<table>
<thead>
<tr>
<th>Title</th>
<th>SEX-CHROMOSOME CHIMERISM (XX/XY) IN HETEROSEXUAL BOVINE TRIPLETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KANAGAWA, Hiroshi; KAWATA, Keiichiro; ISHIKAWA, Tsune; MURAMOTO, Jun-ichi; ONO, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 13(4): 121-126</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1965-12</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/jjvr.13.4.121</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/1829</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00003418285.pdf</td>
</tr>
</tbody>
</table>
SEX-CHROMOSOME CHIMERISM (XX/XY) IN HETEROSEXUAL BOVINE TRIPLETS*

Hiroshi Kanagawa, Keiichiro Kawata, Tsune Ishikawa, Jun-ichi Muramoto* and Hitoshi Ono*3

Department of Veterinary Obstetrics
Faculty of Veterinary Medicine
Hokkaido University, Sapporo, Japan

(Received for publication, September 20, 1965)

In the previous papers1-3,10, the present authors reported that there exists a sex-chromosome chimerism (XX/XY) in both freemartins and their co-twins in cattle, and that this gives a fundamental basis for a successful early diagnosis of bovine freemartinism.

In this report are presented chromosomal data of a set of heterosexual triplets consisting of two freemartins and one male, as well as a non-freemartin female from another heterosexual triplets origin and a set of homosexual triple females. Some morphological findings of the freemartins will be described also.

MATERIALS AND METHODS

Some details of the histories of the individuals and sources of materials subjected to the present study are given in table 1. Nos. 4-7 were multiparous cows, not freemartins. Two animals co-tripled with No. 4 were both males and were not subjected to this study, because of death immediately after delivery. The sources of samples for chromosomal study were the blood, bone marrow, thyroid, kidney, seminal vesicle-like structure, gonad and lung. But, in Nos. 4-7, blood alone was used. The procedures for chromosomal study by means of leukocyte culture, colchicine treatment of bone marrow cells and tissue culture were the same as those described in the previous papers1-3,10.

Nos. 1-3, a set of heterosexual triplets, were slaughtered at the age of one year and 8 months for the purpose of obtaining tissue culture materials. The sexual organs of the freemartins were examined macroscopically and histologically.

RESULTS

1) Chromosomal findings

In table 1 are presented chromosomal findings from blood cultures, bone marrow cells

1 A part of this work was released at the 6th Meeting of the Japanese Association of Zootechnical Veterinarians (Hokkaido) on September 7, 1965 in Sapporo.

2 Zoological Institute, Faculty of Science, Hokkaido University

3 Department of Animal Reproduction, School of Veterinary Medicine, Obihiro Zootechnical College, Obihiro, Japan

JAP. J. VET. RES., VOL. 13, NO. 4, 1965
TABLE 1 Some accounts for materials and chromosomal findings

<table>
<thead>
<tr>
<th>NO.</th>
<th>ANIMAL NUMBER</th>
<th>AGE yr.mo.</th>
<th>SEX</th>
<th>NO. OF PARTUS</th>
<th>SOURCE</th>
<th>NO. OF CELLS COUNTED</th>
<th>SEX-CHROMOSOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*1</td>
<td>F7-1</td>
<td>1 8</td>
<td>Freemartin</td>
<td>—</td>
<td>Blood</td>
<td>64</td>
<td>30 XY Chimera</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bone marrow</td>
<td>52</td>
<td>24 XX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thyroid</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seminal vesicle-like structure</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gonad</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td>2*2</td>
<td>F7-2</td>
<td>1 8</td>
<td>Freemartin</td>
<td>—</td>
<td>Blood</td>
<td>52</td>
<td>24 XX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bone marrow</td>
<td>50</td>
<td>22 XX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thyroid</td>
<td>14</td>
<td>14 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>19</td>
<td>19 0 —</td>
</tr>
<tr>
<td>3*3</td>
<td>F7-3</td>
<td>1 8</td>
<td>Male</td>
<td>—</td>
<td>Blood</td>
<td>55</td>
<td>27 XX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bone marrow</td>
<td>50</td>
<td>23 XX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung</td>
<td>105</td>
<td>0 105 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>27</td>
<td>0 27 —</td>
</tr>
<tr>
<td>4*4</td>
<td>F16-M</td>
<td>8 8</td>
<td>Female</td>
<td>4</td>
<td>Blood</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td>5*5</td>
<td>F23-1</td>
<td>4 9</td>
<td>Female</td>
<td>3</td>
<td>Blood</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td>6*5</td>
<td>F23-2</td>
<td></td>
<td></td>
<td></td>
<td>Blood</td>
<td>50</td>
<td>50 0 —</td>
</tr>
<tr>
<td>7*5</td>
<td>F23-3</td>
<td></td>
<td></td>
<td></td>
<td>Blood</td>
<td>23</td>
<td>23 0 —</td>
</tr>
</tbody>
</table>

Notes:
*1 A set of heterosexual triplets
*2 A non-freemartin female from another heterosexual triplets origin
*3 A set of homosexual triple females

treated with colchicine and tissue cultures of 18 materials from 7 animals.

In blood and bone marrow materials from a set of heterosexual triplets, 2 freemartins (Nos. 1 & 2) and a male (No. 3), 2A-XX/2A-XY chimerism was observed. The chimera ratios of leukocytes and bone marrow cells tended to parallel each other among the triplets. In statistical analyses by means of chi-square test, XX/XY ratios among these three individuals as well as those of leukocytes and bone marrow cells failed to show any significant differences (P<0.05). On the other hand, cultures from 6 tissue materials including thyroid, kidneys, gonads and seminal vesicle-like structures of the 2 freemartins revealed a normal female complement with an XX-mechanism, and also cultures from 2 materials of lung and kidney of the co-tripled male indicated a normal male complement with an XY-mechanism.

Furthermore, a non-freemartin female of another heterosexual triplets origin (No. 4) and a set of homosexual triple females (Nos. 5~7) failed to show any evidence of chimerism; all of the cultured leukocytes examined always had an XX-mechanism without exception.
Table 2: Measurements of sexual organs of freemartins

<table>
<thead>
<tr>
<th>NO.</th>
<th>ANIMAL NUMBER</th>
<th>AGE</th>
<th>GONAD*1</th>
<th>UTERINE HORN*2</th>
<th>SEMINAL VESICLE-LIKE STRUCTURE*3</th>
<th>WOLFFIAN DUCT*3</th>
<th>VAGINA*4</th>
<th>VULVA*4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>yr.mo.</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>1</td>
<td>F7-1</td>
<td>1 8</td>
<td>R: 2.6×2.3×2.0</td>
<td>5.2×1.7×1.7</td>
<td>7.0×1.8×1.5</td>
<td>13.0×0.9</td>
<td>8.5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L: 2.2×1.8×0.5</td>
<td>3.7×1.8×1.7</td>
<td>7.5×1.8×1.4</td>
<td>13.0×0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F7-2</td>
<td>1 8</td>
<td>R: 1.5×0.5×0.5</td>
<td>4.0×0.8×0.7</td>
<td>4.0×1.0×0.8</td>
<td>3.0×0.4</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L: 1.5×0.6×0.5</td>
<td>1.5×0.6×0.5</td>
<td>4.0×1.0×0.8</td>
<td>(0.5×0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0×0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
*1: Length × width × thickness
*2: Length × width × diameter
*3: Length × diameter
*4: Length

R: Right side
L: Left side
2) Morphological findings of sexual organs of freemartins

Macroscopical appearances of the sexual organs of 2 freemartins are shown in figure 6, and measurements of the main sexual organs are given in table 2.

In both cases, several typical morphological characteristics of freemartin were observed: absence of the oviduct and cervix, the hypoplastic uterus and anterior vagina, the overdeveloped clitoris, the presence of the seminal vesicle-like structures and rudimentary structures of the Wolffian ducts. The hymen was persistent in No. 1, and the well-developed ovarian blood vessel plexuses were observed bilaterally in No. 2.

Histologically, the right gonad of No. 1 had 5 corpus luteum-like structures (diameter: 0.3~1.9 cm) and one follicle (0.3 cm). The left gonad had 3 small follicles (0.1~0.2 cm) and 2 corpus luteum-like structures (0.1~0.3 cm). These luteal masses included many large luteal cells with irregular shapes. The bilateral gonads of No. 2 had one small follicle (0.1 cm) each, the wall of which was lined with a layer of connective tissue, thus, resembling so-called small cystic degeneration. In the central portion of the bilateral gonads in both cases, a net-like structure, rete ovarii, was observed. In No. 1, at the surrounding portion of the rete ovarii, there existed a mass of small tubes somewhat resembling immature seminiferous tubules. In the uterine horns and seminal vesicle-like structures in both freemartins, undeveloped gland-like structures were observed in the tunica propria. The rudimentary Wolffian ducts had a central cavity, with the surrounding portion containing small gland-like structures scattered here and there.

DISCUSSION

It has been well known that the bovine freemartin commonly arises among heterosexual twin pregnancies. Likewise, in greater multiples born with males, the incidence of freemartins has been reported. Before the chromosomal studies of the freemartin were recently carried out by several investigators including the authors, however, the main interest concerning such sexual abnormality has been concentrated on the morphological characteristics of the sexual organs. As described in the previous papers, it was an epoch-making event that these chromosomal studies were successful in demonstration of sex-chromosome chimerrism (XX/XY) in both freemartins and their co-twined males, whereas no chimerism was detected among normal females co-twined with males as well as single born males or females.

Emphasis should be placed on the fact that such chimerism was also demonstrated in cultured leukocytes and bone marrow cells from a set of bovine heterosexual triplets involving freemartins. In addition, the chimera ratios in the above mentioned cells were parallel with each other among these three individuals. A statistical analysis of the incidental rate of the chimerism among them failed to show significant differences (P<0.05). This fact coincides with the findings in the case of heterosexual twins.
Sex-chromosome chimerism in triplets

No chimerism was observed in tissue cultures from some organs, such as thyroid, kidneys, gonads or seminal vesicle-like structures, of the triplets, whereas there was chimerism in various degrees in those of twin cases, although the incidence of chimerism in the latter is generally low in such organs. The reasons of this discordance are still unknown.

Two freemartins submitted to the present study differed considerably in the macroscopical and histological characteristics of the sexual organs, despite having similar characters in the sex-chromosome chimerism. That is, the degree of morphological deviation in freemartins does not seem to depend upon the degree of the chimerism. In order to draw a decisive conclusion of this subject, however, much more work will be required.

No chimerism was observed, on the other hand, in cultured leukocytes from 4 multiparous cows, one female co-tripled with males and a set of homosexual triple females, which were submitted to this study as controls. This fact may give a fundamental basis for the employing of the chromosomal diagnosis of freemartins to heterosexual bovine triplets. In order to ascertain the diagnosis, it is recommended that all individuals involved in twins or greater multiples should be subjected to be examined chromosomally.

SUMMARY

The chromosome constitution of a set of bovine heterosexual triplets consisting of two freemartins and one male was studied by means of blood culture, colchicine treatment of bone marrow cells and tissue cultures from several organs. As controls, four multiparous cows, including one female from another heterosexual triplets origin and a set of homosexual triple females, were also studied chromosomally using the blood culture technique. The sexual organs of the freemartins were examined macroscopically and histologically.

The results are summarized as follows:

1) Cultured leukocytes and bone marrow cells in both freemartins and the co-tripled male manifested 2A-XX/2A-XY chimerism. The chimera ratios were parallel with each other among these three individuals. Tissue cultures from thyroid, kidneys, lung, gonads and seminal vesicle-like structures of these animals failed to show chimerism. No chimerism was observed, on the other hand, in leukocyte cultures from the control animals. Thus, freemartins involved in heterosexual triplets can also be diagnosed chromosomally as well as in the case of twins.

2) Two freemartins submitted to this study considerably differed in the morphological characteristics of the sexual organs, despite having similar characters in sex-chromosome chimerism.
The present authors wish to express their gratitude to Dr. M. MIYAKE, Professor of Department of Animal Reproduction, Obihiro Zootechnical College, for his kindness to provide three animals as materials used in this study.

ADDENDUM

During this article in press, OHNO and GROPP reported germ cell chimerism in a set of bovine triple fetuses, 12 mm in crown-rump length, and BASUR also observed blood cell chimerism in all individuals of a set of heterosexual quintuple calves.

REFERENCES

1) BASUR, P. K. (1966): personal communication

EXPLANATION OF PLATES

PLATE I

Figs. 1 & 2 Lateral and frontal views of a set of heterosexual triplets Nos. 1 and 2 are freemartins, and No. 3 is a male.

Fig. 3 Serial alignments of supposed homologous pairs of chromosomes in cattle, showing female pattern with 2A-XX (upper) and male pattern with 2A-XY (bottom) × 800

Fig. 4 Metaphase chromosomes with 2A-XX from gonadal culture of a freemartin (No. 1) ×1,000

Fig. 5 Metaphase chromosomes with 2A-XY from kidney culture of a male (No. 3) ×1,000
PLATE I

KANAGAWA, H. et al.

[Images of various objects and numbers labeled from 1 to 29]
PLATE II

Fig. 6 Dorsal views of sexual organs of 2 freemartins of No. 1 (upper) and No. 2 (bottom)

VA: Vagina UT: Uterine horns
SV: Seminal vesicle-like structures GO: Gonads

Fig. 7 Metaphase figures with sex-chromosome chimerism from a blood culture of a freemartin (No. 1)
Note XX (upper) and XY (bottom). × 1,000

Fig. 8 Sex-chromosome chimerism in a blood culture of a freemartin (No. 2)
Note XX (upper) and XY (bottom). × 1,000
PLATE III Microphotographs of sexual organs of No. 1 (hematoxylin-eosin stain)

Fig. 9 Left gonad has rete ovarii (right upper), and stroma which contains many small cyst-like structures resembling primary follicles or immature seminiferous tubules. \(\times 140 \)

Fig. 10 Higher magnification of a part of figure 9
Small cyst-like structures contain several cells. \(\times 560 \)

Fig. 11 Right gonad has several small follicles with degenerating follicular walls. \(\times 140 \)

Fig. 12 A group of large luteal cells in right gonad \(\times 560 \)

Fig. 13 A part of uterine mucosa with immature uterine glands \(\times 140 \)

Fig. 14 Seminal vesicle-like structures \(\times 140 \)
PLATE IV Microphotographs of sexual organs of No. 2 (hematoxylin-eosin stain)

Fig. 15 Rete ovarii (upper) and stroma of left gonad × 56

Fig. 16 A part of a small follicle in left gonad
Zona granulosa is almost absent and theca follicli is replaced by a layer of connective tissue. × 140

Fig. 17 Uterine mucosa with undeveloped glands, some of which are atrophic × 140

Fig. 18 Cut surface of rudimentary Wolffian duct × 56