學. 物理篇, 19, 175-186						
Issue Date	1960-12-10						
Doc URL	http://hdl.handle.net/2115/17975						
Туре	bulletin (article)						
File Information	19_p175-186.pdf						

Tadashi TABATA 1960 On the Formation and Growth of Sea Ice in the Southern Part of the Okhotsk Sea. Low Temperature Science, Ser. A, 19. (With English résumé p. 185)

オホーツク海南半部における海氷の生成についての一考察*

田 畑 忠 司 (低温科学研究所 海洋学部門) (昭和 35 年 6 月受理)

L まえがき

高緯度地方の海では冬のあいだに表面から可成りの深さまで温度と塩分が殆んど一様な冷 水塊ができることがよく知られている。

この水塊は、秋から冬にかけて表面海水がはげしく冷却されて密度が増し、対流による混 合が盛になることによつて生成されるものと考えられている。また、海氷ができる海域では、 単に温度低下による混合ばかりでなく、結氷のときに放出される塩のために氷の下の海水の塩 分、したがつて密度が増すことが対流による混合を促進し、冷水塊の下限はますます深くなる。 これらのほかに、表面からの蒸発によつても海水の塩分がふえるし、降水は逆の作用を及ぼし、 風波による拡乱、または拡散によつても混合がおこる。海面からの蒸発と降水については、 Jacobs¹⁾の研究によると、例えば千島列島の太平洋岸附近では秋季(9~11月)の蒸発量は0.2 g/cm²/day 以下で、降水は0.22 cm/cm²/day 以下である。したがつてオホーツク海では秋には 蒸発と降水はほぼひとしいとみなしても近似的には正しいであろう。風波による拡乱が100 m 以上の深さにまで達するとは考えられないし、拡散による混合の速度はきわめておそいので、 オホーツク海では秋から冬にかけておこる鉛直混合は温度低下と海氷生成に起因する密度増加 によるものとみなすことができる。

温鹹混合によつてできた冷水塊は,春になると表面近くがあたためられ,温度の垂直分布 曲線は中層で極小を示して中冷水とよばれるようになる。中冷水は上からばかりでなく下層か らもあたためられて次第に衰えるが夏の終り近くまで存在するものが多く,時には次の冬に冷 却によつて再び冷水塊の生成が繰り返えされるまで残つているものもみる。

オホーツク海ではこのようにしてできた中冷水が夏でもほとんどその全域にわたつて存在 していることが確められている^{2),3}。 また冬にはほとんど全域に海氷がみられることも知られ ている⁴。福富⁵⁾はオホーツク海には平均しておよそ 41 m の深さに密度の躍層があるために, 海氷の生成の問題は深さが 41 m の浅い海の場合とほぼ同様に考えられることを指摘し, 各種 の気象要素,実験で求めた海水から大気への放熱係数,氷厚増加係数を用いてオホーツク海の 結氷初日と最大氷厚の分布を求めた。その研究において福富は結氷開始前におこる温鹹混合に

* 北海道大学低温科学研究所業績 第546号

低温科学物理篇 第19 輯 昭和 35 年

注目したが、結氷がはじまつたのちの海水の鉛直混合についてはふれていない。

筆者はオホーツク海の結氷前および結氷開始後の温鹹混合の発達過程と氷厚増加及びそれ らに必要な放熱量を、3y6oB、Defant⁶⁾が提唱しLee と Simpson 及び Brown⁷⁾が用いたのと ほぼ同じ方法を用いて吟味した。またいくつかの地点における最大氷厚値の推定も試みた。

II. 冷却による温鹹混合

海では夏のおわり頃に表面水温が最高値に達し、その後次第に低くなる。この温度が低く なりつつある時季,いいかえると、海面から大気へ放射される熱量が海がうけとる熱量よりも 多い時季を考える。又、海潮流などによる海水の流動はないものとする。

海をひとしい厚さhをもついくつかの層に分割して考え,各々の層の中では温度と塩分, したがつて密度も一様であるとする。表面から数えて各層をそれぞれ h_1 , h_2 ,……とし,温度, 塩分,密度をそれぞれ, t_1 , S_1 , ρ_1 ; t_2 , S_2 , ρ_2 ;……とする。多くの場合には $\rho_1 < \rho_2 < \rho_3 < ……$ であるが,時にはとなりあつたいくつかの層の密度が互にひとしい場合もある。海水の塩分は24.7%。以上の場合が多いので水温が下ると密度が増すと考えても一般性を失わない。

 h_1 層の密度 ρ_1 がなんらかの原因で増して ρ_2 に等しくなると $h_1 \ge h_2$ の層の水は混合する。 ρ_1 の増加が水温 t_1 が $4t_1$ だけ下つたためにおこり、塩分 S_1 は変化しないとすると、2つの層が 混合してできた水塊 $\overline{h_2}$ の水温と塩分はそれぞれ

$$\bar{t}_{2} = \frac{t_{1} + t_{2}}{2} - \frac{\varDelta t_{1}}{2} = t_{3} - \varDelta t_{2h}$$
(1)

$$\bar{S}_{2} = \frac{S_{1} + S_{2}}{2} = S_{\Xi}$$
 (2)

となる。この際に h₁層から失われた熱量 4Q_{1,2} は単位面積あたり

$$\Delta Q_{t,2} = c \rho_1 h \, \Delta t_{2h} \tag{3}$$

である。ただしcは海水の比熱である。

実際には海面からの蒸発と降水によつて塩分が変化するが,オホーツク海中央部における 蒸発量と降水量は測定せられていないので,既にのべたように,蒸発量と降水量はひとしいと みなしてそれらによる塩分の変化を無視する。

 $h_1 \ge h_2$ の層が混合してできた水塊 \overline{h}_2 の水温が $4t_{1,2}$ だけ下つて $\overline{\rho}_2(=\rho_2)=\rho_3$ となると $\overline{h}_2 \ge h_3$ が混合して次のような水温,塩分を呈する水塊ができる

$$\bar{t}_{3} = \frac{t_{1} + t_{2} + t_{3}}{3} - \frac{\varDelta t_{1} + 2\varDelta t_{1,2}}{3} = t_{3} - \varDelta t_{3h}$$
$$\bar{S}_{3} = \frac{S_{1} + S_{2} + S_{3}}{3} = S_{3}$$

このようにして,水温低下によつて次々に下層の水との混合がおこるが,表面から h_nの 層までの水塊の平均水温がその水塊の塩分に対する結氷温度まで下つても h_n層の密度.0_nに達

しないことがある。この場合には温度低下のみによる混合は(*n*-1) *h* と *n*·*h* のあいだの深さまでしか行なわれない。

この深さは結氷開始前までにできる混合層の深さで、密度の躍層をあらわしている。

混合が n 層まで行なわれるためには h_n 層までの水塊の 平均温度が結氷温度 t_f にまで下つ たうえで、更に塩分がふえることが必要である。即ち温度と塩分がそれぞれ

$$\bar{t}_n = t_{\bar{n}} - \varDelta t_{nh} = t_f \tag{4}$$

$$\overline{S}_n = \frac{S_1 + S_2 + \dots + S_n}{n} + \Delta S_{nh} = S_{\overline{n}} + \Delta S_{nh}$$
(5)

とならなければならない。 t_f は塩分 $S_{\bar{n}}$ に対する結氷温度をあらわしている。 この場合に温度 を下げるために失われる熱量は

$$\Delta Q_{t,n} = c \cdot \bar{\rho}_n \cdot nh \cdot \Delta t_{nh} \tag{6}$$

である。

(5) 式であらわされる塩分の増加は海氷の生成による塩分の放出によつて行なわれる。今厚 さhmの層の表面に厚さIcm,塩分 S_t ‰,密度 ρ_t の海氷ができたとする。これだけの厚さの 海氷が塩分 S_n ‰,厚さwcmの海水からできたとすると

$$w = I \frac{\rho_i}{\rho_w}$$

である。ただし ρ_w は海水の密度である。厚さwの海水中の塩の重量は $w \cdot S_w \times 10^{-6}$ gram であるから、氷の生成に原因する厚さhの層の海水の塩分増加は

$$\Delta S_i = w \, \frac{S_w - S_i}{h - w} \, \% \tag{7}$$

である。 $\rho_{w}=1.025$ とし、 $3y60B^{8}$)にしたがつて $\rho_{i}=0.926$ とするとw=0.90Iとなる。 $S_{w}=33\%$ とする。 S_{i} は海水の塩分、氷の生長速度や厚さなどによつてことなるが、筆者の測定した⁹⁾オホーツク海北海道沿岸の海氷の塩分 $3\sim 6\%$ と $3y60B^{8}$)による北氷洋の海氷の塩分 $4\sim 6\%$ を参照してオホーック海南部の海氷に対して $S_{i}=4\%$ と仮定する。更にwはhにくらべて小さいことを考慮に入れると(7)式は次のようになる。

$$\Delta S_i = 26.1 \frac{I}{h} \tag{8}$$

または

$$I = \frac{h}{26.1} \Delta S_i \tag{9}$$

したがつて、第(5)式の右辺第2項であらわされる塩分増加のためには

$$I_n = \frac{nh}{26.1} \Delta S_{nh} \text{ cm}$$
(10)

の厚さの海氷ができればよいことがわかる。塩分4%の海氷の融解の潜熱は70 cal/g であるか

ら、Incmの厚さの海氷ができるためには海の表面の単位面積あたり

$$\Delta Q_{i,n} = 70 \times 0.926 I_n \times 10^{-3} \text{ kg} \cdot \text{cal.}$$

(11)

の熱量がうばわれなければならない。

以上の様な操作を次々に行なうことによつて,更に深い層にまで温鹹混合がおこなわれる ために必要な温度降下と海氷の厚さ及びそれらに要する放熱量を容易に求めることができる。

III. オホーツク海の温鹹混合と海氷の生成

筆者は以前に、1941年9月上旬に蒼鷹丸がオホーツク海南部で行なつた海洋観測の結果を 用いて同海の秋の海況を検討した³⁰。オホーック海の秋季における海洋観測はこの資料以外に 見当らないので、再び同じ資料と前節で述べた方法をもちいて、秋から冬にかけての温鹹混合 の過程を吟味した。

e 1. Calculation of ice potential and growth of ice at Station 7 (51°N, 151°E, 1 Sept. 1941, Sōyō-maru).

(Observed Da	ta	Layer	Depth	Mean values				
Depth	Temp.	Salinity							
(m)	(°C)	(‰)	(No.)	(m)	<u>T</u>	S	đi		
0	11.40	32.30	1	0-10	11.32	32.30	24.64		
10	11.23	32.30	2	10- 20	10.73	32.30	24.74		
25	6.57	32.30	3	20- 30	6.83	32.30	25.34		
50	0.15	32.65	4	30- 40	2.35	32.40	25.88		
100	-1.11	33.01	5	40→ 50	0.65	32.56	26.12		
150	-0.10	33.30	6	50- 60	-0.10	32.70	26.27		
200	0.61	33.37	7	60- 70	-0.45	32,78	26.36		
· 300	0.79	33.50	. 8	70- 80	-0.73	32.84	26.42		
400	1.03	33.66	9	80100	-1.00	32.94	26.50		
500	1.49	33.75	·	<u> </u>		<u></u>			
600	1.93	· 33.93							
800	2.29	34.34							
1000	2.37	34.22							

Layer 1	Depth	Before mixing		After mixing								
		Temp.	Sal.	Øł .	Temp.	Sal.		⊿S	Ι.	ΣQ_t	ΣQ_i	ΣQ
(No.)	(m)	$(t_{\overline{n}}^{\circ}C)$	$(S_{\bar{n}}\%)$		$(\bar{t}^{\circ}C)$	$(\overline{s}\%)$	(°C)	(‰)	(cm)	(Kg•cal/cm²)		n²)
1-2	20	11.03	32.30	24,74	10.73	32.30	-0.30	0	0	0.58	0	0.58
13	30	9.63	32.30	25.34	6.83	32.30	-2.80	0	0	8.09	0	8.09
1-4	40	7.81	32.32	25.88	1.65	32.32	6.16	0	0	23.7	0	23.7
1-5	50	6.38	32.37	26.12	-1.76	32.45	-8.14	+0.08	15.3	39.2	0.99	40.2
1-6	60	5.30	32.43	26.27	-1.76	32.63	-7.06	+0.20	46.0	40.7	2.98	43.7
1-7	70	4.48	32.48	26.36	-1.76	32.74	-6.24	+0.26	69.7	42.0	4.52	46,5
18	80	3.83	32.52	26.42	-1.76	32.52	-5.59	+0.31	95.0	43.1	6,15	49.3
1-9	100	2.86	32.57	26.50	-1.76	32.57	-4.62	+0.35	121	44.5	7.85	52.4

Table 1 は上記の観測による測点 7 (51° N, 151° E) の観測値および 計算結果を示したもの である。 計算にあたつては, 海を 10 m 毎の厚さの層に分割しておのおのの温度, 塩分, 密度 を求めた。

第1の層は塩分が変らないで温度が下り,第2の層とひとしい密度になると互に混合して 密度が24.74の水塊ができる。 この水塊の塩分は混合前の2つの水塊の平均の塩分,即ち, 32.30%である。この塩分で,密度24.74の水塊の温度は10.73℃であり,混合前の2つの水塊 の平均温度は11.03℃であるから、0.30℃ 冷却されてはじめて混合することになる。

この計算は等密度線を記入した *T-S* 表を用いると容易に行なうことができる。 結局,(3) 式に $4t_{2h}$ =0.30°C,水の深さとして20mを代入して,第1の層と第2の層が混合するために表面 から失われた熱量を求めることができる。海水の比熱は温度と塩分によつて僅かにことなるが Kuwahara¹⁰の求めた0°C, 塩分33%に対する値c=0.94をもちいると,求める熱量として単 位面積あたり $Q_{t,2}$ =0.58 kg·cal を得る。

全く同様にして、8.1 kg・cal の熱がうばわれると対流は 30 m の深さにまで達する。このようにして第4の層までは混合が温度低下のみによつて行なわれる。 その結果、表面から 40 m の深さまで水温 1.65°C,塩分 32.3%となる。ところが、第5 の層までの水を混合させてその水温を結水温度 (-1.76° C)まで下げてもその密度は第5 の層の密度に達しない。即ち、温度を下げることによる混合は 50 m の深さには達しない。 第5 の層まで混合がおこるためには温度を結氷点にとどめたままで塩分を 32.45% に、即ち、0.08% だけ高めなければならない。50 m の厚さの水の塩分を 0.08% たかめるためには、(10)式により 15 cm の厚さの海氷ができればよいことがわかる。このために必要な放熱量 Q_i は(11)式により 0.99 kg・cal である。一方、水温を結氷温度まで下げるために 39.2 kg・cal の放熱が必要であるから、合計 40.2 kg・cal の熱が奪われると 15 cm の厚さの海氷ができ、混合は 50 m の深さに達する。

同じようにして, 混合が 100 m の深さに達するためには 52.4 kg·cal の熱が奪われなけれ ばならず, その時には 121 cm の厚さの海氷ができる。

Fig.1は Table 1 に示した計算結果による鉛直混合の模様を示したものである。点は観測 値を示し、点線は各 10 m 毎の平均の温度と塩分をあらわしている。 混合の過程は太い実線で あらわしてあり、例えば 40 m の深さまでの混合の結果を示す実線には"4"と番号をつけてあ る。図中で混合後の塩分の増加は海氷の生成に原因するもので、それに対応する氷の厚さはヒ ストグラムで示した。図には又、翌 1942 年 5 月 12 日にこの測点の近く (51°3.6′ N, 149°48.2′ E) で得られた (富山丸、測点 13) 温度・塩分の分布を鎖線で記入した。5 月になると表面近くの水 温はいくらか 上昇 しているが 50 m から 80 m 位の 深さまでは 結氷温度 になつているのがわか る。富山丸の観測は融氷後間もなく行なわれたものであるから、得られた結果は表面近くをの ぞいては、結氷期のおわり頃の状態を示しているものとみなすことができよう。即ち、計算に 用いた測点 7 附近では 結氷期 のおわりまでに 70~80 m の深さまで 温鹹混合が行われたとみ なすことができるであろう。この附近の氷厚は測定せられていないが、 対流層の深さを 80 m

畑 忠 司

田

temperature and salinity at St. 7 (51° N, 151° E)

とすると第1表より氷厚は約95 cm ということがわかる。氷が全部融解すると海水の塩分は結 氷前に観測された分布(細い実線)に近づく筈であるが, 富山丸が観測した値はそれよりも大 分多い。

冬のあいだに混合層の深さが80mに達し、95 cmの氷ができたとすると、表面から80mの深さまではFig1 及び表に示したように塩分が32.8%になつていたと考えられる。一方、融 氷後の30mの深さまでの塩分はほぼ32.5%である。 塩分4%の氷の融け水が30mの深さま で均等に混りあつたものとすると、この測点附近で融けた氷の厚さは僅か22 cm であることが

オホーツク海南半部における海氷の生成についての一考察

Fig. 2. Observed and forecasted vertical distribution of temperature and salinity at St. 15. (48°53' N, 147°43' E)

わかる。即ち95 cm の氷が生成されたが、そのうちの凡そ3/4 は融解以前に他の地点に運ばれ たと見做さざるを得ない。オホーツク海では北西の季節風のために海氷が南乃至南東部に吹き よせられることが確められており、上述の結氷量と融氷量のちがいも同じ原因によることは あきらかである。

測点 15 について計算した結果を示したのが Fig. 2 である。 ここでも計算によつて求めた 温度分布曲線は結氷期直後の富山丸の観測値 (48°46.6′ N, 148°27.6′ E) と良く一致しており,前 述した方法を用いて冬季の鉛直混合の模様を推定し得ることは明らかである。Fig. 2 では結氷 前におこる混合の深さは約 40 m で結氷期のおわりにはそれが 60~70 m に達することがわか る。後者の値から氷厚は 100~110 cm と推定される。 田畑忠司

9月上旬に海洋観測の行なわれ た各測点について求めた結氷前にお こる混合の深さの分布を示したのが Fig.3である。即ち,その深さは樺 太の東岸近くでは40m以下である が千島列島沖では急激に増してい る。ただし測点3(51°N,154°E)で 対流層の深さが急に深くなつている のは理解に苦しむところである。

Fig. 3 に示した深さは,はじめ に述べたように,密度の躍層にあた つていて結氷の初生成にあたつては これらの深さの所に海底がある場合 とほぼ同じ役割を果している。逆に 言えば,既に福富⁵⁾が指摘したよう

に,オホーツク海にはこの様な浅い所に密度の躍層があるために緯度的には可成り南に位置す るにもかかわらず結氷がおこるのであろう。

Fig. 3 に示した深さまで混合がおこるために失われなければならぬ熱量を示したのが Fig.

4 である。 混合層の深さの分布と似た分布を示しており,既に注意した 測点3をのぞけばその値は33~51 kg·cal/cm²である。

結氷がはじまると Fig.3 に示し た混合層の深さは次第に増大するこ とはすでに述べた。もし,最大の氷 厚がわかつておれば混合層の深さを 知ることができる。逆に,混合層の 深さがわかれば氷厚を求めることが できる。更に何れの場合でも結氷が 生長している期間中に氷の表面を通 して失われる熱量も求めることがで きる。しかし現在までの所では,氷 厚については福富が理論的にオホー

ック海の全域について求めた値のほかは沿岸の限られた地点の値だけが知られているにすぎない。また,結氷期間中の混合層の深さを知り得るような融氷期直後の海洋観測はあまり行なわ

れてはいないので僅かに前にのべた2点についてのみ氷厚を推定できたにすぎなかつた。

IV. 結氷初日の予報への適用

前節までに結氷の初生成までにおこる混合の深さとそれに要する放熱量を求めた。

結氷初日がわかつておれば、計算の基礎にもちいた海洋観測の行なわれた日から起算して 海の表面からの1日あたりの放熱量がわかる。逆にその量がわかれば結氷初日を予報すること ができる。残念なことにオホーック海中央部における結氷初日については僅かに前記の福富が

理論的に求めた値が知られているのみである。その結果を利用すると、 測点7では結氷初日は12月20日頃である。海洋観測の行なわれたのは9月1日であるからその期間中の1日あたりの放熱量4Q_t=39.1÷111=0.352 kg·cal/cm²である。各測点について求めた4Q_tの分布をFig.5に示した。

図から、この海域では 9~12 月 のあいだでは平均して1日あたり 0.3~0.4 kg·cal の熱が失われること がわかる。この値は Jacobs¹⁾が求め た北太平洋の 45°~50° N 附近での 9 月から 11 月のあいだの平均の 放熱

Fig. 5. Daily heat loss in autumn and early winter in Kg•cal/cm²/day.

量 $0.2 \text{ kg-cal/cm}^2/\text{day}$ と比較するとやや多い。 バレンツ海について $Defant^{\circ}$ が求めた 結果は $4Q_r=0.14 \text{ kg-cal}$ で Fig. 5 に示した値の半分以下である。

Fig. 5 をみると、エトロフ島北西沖の海域では 4Q. が特に大きな値を示しており、Defant やJacobsの求めた値に比較して大きすぎるようにおもわれる。最近数年間に航空機によつて行 なわれた海氷観測によると¹¹, 1月中旬すぎには樺太東岸から北海道北東沿岸沖に流氷がみと められているにも拘わらずエトロフ島北西沖附近では海氷がみとめられない場合が多い。筆 者の体験によると、1960年2月1日,北海道の北東沿岸沖から国後島南沖に多量の定着氷また は流氷がみとめられたのにも拘わらず 択捉海峡では全く氷がみられないばかりでなく水温も 約+1℃であつた。これらのことから考えると、エトロフ島北西沖附近の海域での結氷初日は 福富が求めた日(1月10日頃)よりも可成りおそいのではないかとおもわれる。したがつて実 際の1日あたりの放熱量は図に示た値より小さいと考えたほうが妥当であろう。

このようにして1日あたりの放熱量が求められると、9月以降に行なわれた海洋観測の 結果を用いて結氷初日の予報を行なうことが可能である。残念乍ら、筆者の知る限りでは、9 月以降のオホーック海の海洋観測は筆者の利用したもの以外にはないようである。将来,海洋 観測が計画的に行なわれるならば 4Q,の値ももつと良い精度で求められひいては結氷初日,氷 厚についての予報を行なうことができるであろう。

結氷生成期間中に氷面から失われる熱量も全く同様にして求めることができる。測点7に おいて気温が海氷の結氷温度に達する日,即ち,氷厚の増加が停止する日を3月末日と仮定す ると,結氷初日は福富によると12月20日であるから結氷期間は110日である。氷厚は95 cm で結氷期間中に氷面から奪われる全熱量は10 kg・cal cm² (Table 1 参照)であるから1日あた り0.09 kg・cal/cm² の熱が奪われることになる。当然のことであるが,熱の不良導体である氷の 表面から1日あたり失われる熱量は結氷開始前に海面から失われるそれの数分の一にすぎない。

V. 結 語

秋から冬にかけてオホーツク海に海流などによる海水の運動はなく、また蒸発量と降水量 は相等しいと見做して、冷却と海氷生成によつておこる温鹹混合を近似的に求めた。その結果、 混合層の発達と海氷の生成について定量的に知ることができた。即ち、オホーツク海の南半部 では結氷生成前に生ずる混合層の深さは40~50 m であるが、結氷の生成による海水の塩分増 加のために、冬のおわり頃には100 m 位の深さに達することがわかつた。観測で確められた混 合層の深さをもちいて例えば 測点7と15 では氷厚はそれぞれ95 cm と100~110 cm になるこ とがわかつた。混合層と海氷の生成のために海から失われる全熱量を求め、秋から冬のあいだ に毎日平均して約0.3 kg·cal/cm² の熱がうばわれることがわかつた。

すでにのべた仮定のほかに、計算にあたつては海氷の塩分量を4%とし、しかも海氷は破 壊されたり又流れ去ることはないものと見做している。しかし、よく知られているように海氷 は風によつて容易に破壊されたり流されたりする。そのため例えば測点7附近で厚さ95 cmの 一枚氷ができるという結果は実際とは可成りかけはなれているであろう。実際には、ある厚さ になつた氷は破壊されたり流されたりしてしまつて再びそこで新しく氷ができるという過程が 繰り返えされるであろうし、また他の所から別の氷が運ばれて来ることもあろう。一般に薄い 海氷の塩分は厚い氷にくらべるとずつと多いので、前者のような場合には第7式中の海氷の塩 分*S*₄が計算に用いた場合よりも大きくなる。したがつて、もし海氷生成によつておこる混合層 の深さを一定とすると、氷厚はもつと大きくなる筈である。また後者の場合には氷中の塩分量 は複雑な値をとる。それゆえ混合層の深さから氷厚を推定する場合にはこれらの点を充分考慮 する必要がある。

得られた結果には多くの仮定が含まれているにも拘わらず,計画的に実施された海洋観測 の結果に以上にのべた方法を適用するとオホーツク海における結氷初日,氷厚,混合層の形成 についてほぼ定量的に知ることができ,更にそれらをある程度予報することができることは明 らかである。

文

 Jacobs, W. C. 1951 The energy exchange between sea and atmosphere and some of its consequences. Bul. Scripps Inst. Oceanography, Univ. Calif., 6, No. 2, 27-122.

献

- 2) 梶浦欣二郎 1949 オホーツク海の夏季海況について. 日本海洋学会誌, 5, 第1号, 13-18.
- 3) 田畑忠司 1953 千島列島南沖及びオホーツク海南部の海況について. 低温科学, 9, 159-170.
- U. S. Navy Hydrographic Office. 1946 Ice atlas of the Northern hemisphere. H. O. No. 550. Министерство Обороны Союза ССР. 1953 Морскои Атлас.
- 5) 福富孝治 1950 海氷の研究(第3報) 沿岸海氷の生成に就いての理論的考察. 低温科学, 3, 131-142.
- Зубов, Н. 1938 Морские воды и льды. Гидрометеоиздат, Москва.
 Defant, A. 1949 Konvektion und Eisbereitschaft in Polaren Scelfmeeren. Geografiska Annaler, XXXI, 25-35.
- 7) Lee, O. S. and Simpson, L. S. 1954 A practical method of sea ice formation and growth. Technical report No. 4, U. S. Navy Hydrogr. Office.
 - Brown, A. L. 1954 An analytical method of ice potential calculation. Technical report No. 6, U. S. Navy Hydrogr. Office.
- 8) Зубов, Н. 1945 Льды Арктики. Издательство Главсевморпути, Москва,
- 9) 福富孝治・楠 宏・田畑忠司 1951 海氷の研究(第11報) 網走, 紋別に於ける沿岸海氷中の塩素量に ついて. 低温科学, 6, 71-84.
- Kuwahara, S. 1939 Velocity of sound in sea water and calculation of the velocity for use in sonic sounding. Hydrogr. Rev., 16, No. 3, 123-140.
- 11) 渡辺貫太郎 談話による.

Résumé

The depth of thermohaline mixing which occure before and during the sea ice formation and also ice potential were calculated for the southern part of the Okhotsk Sea. The result of oceanographic observation carried out at the beginning of September ($S\bar{o}y\bar{o}$ -maru, 1941) was used as the basis of computation. In this season, thermal energy stored in sea water is being continuousely removed to the air.

The amount of evaporation from the sea surface was assumed as equal to that of precipitation, in view of the work by Jacobs. Heat loss due to evaporation and horizontal movement of sea water were neglected. As the method of computing ice potential, that proposed by Defant was adopted.

Before sea ice forms, mixing is accomplished merely by temperature change of sea water. If a temperature below the freezing point is required for farther mixing, sea ice forms and the salinity of remaining water is increased. Figs. 1 and 2 show the vertical distribution of temperature and salinity observed by Söyō-maru and also that computed. From these figures, the process of mixing is easily recognized and it is known that the forecasted distribution are in fairly good agreement to that observed by Toyama-maru at the beginning of May 1942.

The depth of mixing layer accomplished before ice formed is shown in Fig. 3 and the amount of heat loss required for mixing (i.e. ice potential) is seen in Fig. 4. Using the date of first ice formation obtained theoretically by Fukutomi, the author calculated the mean daily loss of heat between September and December as is seen in Fig. 5 For the southern Okhotsk Sea, $0.3 \text{ kg} \cdot \text{cal/cm}^2$ day is obtained. The approximate thickness of ice was calculated at stations 7 and 15 of Sōyō-maru and was estimated as 95 and 110 cm repectively. In this calculation, as the depth of mixing layer that actually observed by Toyama-maru after the ice has melted was adopted and the results of ice potential computation shown in Table 1 was also used.