<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>船体着氷に関する研究 Ⅱ: 着氷条件と着氷量について</td>
</tr>
<tr>
<td>著者</td>
<td>小野 延雄</td>
</tr>
<tr>
<td>タイトル</td>
<td>低温科学 Ⅲ: 物理篇</td>
</tr>
<tr>
<td>出版日</td>
<td>1964-03-25</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>22_p171-181.pdf</td>
</tr>
</tbody>
</table>
船体着氷に関する研究II*

着氷条件と着氷量について

小野延雄
（低温科学研究所 海洋学部門）
（昭和38年12月受賞）

I. まえがき

冬に北の海を航行する船舶では、海水のしぶきなどが船体に凍りつく、船体着氷と呼ばれる現象が起る。着氷のために船の重心が高くなってしまい、従来性能が著しく損われ、ついに顕著な船が発生、このために船体着氷は海難の原因の一つにあげられている。小さな漁船では、着氷がまもなく操業をやめて全員で除氷作業を行う。しかし着氷の増加量が1時間に何厚もの値に達して除氷が着氷に追いつけなくなったり、または着氷に無知であったりすると、ついに顕著な海難の惨事に到るのである。従って、着氷による海難の発生を未然に防ぐためには、着氷条件や着氷量を観測して着氷の発達程度を知り、従来性能におよぼす影響を調べて船の安定性を改善し、防除方法を検討して除氷能率を高めることが必要である。

海上保安庁では、これらについて調べるために、1960年から毎冬、巡視船などを使って実船試験をおこなってきた。試験の結果はそのつど報告され１～４，また1962年までの結果が前報にまとめられた５。

筆者は毎回の試験に参加する機会を得たが、1962年の試験の際には簡単な装置（着氷計）を取付けて、装置が捕えたしぶきの量と装置に凍りついた氷量との割合を測定した。その結果はすでに報告したが６，その後1963年1月の試験の際にも、改良した着氷計を用いて同様の測定をおこなった。2冬にわたるこれらの測定の数はまだきわめて少ないが、それらの結果をまとめて示し、着氷計の着氷傾向と船全体の着氷傾向を比較しながら、着氷量と着氷条件について調べてみた。

II. 測定方法

1955年にアイスランドの沖で起った着氷による海難を調査して、Hay７は着氷を起す因子として、Arctic frost smoke中の過冷却した霧粒や過冷却している雨や霧雨などの衝突、降雪の積算、海水のしぶきの凍結をあげ、これらのが海氷のしぶきの占める割合が大きいことを指摘した。日本周辺の北洋では、冬にこのような霧が発生することほどほとんどないといわれて
いる。初期の実験を試みた結果、降雪が着氷に加わることがあったが、しぶきの凍結が着氷量の大部分を占めていることが示かれた。従って、以下にのべる着氷計はしぶきの凍結状況を調べることに主眼をおいて作られている。

海水のしぶきは塩分を含んでいるので、全部が完全に凍りきってしまうことはない。しぶきが凍結する際に析出する氷は塩分を含まない純氷であり、純氷の析出について未凍結の液体部分（ブライ恩）は次第に塩分濃度を増して結水温度が低下する。このブライ恩は水を析出しながら着氷の表面を流れ出ていくが、一部は析出した氷の結晶のすきまに閉められる。

着氷量として観測されるのは、純氷の重量にこの閉められたブライ恩の重量を加えたものである。流れ出るブライ恩があるために、着氷量はかかったしぶきの量よりも少ないのが普通である。かかったしぶきの重量に対する着氷の重量の割合を着氷率と名付ける、着氷率はかかったしぶきの何％か船に凍りつけたかを示し、着氷の成長状況を知る手がかりの一つとなる。

着氷率を測定するために、第1図に示したような着氷計を用いた。図でAは着氷を起させる縄であり、熱容量を小さくするために低圧法ポリエチレン（ハイゼックス）で作られている。また、Bは流れおちたブライ恩を溜める容器である。縄Aについて着氷量と容器Bに溜ったブライ恩量との和が捕えられたしぶき量であるから、これらの値から着氷率を求めることができる。1963年の試験では、図のように縄Aに熱電対を埋めこんで、着氷の温度と気温との温度差を測定した。着氷計の支持縄を、試験船の前部上甲板のほぼ中央にある機械座前の支柱に固定した。着氷計の高さは甲板上約1.8 mである。

1962, 1963年の試験では、試験船に巡視船“かとり”を用い、第2図の航跡のように狭内を出港して、日本海北部の海域で着氷試験をおこなって小樽に帰港した。図では着氷の成長した期間の航跡を太い線で描いている。着氷の成長期間中は、観測のために適当な時間（主に4時間）間隔で船を停めた。

2台の着氷計を交互にとりかえて、4時間のあいだに縄Aにつけた着氷量と容器Bに溜ったブライ恩の重量を計測した。1962年の試験のときは動船する船上でこれらの重量を測定したが、精度も悪く測定が困難であったので、1963年には全量を保存しておき、帰港してから陸上で計量するようにした。これらの着氷とブライ恩は研究所に持ち帰ってそれぞれの塩素量を測定した。

船を伴った観測時刻には、船体の適当な数箇所で着氷の表面に和紙を凍りつかせ、着氷内に時刻の目じるしを入れた。小樽に入港後、これらの箇所の断面をとって各場所での着氷の
試験船要目
長さ 45.0 m
巾 7.3 m
深さ 4.1 m
排水 3161 吨

第2図　着水試験時の航跡図および試験船要目
第1表 着水計による測定結果 (1962)

<table>
<thead>
<tr>
<th>測定期間</th>
<th>水</th>
<th>ブライン</th>
<th>1時間当りの</th>
<th>しぶきの塩素</th>
<th>着水率</th>
<th>着水</th>
<th>平均気温 (℃)</th>
<th>平均水温 (℃)</th>
<th>平均対流風速 (m/s)</th>
<th>A</th>
<th>(\frac{10L}{Be})</th>
<th>i</th>
<th>(\frac{i}{S})</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15日13.75～16時</td>
<td>35</td>
<td>(g)</td>
<td>10</td>
<td>(g/h)</td>
<td>15.6</td>
<td>4.4</td>
<td>20.0</td>
<td>78</td>
<td>○</td>
<td>-5.8</td>
<td>+2.0</td>
<td>9.0</td>
<td>0.61</td>
<td>-</td>
</tr>
<tr>
<td>16～20</td>
<td>90</td>
<td>15.1</td>
<td>20</td>
<td>(g)</td>
<td>32.0</td>
<td>22.5</td>
<td>5.0</td>
<td>27.5</td>
<td>18.2</td>
<td>82</td>
<td>○</td>
<td>-6.6</td>
<td>+1.4</td>
<td>11.6</td>
</tr>
<tr>
<td>20～0</td>
<td>105</td>
<td>13.2</td>
<td>(890)</td>
<td>(19.6)</td>
<td>26.3</td>
<td>(222.5)</td>
<td>(248.8)</td>
<td>(19.0)</td>
<td>11</td>
<td>○</td>
<td>-6.6</td>
<td>+0.1</td>
<td>15.6</td>
<td>1.05</td>
</tr>
<tr>
<td>16日 0～4</td>
<td>304</td>
<td>14.5</td>
<td>190</td>
<td>29.0</td>
<td>85.0</td>
<td>47.5</td>
<td>132.5</td>
<td>19.7</td>
<td>64</td>
<td>○</td>
<td>-9.8</td>
<td>-0.9</td>
<td>15.5</td>
<td>1.89</td>
</tr>
<tr>
<td>4～7</td>
<td>5</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1.7</td>
<td>0</td>
<td>1.7</td>
<td>-</td>
<td>100</td>
<td>○</td>
<td>-12.6</td>
<td>-1.3</td>
<td>13.1</td>
<td>0.23</td>
</tr>
<tr>
<td>14～16</td>
<td>30</td>
<td>16.7</td>
<td>0</td>
<td>-</td>
<td>15.0</td>
<td>0</td>
<td>15.0</td>
<td>-</td>
<td>100</td>
<td>○</td>
<td>-11.4</td>
<td>-0.8</td>
<td>10.3</td>
<td>0.53</td>
</tr>
<tr>
<td>16～18.17</td>
<td>95</td>
<td>16.0</td>
<td>10</td>
<td>36.4</td>
<td>43.8</td>
<td>4.6</td>
<td>48.4</td>
<td>18.0</td>
<td>90</td>
<td>○</td>
<td>-12.7</td>
<td>-1.0</td>
<td>11.3</td>
<td>1.00</td>
</tr>
<tr>
<td>17日 2～4</td>
<td>390</td>
<td>-</td>
<td>270</td>
<td>-</td>
<td>195.0</td>
<td>135.0</td>
<td>330.0</td>
<td>-</td>
<td>59</td>
<td>○</td>
<td>-7.2</td>
<td>+0.5</td>
<td>15.4</td>
<td>2.03</td>
</tr>
<tr>
<td>4～7.17</td>
<td>335</td>
<td>(10.4)</td>
<td>410</td>
<td>26.0</td>
<td>105.7</td>
<td>129.3</td>
<td>235.0</td>
<td>(19.0)</td>
<td>45</td>
<td>○</td>
<td>-6.9</td>
<td>+1.5</td>
<td>12.2</td>
<td>1.88</td>
</tr>
</tbody>
</table>

第2表 着水計による測定結果 (1963)

<table>
<thead>
<tr>
<th>測定期間</th>
<th>水</th>
<th>ブライン</th>
<th>1時間当の</th>
<th>しぶきの塩素</th>
<th>着水率</th>
<th>着水</th>
<th>平均気温 (℃)</th>
<th>平均水温 (℃)</th>
<th>平均対流風速 (m/s)</th>
<th>A</th>
<th>(\frac{10L}{Be})</th>
<th>i</th>
<th>(\frac{i}{S})</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9日 15.4～22時</td>
<td>49.4</td>
<td>11.5</td>
<td>(773)</td>
<td>19.6</td>
<td>7.5</td>
<td>(117.1)</td>
<td>(124.6)</td>
<td>(19.1)</td>
<td>6</td>
<td>○</td>
<td>-1.0</td>
<td>+1.5</td>
<td>10.5</td>
<td>0.72</td>
</tr>
<tr>
<td>22～0</td>
<td>52.4</td>
<td>6.3</td>
<td>212.2</td>
<td>22.1</td>
<td>26.2</td>
<td>106.1</td>
<td>132.3</td>
<td>19.1</td>
<td>20</td>
<td>○</td>
<td>-2.0</td>
<td>-0.4</td>
<td>9.7</td>
<td>0.75</td>
</tr>
<tr>
<td>10日 0～4</td>
<td>72.3</td>
<td>5.9</td>
<td>(329)</td>
<td>22.0</td>
<td>18.1</td>
<td>(82.2)</td>
<td>(100.3)</td>
<td>(19.1)</td>
<td>18</td>
<td>○</td>
<td>-2.0</td>
<td>-0.1</td>
<td>10.2</td>
<td>0.87</td>
</tr>
<tr>
<td>4～12</td>
<td>439.0</td>
<td>8.7</td>
<td>(977)</td>
<td>24.0</td>
<td>54.9</td>
<td>(122.1)</td>
<td>(177.0)</td>
<td>(19.1)</td>
<td>31</td>
<td>○</td>
<td>-3.5</td>
<td>+2.4</td>
<td>12.0</td>
<td>2.15</td>
</tr>
<tr>
<td>12～16</td>
<td>356.4</td>
<td>8.9</td>
<td>(634)</td>
<td>25.1</td>
<td>89.1</td>
<td>(158.5)</td>
<td>(247.6)</td>
<td>(19.1)</td>
<td>36</td>
<td>○</td>
<td>-5.7</td>
<td>+1.0</td>
<td>15.5</td>
<td>1.93</td>
</tr>
</tbody>
</table>
成長状況を調べた。また、入港後には船体に凍着した着氷を各部分ごとに別々におとしてそれぞれの重量を測定した。

気象と海象の観測は全航海を通じて正時ごとにおこなわれた。1963年の試験では、着氷計に埋めた熱電対と船体に貼りつけた熱電対で着氷の温度を測定し、記録計に記録をした。

III. 測定結果

着氷計による測定の結果を第1、2表に示した。船を停めて着氷計を交換したのは主として4時間ごとであったが、着氷の成長はその期間中継続していたわけではない。たとえば、船が進路を変えたために着氷の成長が始まったり、あるいは止まったりすることが明らかに存在がある。このような場合には、軌道時刻で着氷成長期間を区切った。第2図の航跡の太い線もそのような時刻で区切ってある。第1、2表の測定期間はこのようにして定めた着氷の成長が継続していたと考えられる期間である。その期間をもとにして1時間当りの着氷量、積雪量、捕えられたしがみを計算した。しがみの量は氷および積雪の重量と積雪量から求めたものであり、氷の重量と積雪量にはほぼ等しい。表で括弧をつけて示したのは実測できなかった値であるが、しがみの積雪量を約19％と仮定することにより、他の値から計算で得られた推定値である。前報で、着氷計についた氷の形が非常に異なる写真を示し、この形の変化が着氷率に対応することを述べ、その原因を考察した。第1、2表にも着氷率の値が示されているが、その形を略図で示した。また、図には測定期間内の平均の気温、水温、対船風速なども記入してある。

着氷量、着氷率および着氷の形状が、その期間の平均の気温や対船風速によって、どのように変わるかを示したのが第3図である。図の各点を着氷の形の略図で示し、その近くに一時間当りの着氷量と着氷率とを数値で示した。括弧の中に入れた数値が着氷率である。着氷の形状は同じくらいでなく、大きさをその期間の総着氷量にほぼ比例するように描いてある。図では、対船風速が11 m/sec以上で、気温が-3〜-10℃の範囲内に着氷量の多い点が集まっているように思われる。着氷率は対船風速が10 m/sec前後のと

第3図 気温、対船風速と着氷量（図中の数字）、着氷率（括弧内の数字）、着氷の形との関係
ころでは、気温が低くなるにつれて大きくなることがうかがわれる。気温があまり低くないと
ころで、対熱塩度が大きくなると、しきり量が増すために着氷量も増加するが、流れおちる
ブラインの量の増加の方が着氷の増加量を上回るので、着氷率としては低下するものと考えら
れる。

着氷計に埋めこんだ熱電対による温度の測定は、導線の接合部のメタルコンセントがしき
きのために絶縁不良となり、満足な結果が得られなかった。船体に貼りつけた熱電対は、はじ
めは気温を示していたが、まもなく着氷の中に浸して着氷の温度を示すようになった。測定さ
れた着氷の温度は、−2〜−3℃で気温よりもやや高く、流れおちたブラインの結氷温度に近
かった。

IV. 船の着氷状況との比較

着氷の表面に和紙を凍りつかった箇所の断面には、前報12に写真で示したように、樹木の
年輪のような4時間毎の目立るしが入る。この断面からそれぞれの期間に対応する面積を測っ
てその比を求めると、その場所での着氷の増加の傾向を知ることができる。各断面で求めたこ

第4図 着氷計と船全体との着氷傾向の比較
の傾向と，帰港後に実測した船体各部ごとの着氷の厚さとから，各観測時刻における船全体の
着氷量や各期間の1時間当りの着氷量などを知ることができ，個々の数値は文献1)2)に記され
ている。船全体の最終着氷総量は，1962年には20.5呎，1963年には6.8呎であった。

1時間当りの船全体の着氷量と，着氷計の1時間当りの着氷量を比較したのが第4図であ
る。船全体の値を実線で，着氷計の値を点線で示した。両者の傾斜の尺度は，1962年2月16
日の16〜18時の期間で，ほぼ等しい高さとなるように選んだ。1962年2月15日の20〜24時
の期間では，着氷計にまでかかるような多量の海水を浴びたので，その後において船体に凍りつ
いていた氷の一部が洗う流される結果となった。また，1963年は全期間にわたって，時折多量
の海水をかぶったので，甲板上や甲板近くの着氷が流された。それゆえ，第4図ではこれらの
期間は他の期間に較べ船全体の着氷増減量がみかけ上小さくなってあらわれている。

船全体のしぶきの捕捉面積は，上述の最終着氷総量の状態でも，たかだか20% 増やすにすぎ
ない。一方，着氷計の場合には，第3図の略図のように各測定期間によって着氷の形状が異な
らるから，各期間ごとのしぶきの捕捉面積は数倍にもおよぶことがわかる。それゆえ
着氷計の着氷量と船全体の着氷量を比較するためには，着氷計の各期間の捕捉面積のちがいを
補正することが望ましい。各期間ごとの着氷の形状は，着氷計の高さの方向ではあまり大きな
差がないから，各期間ごとの着氷総量の比を着氷の水平面積の比とみなすことができる。し
ふきの捕捉面積は断面における周縁の長さに比例すると考えて，非常にあたり易い近似ではある
が，各期間の捕捉面積の比を着氷総量の比の平均根であらわすことにする。着氷がほぼ棒の幅
に凍りついた1962年2月16日の16〜18時着氷の捕捉面積を基準にして，それぞれ
の期間の捕捉面積の比を求めた。その結果が第1，2表のAの欄に記してある。第4図には，
各期間の着氷計の着氷量をそれぞれの期間のAで割った値を図の中に丸印で示してある。こ
れらの値は，どの期間においても着氷計の捕捉面積が上述の基準の期間の捕捉面積に等しかっ
たと仮定した場合の1時間あたりの着氷量をあらわしている。このような補正をおこなうと，
着氷計の着氷傾向が船全体の着氷傾向にかなり近くなることがわかる。

V. 結果の考察

前節で，着氷計の測定結果は捕捉面積の違いを補正すれば，船全体の着氷傾向をある程度
示していることを述べた。この節では，着氷計の測定結果を気象条件と照合いて，着氷量と着
氷条件について調べてみる。

実際に船にかかる海水のしぶきは，波やうねりとの出会い周期や船の動揺周期などで定ま
る間隔で間歇的に飛んでくる。着氷の表面の温度は，それにつれて変化すると考えられるが，
前述の熱電対で測った記録では，はっきりした変化は読みとれなかった。

以下の考察を簡単にするために，ここでは次のように仮定する。気温，対船風速などの気
象海象および航行の条件は，考える期間の平均的な状態が継続するものと考える。また，しぶ
き量も考える期間の平均の飛来強度で連続して飛んでくるものとする。しぶき量としては捕え
られたしぶき量だけに着目し，一度捕えられたしぶき量で風で飛ばされることがないと仮定する。
着水計の着水を模型的に第5図に示した。捕捉されたしぶきの重量を \(S \), 着水の重量を \(I \), 浮水の重量を \(i \) 閉込められたブラインの重量を \(b \), 流れ落ちたブラインの重量を \(B \) とし、それぞれの塩素量（重量千分率）を添字 \(cl \) をつけてあらわすことにする。これらの量のあいだには

\[
S = I + B = i + b + B \\
S \cdot S_{cl} = I \cdot I_{cl} + B \cdot B_{cl} = b \cdot b_{cl} + B \cdot B_{cl}
\]

の関係がある。

捕えられたしぶきから水が生成されるために必要な消熱の放出は、しぶき自身の過冷却、着水計への熱伝導、風による冷却、表面を流れるブラインからの蒸発および着水の昇華による温度低下などで生かされると考えられる。しぶきが観測期間中の最低気温 \(-13^\circ C \) まで過冷却して捕えられたとしても、過冷却がやぶれて生ずる水はしぶき量の15%の程度であり、とても全着水量を説明することはできない。また、着水計の熱容量が小さいので、着水計への熱伝導は無視することができる。したがって、消熱の大部分は風や蒸発および昇華によって大気にうばわれるものと考えられる。大気中にうばわれるこれらの熱量は、着水の表面温度 \(\theta_t \) と気温 \(\theta_A \) との温度差と対数風速 \(U \) の関数と比例する

\[
iL = K \cdot f(U) \cdot (\theta_t - \theta_A) \cdot A \cdot t
\]

の何かたちに書くことができる。ここで \(L \) は水の融解熱、 \(K \) は比例常数、 \(A \) は着水の表面積、 \(t \) は時間である。この式中の水深 \(i \) は着水量ではなく、着水中の纯水量である。 \(I/S \) を着水率と名付けたように、 \(i/S \) を純水率と名付けると、(1), (2) 式から純水率は

\[
i/S = \frac{B_{cl} - S_{cl}}{B_{cl} - b_{cl}} - \frac{b}{S} \frac{B_{cl} - b_{cl}}{B_{cl}}
\]

であらわされる。

考える期間を通じてしぶきが連続的に飛んでくるとの仮定から、下の容器に溜ったブラインは常に着水の表面を結水しながら流れおちていたと考えることができるので、ブラインの結水温度がその期間の平均的な着水の表面温度を示すことになる。着水内に閉込められたブラインも着水の温度を結水温度とする濃度となっているはずである。従って、その塩素量 \(b_{cl} \) は下に溜ったブラインの塩素量 \(B_{cl} \) に等しく、(4) 式の右辺第2項は零となる。その結果、純水量は

\[
i = \left(1 - \frac{S_{cl}}{B_{cl}} \right) S
\]

あるいは、(1), (2) 式で \(b_{cl} = B_{cl} \) として得られる

\[
i = \left(1 - \frac{I_{cl}}{B_{cl}} \right) I
\]

によって第1, 2 表の値から計算で求めることができる。また着水の表面温度 \(\theta_t \) はブラインの
塩素量とその結水温度との数値的な関係式

\[\theta_1(\degree C) = -0.966 B_{cl} - 0.0000052 B_{cl} (\%) \] (7)

を用いて知ることができる。各期間の \(i \) および \(\theta_2 \) は第1、2表に記してある。

各期間の1時間当たりの純水流量を前節で述べた捕捉面積の比 \(A \) で割って単位時間の基準面積当たりの純水流量を求める。表面温度と気温との温度差や対船風速とこの純水量および結水率との関係を調べたのが第6図である。測定例がきわめて少ないが、風速が増すと純水量は増すが結水率は低下すること、また、風速がほぼ等しいところでは気温が低くなると結水率が高くなることなどの傾向がうかがわれる。

着水量は、純水の量に閉込められたブラインの量を加えたものである。着水量に対する結水量の比は(6)式により \(1 - \frac{L_{cl}}{B_{cl}} \) で表わされる。従って、\(L_{cl}/B_{cl} \) は着水重量に対する結水内に閉込められたブラインの重量の比で

第6図 表面温度と気温との温度差、対船風速と結水量（図中の数値、結水率（団内内の数値）との関係

第7図 ブラインの塩素量、結水温度と着水率、純水率の関係
ある。各期間のこの比の値を第 1、2 表に示したが、その値は 27% ～67% の範囲内にあり、平均は 44% であった。すなわち、着氷内には純氷の重量にほぼ近い重量のブレインが関係しておりと言えることになる。

第 7 図に観測から得られたブレインの塩素量と着氷率の関係を示した。図の右の軸には (7) 式で求めた着氷の表面温度を示している。着氷の表面温度は -2 ～-4℃ であり気温よりやや高い値を示している。着氷試験海面の海水の塩素量はほぼ 19% であったので、海水のしぼりの塩素量を 19% と仮定して、(5) 式からブレインの塩素量と純氷率の関係を求めたのが第 7 図の点線である。観測値の着氷率は計算による純氷率のほぼ 2 倍に近いので、図には純氷率を 2 倍した値を実験で加えてある。観測結果は着氷率の広い範囲にわたってこの実験にかなりよく一致していることがわかる。従って、前述のように純氷量とブレイン量がほぼ等しく、着氷量は純氷重量のほぼ 2 倍であることがあるとわかる。

VI. あとがき

海上保安庁の巡視船による着氷試験の結果から、着氷条件と着氷量についての考察をおこなった。資料の数が少ないので、溶融の収支と析出する純氷の量との関係を決めることはできなかったが、着氷量としては選ばれたしぼりから析出する純氷の量のほぼ 2 倍を考える必要があることがわかった。溶融収支の問題は、今後に、低温室内の実験や、巡視船の着氷報告などから更に研究していきたいと考えている。

1961, 1963 年の実船試験は、第一管区海上保安本部、海上保安庁船鉄技術部、および巡視船“ちとせ”の方々の御努力によって行なわれたものである。船上的での観測は、海上保安庁の岩田秀一、芝山安久、小林猛の諸氏、“ちとせ”乗組員の方々、および北海道大学低温科学研究所の田畑忠司、藤野和夫両氏の御指導と御協力によった。また、船長気象観測は“ちとせ”航海科の方々および稚内地方気象台福島正久氏により行なわれたものである。ここに記して深く感謝の意を表します。また、結果の整理にあたって御指導を頂いた低温科学研究所雪水研究グループの方々に厚くお礼を申し上げます。

文 献

1) 海上保安庁船鉄技術部 1960 「すらち」の着氷試験成績. pp. 28.
2) 海上保安庁船鉄技術部 1961 巡視船つがる、ゆうばり及び漁船第六弾漁丸の着氷試験成績. pp. 53.
3) 海上保安庁船鉄技術部 1962 巡視船ちとせの着氷試験成績. pp. 47.
4) 海上保安庁船鉄技術部 1963 巡視船ちとせの着氷試験成績. pp. 45.
5) 田畑忠司・岩田秀一・小野延雄 1963 船体着氷に関する研究 I. 低温科学. 物理編, 21, 173-221.
7) 太田正次 1941 着氷の熱学的考察. 気象雑誌, 19, 226-232.
Summary

Studies of ice accumulation on patrol boats of the Maritime Safety Board were carried out during the winters of 1960-63. The icing-meter, consisting of an icing rod (A) and a brine jar (B) (Fig. 1), was installed upon the open deck of the test ship "Chitose" (316 ton gross) in 1962 and '63. Navigation routes of "Chitose" and the periods during which the icing occurs (bold line) are shown in Fig. 2. Two icing-meters were set alternately every four hours during the icing period. The main cause of icing was the freezing of sea spray. Some part of sea spray caught by the rod froze on the rod and the rest flowed down the surface of the ice into the jar. The total weight of the spray was calculated from the sum of the weights of ice on the rod and brine in jar. The weight and chlorine content of the ice and brine were measured for each sample obtained in each four hour period. The weight of ice deposited per hour, the ratio of the weight of the ice to spray (in parentheses) and the icing pattern on the rod are shown with respect to the mean air temperature and the mean relative wind velocity (Fig. 3). This figure suggests that an increase in wind velocity increases the weight of ice and decreases the ratio of ice to spray, because the amount of sea spray increases with an increasing wind velocity. The ratio of ice to spray increases with falling temperature.

The mode of icing on the icing-meter is schematically illustrated in Fig. 5. The amount of ice deposited on the rod (I) includes pure ice (i) and brine inclusions in the ice (b). If it is assumed that both the brine in the jar and the brine inclusions in the ice have the same chlorinity, then equation (4) is written as equation (5). In Fig. 7, the circles show \(\frac{i}{S} \) vs. \(B_{cl} \) obtained with the icing-meter, and the dotted line shows the relation between \(\frac{i}{S} \) and \(B_{cl} \) (calculated form equation (5) putting \(S_{cl}=19\% \)). Therefore, the weight of brine in the ice is nearly equal to the weight of pure ice. The surface temperature of ice which is equal to the freezing temperature of the saturated brine was computed from equation (6) and is shown in the right axis of Fig. 7. It was estimated that the surface temperature of icing ranges between \(-2\) and \(-4\)\(^\circ\)C.