<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>美小牧における凍上観測（昭和52〜53年冬期）</td>
</tr>
<tr>
<td>著者</td>
<td>木下 優一・铃木 义男・堀口 博・井上 正则・武田 一夫・石崎 武志</td>
</tr>
<tr>
<td>発行日</td>
<td>1978-03-29</td>
</tr>
<tr>
<td>報告</td>
<td>ハンドルハンドルハンドル</td>
</tr>
<tr>
<td>番号</td>
<td>ハンドル</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>36-37_p107-112.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
苫小牧における凍上観測 *

（昭和52－53年冬期）

木下誠一・鈴木義男・塚口薰
（低温科学研究所）

井上正則・武田一夫・石崎武志
（北海道大学大学院理学研究科）

（昭和54年1月受理）

苫小牧北大演習林内にある凍上観測室において、昭和44年以降の凍上観測及び研究が毎冬継続して行なわれている。現場には、内面防水のプールが4ヶあり、その中に試験土がつめられている。凍上に際しての土中水分の移動がプールの内部だけでなく独立に起り、プールの外とは関係のないようになっている。ここでは、毎冬継続して観測されている一般項目について、昭和52－53年冬期に得られた結果を資料として報告する。プール内の試験土の状況を第1表に示すが、昭和51－52年冬期（1）と同じである。

気温と積算温度の状況を第2表と第1図に示す。この冬は、凍結の開始が例年より20日間近くも遅れた。凍結と凍上の状況を各プールごとに、第2，3，4，5図に示す。11月25日（凍結前）、1月6日と3月7日（凍結時）及び5月16日（融解後）に、試料採取を行ない、層構造の観察をした後、現場現場密度、重量含水比、土粒比重を測定した。その結果の一部を第2，3，4図の下半

第1表 苫小牧凍上観測現場におけるプール状況

<table>
<thead>
<tr>
<th>プール名</th>
<th>旧名称</th>
<th>広さ（m）</th>
<th>凍結前の試験土の深さ（m）</th>
<th>初地下水位（cm）</th>
<th>土</th>
<th>質</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>D</td>
<td>5 × 5</td>
<td>2.30</td>
<td>0</td>
<td>シルト質土*</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>A</td>
<td>3 × 3</td>
<td>1.90</td>
<td>30</td>
<td>＊</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>C</td>
<td>5 × 5</td>
<td>2.00</td>
<td>200</td>
<td>小石**（0～10cm）小石とシルト質土の混合（10～20cm）シルト質土（20～60cm）砂*（60～160cm）</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>B</td>
<td>3 × 3</td>
<td>1.60</td>
<td>30</td>
<td>＊</td>
<td></td>
</tr>
</tbody>
</table>

* シルト質土*砂分55％、シルト分24％、粘土分21％、砂質粘土ローム、60％粒径0.08mm、比表面積54m²/g。
** 小石 一径1～10cm。
*** 砂一砂分100％、60％粒径0.4mm、比表面積1m²/g。
に示してある。又、各プールの凍上状況を第3表に示す。この冬は、1のプールについては、ほぼ10日間に1度位の割合で注水を行ない、地下水位が、凍結前の地面より50cmほど下の位置にあるようにした。そのため往冬に比べて大きな凍上が観測された。その他は往冬と同様状況を示した。

現場の観測にあたって苦牧演習林の職員一同に協力を得た。厚く感謝の意を表する次第である。又、本研究に要した費用は、文部省科学研究費補助金・自然災害特別研究「凍上災害の予測に関する基礎的研究」及び特定研究費「土地の凍結融解過程の研究」によってまかなわれた。

文献
1) 木下誠一・鈴木義男・戸口 薫・福田正己・井上正則・武田一夫 1976 苦牧における凍上観測（昭和51～52年冬期）、低温科学、物理篇、35、307-319。
第2図 ブールIの凍土状況及び断面観測時の重量希水比Wと単位体積重量D. 昭和52-53年冬期、小牧凍土観測現場

<table>
<thead>
<tr>
<th></th>
<th>D E C.</th>
<th>J A N.</th>
<th>F E B.</th>
<th>M A R.</th>
<th>A P R.</th>
<th>M A Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
<td>1.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

W: WATER CONTENT
D: DENSITY

FREEZING FRONT

GROUND

SURFACE

MELTING FRONT

FREEZING FRONT
第3図 ブールIIの凍上状況及び断面観測時の重量含水率Wと単位体積重量D、昭和52~53年冬期、苦小牧測上観測現場。
第4図 プールIIIの凍土状況及び断面観測時の重量含水比Wと単位体積重量D，昭和52～53年冬期，苦小牧凍土観測現場
第5図 プールIVの凍上状況と未凍土内の地温分布。昭和52～53年冬期、苫小牧凍上観測現場

第3表 各グループの凍上状況

<table>
<thead>
<tr>
<th></th>
<th>最大凍上量</th>
<th>最大凍結層の厚さ</th>
<th>基準面（凍結前の地表レベル）からの凍結深</th>
<th>凍上率</th>
<th>初期地下水位</th>
<th>地下水位がプール底に達した日</th>
</tr>
</thead>
<tbody>
<tr>
<td>I D</td>
<td>41.2 cm</td>
<td>63.1 cm</td>
<td>21.9 cm</td>
<td>188.1</td>
<td>0</td>
<td>12月22日</td>
</tr>
<tr>
<td>II A</td>
<td>24.8 cm</td>
<td>72.2 cm</td>
<td>47.4 cm</td>
<td>52.3</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>III C</td>
<td>17.8 cm</td>
<td>68.7 cm</td>
<td>50.9 cm</td>
<td>35.0</td>
<td>底</td>
<td></td>
</tr>
<tr>
<td>IV B</td>
<td>16.8 cm</td>
<td>64.4 cm</td>
<td>47.6 cm</td>
<td>35.3</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>