

Title	鉱柱及び岩盤の変形性と安定性の評価法に関する研究
Author(s)	金子, 勝比古
Citation	京都大学. 博士(工学)
Issue Date	1985-12
Doc URL	http://hdl.handle.net/2115/20091
Туре	theses (doctoral)
File Information	9.thesis.pdf

鉱柱及び岩盤の変形性と安定性の評価法 に関する研究

昭和60年12月

金 子 勝比古

鉱柱及び岩盤の変形性と安定性の評価法 に関する研究

昭和60年12月

金子 勝比古

日 次

緒論

1.本研究	究の目的 ----------------------	1
2.従来の	ひ研究の展望 ---------------------	2
2.1	岩盤の力学的性質の評価法 ---------------	2
2.2	材料の変形性に関するクラック理論 ーーーーーーーーーー	3
2.3	岩石の破壊現象 ーーーーーーーーーーーーーーーーー	5
2.4	鉱柱管理のための岩盤計測 ---------------	7
3.内容4	の概観	7

第1部 鉱柱及び岩盤の変形性の評価法に関する研究

第	1	章		不	連	続岩	盤	Ø	変見	形性	に閉	す	るサ	里論	的	検討	ł	<u> </u>					 	15
	1	•	1		緒	Ē	-	_			 -												 	15
	1	•	2		ク	ラッ	ク	Ð	デノ	ル及	び屋	E標	系の	D定	義	-							 	15
	1	•	3		茰	ーク	ラ	ッ	クド	モデ	ル	_			_			<u> </u>			— —.		 	18
		1	•	3	•	1	開		型:	クラ	ック	,											 	18
		1	•	3	•	2	閉	合	型	クラ	ック	7			-								 	21
		1	•	3	•	3	数	値	計	箄例	-												 	27
	1	•	4		分	布ク	ラ	ッ	ク	モデ	ル	-			_								 	29
		1	•	4	•	1	쀩		型	クラ	ック	7			_								 	31
		1	•	4	•	2	閉	合	型:	クラ	ック	,											 	35
		1	•	4	•	3	開		型	クラ	ック	っと	閉台	う型	!ク	ラッ	ック	がオ	L 在	する	場合	-	 · – –	38
		1	•	4	•	4	数	値	計	箄例	-												 	40
	1	•	5		結	Ē	-	-							_								 · — —	42
第	2	章		岩	盤	の不	連	続	性(の評	価約	まに	関す	よる	理	論的	り検	討					 	45
	2	•	1		緒	Ē	-								_								 	45
	2	•	2		ク	ラッ	ク	分	布	뾧数	: -												 ·	45
		2	•	2	•	1	ク	ラ	ツ :	ク分	布穆	闄数	のカ	ミ 義	ł								 	45
		2		2		2	ク	ラ	"	ク分	布隆	1数	の	生質	<u>.</u>								 	47

 2.3.1 有効クラック密度 2.3.2 測定クラックと有効クラックの関係
2.3.2 測定クラックと有効クラックの関係
2.3.3 有効クラック密度の評価式 ---------
2.4 RQDに関する考察(
2.4.1 RQDの理論的解釈(
2.4.2 RQDと岩盤の変形性の関係
2.5 結言
第3章 岩石の変形性に関する実験的検討
3.1 緒言
3.2 岩石試料
3.2.1 供試体
3.2.2 ~岩石実質部の弾性率
3.3 クラックの分布特性
3.3.1 クラックの測定
3.3.2 クラック密度の推定
3.4 静水圧試験
3.4.1 実験の概要 8
3.4.2 実験結果及び考察
3.5 一軸圧縮試験 8
3.5.1 実験の概要8
3.5.2 実験結果及び考察 ---------- 8
3.6 弾性率の評価8
3.7 岩盤の変形性の評価法に関する一考察

第Ⅱ部 鉱柱及び岩盤の安定性の評価法に関する研究

第1章	AE計測	則による岩石	の破壊特性に	関する実験的検討	 99
1.1	緒言				 99
1.2	実験				 99

		1	•	2	. 1	岩石試料	- 99
		1	•	2	. 2	実験装置及び実験方法	-101
	1	•	3		実験結	果及び考察 ------------------------------------	-102
	1	•	4		結言		-108
第	2	章		宕	石の破	壊の進展に伴う弾性波伝播速度の変化 --------	-111
	2	•	1		緒言		-111
	2	•	2		実験		-111
		2	•	2	. 1	岩石試料	-111
		2	•	2	. 2	実験装置及び実験方法 ---------------	-112
	2	•	3		実験結	「果及び考察 ------------------------------------	-113
	2	•	4		クラッ	クの特性を考慮した弾性波伝播速度の変化に関する解析 -	-117
		2	•	4	. 1	インクルージョンモデル ーーーーーーーーーーー	-117
		2	•	4	. 2	理論値と実測値の比較	-119
	2	•	5		弾性波	。伝播速度を利用した鉱柱監視法に関する考察 ------	-122
	2	•	6		結言		-123
第	3	章		岩	石の破	;壊の進展に伴う弾性波の振幅の減衰 ---------	- 125
	3	•	1		緒言		-125
	3	•	2		実験		- 125
		3	•	2	. 1	実験装置及び実験方法 ------------------------------------	-125
		3	•	2	. 2	発振子及び受振子	-126
	3	•	3		実験結	果及び振幅減衰についての考察 ----------	-127
	3	•	4		振幅比	の周波数依存性	-132
	3	•	5		岩石内	に発生するクラックの性状と波動減衰特性の関係	-136
	3	•	6		鉱柱監	視法への応用性 ーーーーーーーーーーーーーーーー	-139
	3	•	7		結言		- 139
第	4	章		弾	性波伝	播特性を利用した鉱柱の安定性監視法 --------	-142
	4	•	1		緒言		-142
	4 4	•	1 2		緒言 岩石供		- 142 - 142
	4 4	4	1 2	2	緒言 岩石供 ・1		- 142 - 142 - 142

	4	•	3		現	場実	験					-	-	-				· ·							 	-146
		4	•	3	•	1	実	食現	場(の概	t要		-	_											 	- 146
		4	•	3	•	2	実験	食方	法			-	_	_				·							 	-147
		4	•	3	•	3	滅了	麦指	標	<u>ē</u>	_	_	_	-	_ ·			·							 	-148
	4	•	4		実	験結	i果と	こそ	の	夸察	Ĩ.	-	_	-											 	-149
		4	•	4	•	1	岩	盆状	態	と弾	觛性	波	伝	播	特	生の	の関	係							 	- 149
		4	•	4	•	2	岩	盆内	の	いた	み	Ø	進	行	に	半:	う弾	性	皮	伝播	寺性	ŧの	変化	1	 	-153
	4	•	5		弾	性波	伝持	番特	性	を利	川用	U	た	鉱	柱	監衣	見シ	ス	F,	ц -					 	-155
	4	•	6		結	言						_	_	-	<u> </u>			·							 	- 157
結論		_	_	_	_							-	-					· — -							 	- 159
謝辞		_	_	_	_							-			 -	 -									 	- 163

-164

付録

緒論

1.本研究の目的

残柱式採鉱法における鉱柱及び採掘による地下空洞の設計及び管理は岩盤力学において最も 基本的でかつ重要な問題である。特に、鉱山における採掘の深部化、大規模化の進む現況にお いてはそれらの設計及び管理を合理的かつ効率的に実施する必要性が高まってきている。また、 この問題は地下発電所や石油地下備蓄等の地下構造物の設計及び管理の問題とも直接的に関係 するものである。

鉱柱及び地下空洞の設計は採鉱計画立案におけるキーボイントであり、内外において古くか ら研究がなされてきている。近年、対象とする岩盤の初期地圧状態と岩盤の力学的性質を把握 した上で、数値的手法により鉱柱及び空洞周囲の岩盤の応力状態・変形状態を予測し合理的設 計を行おうとする試みがなされている。予測計算は、対象とする岩盤を適確にモデル化するこ とができれば、その結果も信頼性の高い資料として取り扱うことができる。その為には岩盤の 力学的性質、特にその基本因子である岩盤の変形性を適確に評価する必要がある。この目的の もとに、既設空洞周囲の岩盤の応力・変形計測の結果を用いた数値的逆解析の試みも一部には なされているが、一般には極めて経験的観点のもとにこれらの値を推定しているのが現状であ る。そこで、著者はまず、この問題解決のための基礎資料を得ることを目的として岩盤の変形 性に関する理論的検討を行い、岩盤の変形性の評価法に関する基礎理論を構築しようと試みた。

次に、合理的設計がなされた上でも、採掘の効率及び保安の向上を計るためには鉱柱及び空 洞の日常的管理が不可欠となる。すなわち、鉱柱及び地下空洞は、いわば自然を対象とした構 造物であるため、そこで起きうる現象を設計段階で完全に予測することは極めて困難である。 したがって、採掘に伴う岩盤状態の変化を科学的手法を用いて常時監視する必要がある。この 目的の為に、各種センサーによる応力計測及び変形計測、AE計測、弾性波速度計測等の種々 の岩盤計測法が開発され、その内のいくつかはすでに実用化されている。これらの計測法はい ずれも固有の特徴を有し、それぞれ極めて有用な手法であるが、岩盤の複雑さを考えると、唯 一の観点からの計測によって鉱柱及び空洞の安定性を評価することは困難であると思われる。 すなわち、種々の観点からの計測を行い、それらの結果を総合的に判断する必要があると思わ れる。そこで著者は、上記の方法に加えて新たな観点から鉱柱管理の為の簡便な岩盤計測法を 開発しようと試みた。すなわち、この目的のもとに、岩石の破壊の進展に伴う弾性波伝播特性

に関する基礎研究を行い、それらの成果にもとずき、鉱柱や地下空洞周囲の岩盤の安定性の一 評価法として弾性波の振幅減衰を利用する方法を提案した。

2. 従来の研究の展望

2.1 岩盤の力学的性質の評価法

岩盤をその性質と工学的用途に応じて分類するために、岩盤の力学的性質を評価する試みは 古くからなされており、すでに多くの方法が実用化されている^{1),2)}。岩盤分類の最初の試み としてはTerzaghi³⁾の研究を挙げることができる。すなわち、Terzaghiは岩 盤をトンネル支保に作用する荷重の大きさにより分類することを提案しているが、その分類基 準は極めて定性的であることは否めない。

Deere^{4),5)}はRQD (Rock Quality Designation)を用いて岩盤の質を定量的に表示 して岩盤の評価を行う方法を提案し、この方法が坑道支保選定のための岩盤分類法として有効 であることを報告している。しかし、Deereの方法は岩盤の性質の一面のみを評価対象と したものであり、その適応性はかなり限定されるものであることが指摘されている⁶⁾。

Wickham⁷⁾はRQDとともに岩種,不連続面の状態及び含水状態等を測定項目とした 評点法による岩盤評価法RSR (Rock Stracture Rating)を提案している。

Bieniawski^{8),9)}はRSRの考え方を発展させたRMR (Rock Mass Rating) に よる岩盤評価法、CSIR (Council for Scientific and Industrial Reserch) 岩盤分類、 を提案するとともにその適用性に関する研究を実施している。RMRはRQD、不連続面間隔、 不連続面の表面状態と含水状態及び構成岩石の強度のそれぞれの項目の評点の総和として表さ れる岩盤の力学的性質の指標値であり、RMRと岩盤の変形係数E_M (GPa)の間には次式 の関係が成立することが報告されている。

$$E_{M} = 2RMR - 100 \tag{1}$$

しかし、(1)式はかなり限られた例をもとにして経験的に導かれたものであり、それを一般化 して用いることには問題があることが指摘されている¹⁰⁾。

Barton¹¹⁾は次式で表されるQ値を指標値として岩盤を分類する方法、NGI (Norwe gian Geotechnical Institute)岩盤分類法、を提案している。

 $Q = (RQD/J_n) \cdot (J_r/J_a) \cdot (J_w/SRF)$ (2)

ここで、J_n:ジョイント群の数、J_r:ジョイント面の粗さ係数、J_a;ジョイントの変質係 数、J_w:ジョイント内の水による低減係数、SRF:応力低減係数である。CSIR法とN GI法ではその評価式が異なるが、岩盤内の不連続面の密度とその状態の評価を最重要視して いる点でその基本思想は一致しており、両者の間には

 $RMR = 9 \log_{e} Q + 4 4 \tag{3}$

なる関係式が成立することが経験的に明らかにされている¹²⁾。

我が国の鉱山においても、採鉱計画のための岩盤評価及び岩盤分類が各鉱山独自の方法によ り実施されてきているが、それらの基準は経験的であり、大系化して用いられている例は見当 らない。一方、我が国の土木工学の分野では国鉄¹³⁾、道路公団¹⁴⁾、電力中央研究所¹⁵⁾、土 質工学会¹⁶⁾等の岩盤分類法が広く用いられている。これらの方法では、岩盤の弾性波伝播速 度が主要な測定項目として含まれているが、不連続面の評価基準等は定性的である。

以上が、岩盤分類のための岩盤評価法の概要であるが、いずれも経験的立場から導かれた方 法論であり、この問題に対する理論面からの研究は極めて少ない。

岩盤の不連続面の力学的性質とその評価法に関する研究としてはGoodman¹⁷⁾、Ho ek¹⁸⁾、Bray¹⁹⁾、Jaeger²⁰⁾、Ladanyi²¹⁾、Barton²²⁾等の研究を 挙げることができる。最近、数値解析的手法を用いて岩盤の変形性に及ぼす不連続面の影響を 評価しようとする試み^{23),24)}がなされてきているが、そこで取り扱われている問題はすべて 2次元問題であり、3次元問題として解析された例はない。

岩盤内不連続面の分布状態及び密度を評価する方法としてはHudson²⁵⁾、Pries $t^{26)}$ 等の Scan line survey による方法、Kachanov²⁷⁾、小田²⁸⁾等のクラックテン ソルを基礎とした方法がある。

2.2 材料の変形性に関するクラック理論

材料の力学的性質がその内部に存在するクラックの性状に密接に関係していることを最初に 指摘したのはGriffith²⁹⁾である。Griffithの理論はクラックモデルを用い たぜい性破壊理論の先駆けとなり、その後の多くの研究者により現在の破壊力学³⁰⁾ へと発展 させられている。

材料中に存在するクラックが材料の変形性に及ぼす影響に関する基礎理論はEshelby ³¹⁾により構築されている。Eshelbyの理論をもとにしてクラックの存在が岩石の弾性 率に及ぼす影響を検討した例としてはAnderson³²⁾の研究がある。

Walsh^{33),34),35),36)}は、楕円孔を有する弾性体の応力場及び変位場に関する解をも とにして、岩石の変形性と岩石中のクラックとの関係に関する一連の研究を実施し、常圧下の 岩石の変形性がその内部に存在するクラックの特性に支配されていることを理論的に明らかに した。特に、クラックを開口型クラック(Open crack)と閉合型クラック(Closed crack)と に分類して解析を行い、それぞれの場合の岩石の有効弾性率の解を(4)式及び(5)式で与 えている。

開口型クラックの場合

$$E^{*} = E / \{1 + 4\pi/3 \cdot (1 - \nu^{2}) \cdot \Phi\}$$

$$\nu^{*} = E^{*} / E \cdot \nu$$
(4)

閉合型クラックの場合

 $E^{*} = E \swarrow \left[1 + 4\pi/15 \cdot (1 - \nu^{2}) \Phi \left\{ (2 + 3\mu^{2} + 2\mu^{4})(1 + \mu^{2})^{-3/2} - 2\mu \right\} \right]$ $\nu^{*} = \nu + (1 - 2\nu) \swarrow 2 \cdot (1 - E^{*}/E)$ (5)

ここで、E^{*}、ν^{*};岩石の有効ヤング率及び有効ボアソン比、E,ν;岩石実質部のヤング率 及びボアソン比、μ;閉合型クラックのクラック面の摩擦係数である。また、Φは単位体積当 りのクラックの数とクラックの寸法及び形状で決る無次元量でありクラック密度と呼ばれるも のである。Walshは上記理論解をもとにして、岩石の変形特性及び弾性波伝播特性の理論 的解釈を試みているが、上記理論解は2次元クラックモデルの基礎解を用い、また、クラック が密に存在する場合のクラック相互間の力学的干渉の影響を無視して導かれたものであるため その適用にはおのずと限界があるものと思われる。

Budianski³⁷⁾, O'Connell³⁸⁾は線型破壊力学の概念をもとにして楕円板 形状の開口型クラックを有する材料の有効弾性率を(6)式で与えている。

 $E^* = E\{1 - \frac{16}{45} \cdot (1 - \nu^{*2})(3 + \chi)\Phi\}$ $45(\nu - \nu^*) = 8\Phi(1 - \nu^{*2})\{2(1 + 3\nu^*) - (1 - 2\nu)\chi\}$ (6)

ここで、 χ ;楕円板の軸率及び有効ボアソン比 ν *の関数である。(6)式の特徴は3次元ク ラックモデルの解であるとともに、Self consistent 法によりクラック相互間の力学的干渉の 影響を考慮している点にある。なお、このクラック相互間の力学的干渉の影響を表現する方法 としては上記の Self consistent 法とともにYamamoto³⁹⁾の提案する Step by step 法がある。

また、動的問題の解としてはKuster⁴⁰⁾, Toksöz⁴¹⁾等の回転楕円体形状のイン クルージョンを有する材料の有効動的弾性率の理論解が広く用いられている。すなわち、Ku ster,Toksöz等は平面波散乱理論をもとにした解析を行い、有効動的弾性率として (7)式で表される解を与えている。

$$(K^* - K)/(3K^* + 4G) = (K' - K)/(3K + 4G) \cdot \Sigma d_c (\alpha_m) \cdot T_{1111}/3$$

$$(G^* - G)/\{6G^*(K + 2G) + G(9K + 8G)\}$$

$$= (G' - G)/25G(3K + 4G) \cdot \Sigma d_c (\alpha_m) [T_{1111} - T_{1111}/3]$$
(7)

ここで、K^{*}、G^{*}:インクルージョンを有する材料の有効体積弾性率及び有効剛性率、K、G :材料の実質部の体積弾性率及び剛性率、K'、G';インクルージョンの体積弾性率及び剛性 率、 α_{n} ;インクルージョンの Aspect ratio 、d_c(α_{m}); Aspect ratio α_{m} なるインクル ージョンの体積率、N;インクルージョンの単位体積当りの数、T₁₁₁₁, T₁₁₁₁; α_{m} , K, G, K'及びG'により決る定数である。

クラック理論をもとにした材料の変形性に関する研究のうち、特に岩石力学に関係の深いも のを以上に示した。しかし、クラック理論を岩盤力学に適用した例は極めて少なく、その為の 理論モデルも不足しているものと思われる。

2.3 岩石の破壊現象

岩石は一般に脆性材料として取り扱われており、岩石の破壊現象はその内部に潜在するクラ ックと密接な関係を有している。Griffithth²⁹⁾は脆性材料の破壊が材料内に存在する クラックの伸長により生じると仮定して脆性材料の破壊基準を提唱し、また、McClint ock及びWalsh⁴²⁾はGriffithの理論を拡張した破壊基準を提案している。し かし、その後の研究により、上記の破壊基準が示す" critical な単一のクラックの伸長" によっては、岩石の破壊現象を充分に説明しえないことが指摘された。

Bridgman⁴³)は Soapstone、大理石等を用いた圧縮試験により、破壊点付近で供試 体の体積が膨張することを報告している。松島⁴⁴⁾⁴⁵⁾は花崗岩、石英モンゾナイトを用いて一 軸圧縮試験及び三軸圧縮試験を実施し、破壊点付近で供試体の体積が膨張することを確かめ、 この体積膨張量が封圧の大きさに関係していることを示した。また、松島⁴⁶⁾は花崗岩供試体 を用いた実験により、一軸圧縮下及び三軸圧縮下で供試体内を伝播する弾性波の伝播速度が破 壊点付近で急激に低下する現象を見出し、これらの現象が岩石内に発生し、伸長するクラック と密接に関係していることを明らかにした。

Brace等^{47)・48)・49)} はこの様な岩石の破壊点付近で認められる特異現象に着目して、 各種の岩石供試体を用いた広汎な実験を行い、それらの結果にもとづいて岩石の破壊機構を以 下の様に説明した。すなわち、岩石の内部には多くのクラックが潜在しているので、外力の作 用によりそれぞれのクラックのクラック先端の応力が岩石固有のある臨界値に達した場合に、 それらのクラックが伸長して微小な破壊が生じ、岩石は体積増加(Dilatancy)を示すことに なる。このようにしてできたクラックが集積して、その結果として岩石の巨視的破壊が生ずる。 Scholz⁵⁰⁾ はこの様な岩石内に発生する微小な破壊を供試体の巨視的破壊と区別するた めにマイクロフラクチャーと名付けた。

茂木^{51), 52), 53)}、Scholz^{54), 55), 56)}はマイクロフラクチャーによって発生する応力 波(Acoustic Emission,略称AE)を測定することにより、直接的にマイクロフラクチャー 現象をとらえ、岩石の破壊機構を明らかにした。

また、Anderson⁵⁷⁾、Cruden⁵⁸⁾等は岩石破壊の時間効果に注目し、岩石の破 壊機構において Stress corrosion 現象が重要な役割をもっていることを指摘している。Sa no^{59),60)}はこれらの研究をもとにして、岩石の破壊過程とその時間依存性をかなり良く説 明しうる理論を提唱している。

ここでは岩石破壊現象に関する研究として、特に代表的なものを挙げるにとどめたが、全般 的に岩石物性論及び実験地震学の立場からの研究が多く、鉱柱管理等の具体的問題への適用を 目的とした研究はほとんどない。

2.4 鉱柱管理のための岩盤計測

鉱柱の安全管理のための岩盤計測法としては、現在までに、種々の方法が提案されているが、 それらは大別すれば、応力を計測する方法、変形もしくはひずみを計測する方法、AEを計測 する方法及び弾性波伝播特性を計測する方法の4つに分類することができる。

応力を計測する方法は絶対応力を測定する方法と応力変化を計測する方法に分けられる。前 者の方法としては孔底ひずみ法^{61)・62)・63)}、孔壁ひずみ法^{64)・65)}及び孔径変化法^{66)・67)}等 の応力解放法と応力補償法^{68)・69)}及び水圧破砕法^{70)・71)}が広く用いられている。後者の方法 のためには、光弾性セル⁷²⁾等の各種応力センサー^{73)・74)}が開発されすでに実用化されている。

変形を計測する方法は最も広く用いられており、コンバーゼンスメータ、エクステンソメー タ、傾斜計等の種々の計器^{75),76),77)}が開発され実用化されている。

AEを計測する方法は、岩盤内の破壊に伴って発生する破壊音を検出する方法であり、近年 その鉱柱監視法への適用が試みられている^{78)、79)}。

弾性波伝播特性を計測する方法は、岩盤内のき裂状態により、その内部を伝播する弾性波の 伝播特性が変化する現象を利用したものである。しかし、従来は、弾性波伝播特性としては伝 播速度を利用する方法^{80)・81)}が主流であり、弾性波の振幅減衰を利用する方法に関しては数 例の基礎実験^{82)・83)}を除けば例をみない。

3. 内容の概観

本論文は、鉱柱及び地下空洞の設計・管理を目的とした岩盤評価法に関する研究の成果をま とめたものであり、緒論、結論の他2部より構成されている。第1部では、鉱柱及び地下空洞 の設計上重要な問題となる岩盤の変形性評価に関しての基礎研究の成果をとりまとめ、第11部 では鉱柱及び地下空洞の管理のための、弾性波伝播特性を利用した鉱柱監視法に関する研究の 成果をとりまとめている。以下に、各部各章の内容についてその概要を示す。

第I部では、従来、経験的観点にたよりがちであった岩盤の変形性評価の問題について理論 面からの検討を行った。

まず、第1章では、岩盤内の不連続面をクラックモデルを用いて理想化し、岩盤内の不連続 面が岩盤の変形性に及ぼす影響を理論的に検討し、岩盤の変形性の評価式を誘導した。特に、 岩盤内に開口型不連続面及び閉合型不連続面がそれぞれ単独に存在している場合及びそれらが 分布して存在している場合のそれぞれについて岩盤の有効コンプライアンスの理論解を示した。

第2章では、第1章に示した変形性評価式を用いて岩盤の変形性を推定する上で最も重要な 因子となる岩盤内不連続面のクラック密度の評価法に関する理論的検討を行い、岩盤壁面にお ける簡単な不連続面計測により、岩盤のクラック密度を求める方法を提案した。また、RQD の理論的背景を明らかにし、RQDと岩盤の変形係数との関連について考察を行った。

第3章では、上記の理論の検証のために実施した花園岩供試体を用いた実験の結果を述べて いる。すなわち、花園岩供試体を鉱柱のモデルと考え、供試体のクラック観察、静水圧試験及 び一軸圧縮試験を実施し、実測値と理論値を対比させることにより上記理論の妥当性を検証し た。

第Ⅱ部では、岩石の破壊の進展に伴う弾性波伝播特性に関する一連の研究を行い、弾性波の 振幅減衰を利用した新しい鉱柱監視法を提案した。

第1章では、岩石の破壊特性に関する基礎資料を得ることを目的として、種々の岩石供試体 の一軸圧縮下のAE発生頻度特性を調べ、岩石の種類によって破壊特性がどのように異なるか について考察した。

第2章及び第3章では、岩石の破壊の進行に伴う弾性波伝播特性の変化について、いくつか の面から検討を行った。まず、第2章では、岩石の破壊の進展に伴って弾性波伝播速度が変化 する現象に着目して検討を行い、この現象が岩石内に発生・伸長するクラックの量のみでなく、 そのクラックの性状に密接に関係していることを明らかにした。第3章では、従来あまり測定 の対象とされていなかった弾性波の振幅減衰について、その破壊現象との関連を検討した。そ して、岩石の破壊の進展に伴って弾性波の振幅が顕著に変化することを確かめた。また、各種 の岩石供試体を用いた一軸圧縮試験の結果から、非弾性体積ひずみ、AE発生頻度及びAE規 模別頻度分布等の諸量を求め、これらの諸量と弾性波伝播特性の変化との関係について検討し、 岩石の破壊に伴う現象がマイクロフラクチャーの概念により統一的に解釈されることを示した。

第4章では、第2章及び第3章に示した岩石供試体を用いた実験の結果をもとにして、岩盤 内を伝播する弾性波の振幅変化を計測する新たな鉱柱監視法を提案するとともに、その実用化 のための基礎研究について述べる。そして、現場実験の結果を分析し、弾性波の振幅減衰の計 測が鉱柱監視法として有用であることを示した。

参考文献

1) Hoek.E.and E.T.Brown:Underground excavations in rock, IMM, London(1982)

2) Goodman.R.E.:Methods of geological engineering in discontinuous rocks,West publishing co.,St.Paul(1976)

3) Terzaghi,K.;Rock defects and loads on tunnel supports,Rock tunnelling with steel supports,Commercial shearing and stamping Co.,Youngstown,pp.15-99(1940)

4) Deere.D.V.; Technical description of rock cores for engineering purpose, Rock Mech. Eng.Geol., Vol.1, pp.17-22(1964)

5) Deere, D.V., A.J. hendron, F.D. Patton and E.J. Cording; Design of surface and near surface construction in rock, In Failure and Breakage of Rock(Edited by C.Fairhurst), AIME, pp.237-302(1967)

6) Merritt.A.H.; Geologic prediction for underground exavations, Proc.1st North Am. Rapid Excavation and Tunnelling Conf., AIME, pp.115-132(1972)

7) Wickham,G.E.,H.R.Tiedemann and E.H.Skinner;Support determination based on geological predictions,Proc.1st North Am.Rapid Excavation and Tunnelling Conf.,AIME,pp.43 -64(1972)

8) Bieniawski,Z.T.;Rock mass classification of rock masses and it's application in tunnelling,Proc.3rd Int.Cong.ISRM,Vol.1,pp.27-32(1974)

9) Bieniawski,Z.T.;The geomechanics classification in rock engineering applications, Proc.4th Cong.ISRM,Vol.2,pp.41-48(1979)

10) Heuze.F.E., W.C.Patrick, T.R.Butkovich, J.C.peterson, R.V.de la Cruz and C.F.Voss; Rock mechanics studies of mining in the Climax granite, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., Vol. 19, pp. 167-183 (1982)

11) Barton, N., R.Lien and J.Lunde; Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, Vol.6, No.4, pp. 189-236(1974)

12) Bieniawski,Z.T.;Rock mass classification in rock engineering,Proc.Symposium on Exploration for Rock Engineering,Vol.1,pp.97-106(1976)

13) NATM設計施工指針(案),国鉄(1983)

14) 日本道路公団NATM暫定指針,日本道路公団(1982)

15) 岩盤分類の現状と問題点,電力中央研究所(1984)

16) 岩の工学的性質と設計・施工への応用、土質工学会(1969)

17) Goodman.R.E.; The mechanical propaties of joints.Proc.3rd Int.Cong.ISRM, .Vol.1, pp.127-133(1974)

18) Hoke, E. and J. Bray: Rock slope engineering, IMM, London(1971)

19) Bray, J.W.; A study of jointed and fractured rock, Rock Mech.and Eng.Geol., Vol.5, No.2, (1967)

20) Jaeger, J.C. and M.G.W.Cook; Fundamentals of rock mechanics, Methuen, London (1969)

21) Ladanyi,B.and G.Archcunbault;Simulation of shear behavior of a jointed rock mass.Proc.11th Symp.on Rock Mechanics,AIME,pp.105-114(1970)

22) Barton.N.and S.Bandis:Some effects of scale on the shear strength of joints, Int. J.Rock Mech.Min.Sci.& Geomech.Abstr., Vol.17, pp/69-73(1980)

23) Zeng Chuan Chui,清水 則一,桜井 春輔;不連続岩盤の力学定数の推定法,第16回岩盤力学 に関するシンボジウム講演論文集,pp.141-144(1984)

24) Kyoya,T.,Y.Ichikawa and T.Kawamoto;A damage mechanics theory for discontinuous rock mass,5th Int.Conf.on Numerical Method in Geomechanics,Vol.1,pp.469-480(1985)

25) Hudson, J.A.and S.D.Priest; Discontinuity frequency in rock masses, Int. J. Rock Mech.Min.Sci.& Geomech.Abstr., Vol.20, No.2, pp. 73-89(1983)

26) Priest,S.D.and J.A.Hudson:Estimation of discontinuity spacing and trace length using scanline surveys, Int.J.Rock Mech.Min.Sci.& Geomech.Abstr., Vol.18, pp.183-197 (1981)

27) Kachanov.M.;Continuum model of medium with cracks.J.of ASCE.EM.5,pp.1039-1051 (1980)

28) Oda.M.; Fabric tensor for discontinuous geological materials, Soil and Foundations, Vol.22, No.4, pp.96-108(1982)

29) Griffith.A.A.:The phenomena of rupture and flow in solids.Phil.Trans.Roy.Soc. London.A.221,pp.163-197(1920)

30) 例えば、横堀 武夫;材料強度学,岩波書店(1974)

31) Eshelby, J.D.; The determination of the elastic field of an ellipsoidal inclusion and related problem. Proc. roy. Soc. London, A, 241, pp. 376-396(1920)

32) Anderson.D.L.,B.Minster and D.Cole:The effect of oriented cracks on seismic velocities.J.Geophys.Res.,Vol.79.No.26.pp.4011-4015(1974)

33) Walsh.J.B.:The effect of cracks on the compressibility of rock,J.Geophys.Res., Vol.70.No.2.pp.381-389(1965)

34) Walsh, J.B.; The effect of cracks on the uniaxial elastic compression, J.Geophys. Res., Vol.70, No.2, pp.399-411(1965) 35) Walsh, J.B.: The effect of cracks in rocks on Poisson's ratio. J.Geophys.Res., Vol. 70.No.20, pp.5249-5257(1965)

36) Walsh, J.B.; Seismic attenuation in rock due to friction, J.Geophys.Res., Vol.71, No. 10, pp.2591-2599(1966)

37) Budianski,B.and R.J.O'Connell;Elastic moduli of a cracked solid, Int.J.Solids Struct., Vol.12, pp.81-97(1976)

38) O'Connell.R.J.and B.Budianski;Viscoelastic properties of fluid-saturated cracked solids, J.Geophys.Res., Vol.82, No.36, pp.5719-5735(1977)

39) Yamamoto,K.,K.Kosuga and T.Hirasawa;A theoretical method for determination of effective elastic constants of isotropic composite,Sci.Rep.Tohoku Univ.,Ser.5(Tohoku Geophys.J.),Vol.28,pp.47-67(1981)

40) Kuster, G.T. and M.N. Toksöz; Velocity and attenuetion of seismic waves in two-phase media, Part1, Geophysics, Vol. 39, No. 5, pp. 587-606(1974)

41) Toksöz, M.N., C.H. Cheng and A. Timur; Velocities of seismic waves in porous rocks, Geophysics, Vol.41, No.4, pp.621-645(1976)

42) McClintock, F.A. and J.B. Walsh; Friction on Griffith cracks in rocks under pressure, Proc.4th U.S. National Congr. of appl. Mech., pp. 1015-1021 (1962)

43) Bridgman, P.; Volume changes in the plastic stages of simple compression, J.Appl. Phys., Vol. 20, pp. 1241-1251(1949)

44) Matsushima, S.:On the flow and fracture of ignous rocks, Disaster Prevention Res. Inst.Kyoto Univ.Bull., No.36, pp.2-9(1960)

45) Matsushima,S.;On the deformation and fracture of granite under high confining pressure,Disaster Prevention Res.Inst.Kyoto Univ.Bull.,No.36,pp.11-20(1960)

46) Matsushima,S.;Variation of the elastic wave velocities of cracks in the process of deformation and fracture under high pressure,Disaster Prevention Res.Inst.Kyoto Univ.Bull.,No.32.pp.1-8(1960)

47) Brace.W.F., B.W. Paulding, Jr. and C. Scholz: Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., Vol. 71, No. 16, pp. 3939-3953 (1966)

48) Brace, W.F. and A.S.Orange; Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J.Geophys.Res., Vol. 73, No. 4, pp. 1433-1445(1968)

49) Brace, W.F. and A.S. Orange; Further studies of the effects of pressure on electrical resistivity of rocks, J. Geophys. Res., Vol. 73, No. 16, pp. 5407-5420(1968)

50) Scholz, C.H.; Microfracturing and inelastic deformation of rock in compression, J. Geophys. Res., Vol. 73, No. 4, pp. 1417-1433 (1968)

51) Mogi.K.; Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena.Bull.Earthq.Res.Inst., Vol.40, pp.125-173 (1962)

52) Mogi,K.;Magnitude frequency relation for elastic shocks accompanying fractures of various materials and some related problem in earthquake,Bull.Earthq.Res.Inst., Vol.40,pp.831-853(1962)

53) Mogi,K.;Source location of elastic shocks in the fracturing process in rocks, Bull.Earthq.Res.Inst.,Vol.46,pp.1103-1125(1968)

54) Scholz, C.H.; Mechanism of creep in brittle rock, J.Geophys.Res., Vol.73, No.4, pp.329 5-3302(1968)

55) Scholz.C.H.; Experimental study of the fracturing process in brittle rock, J. Geophys.Res., Vol. 73, No. 4, pp. 1447-1454(1968)

56) Scholz, C.H.; The frequency-magnitude relation of microfracturing in rock and its relation to earthquake, Bull.Seism.Soc.Am., Vol.58, No.1, pp.399-415(1968)

57) Anderson, O.L. and P.C. Grew; Stress corrosion theory of crack propagation with applications to geophysics, Rev. Geophys. Space Phys., Vol. 15, pp. 77-104(1977)

58) Cruden.D.M.; A theory of brittle creep in rock under uniaxial compression, J. Geophys.Res., Vol.75, pp.3451-3442(1970)

59) Sano.0.;Fundamental study on the mechanism of brittle fracture of rocks,Dr. thesis,Kyoto Univ.(1978)

60) Sano,0.,1.1to and M.Terada; Influence of strain rate on dilatancy and strength of Ohshima granite under uniaxial compression, J.Geophys.Res., Vol.86, No.b10, pp.9299-9311 (1981)

61) 岡 行俊,平松 良雄,斉藤 俊明,菅原 勝彦;岩盤応力決定のためのボアホール底面ひずみ測 定による応力解放法の研究,日本鉱業会誌,第92巻,第1055号,pp.1-6(1976)

62) 亀岡 美友;ボアホール底面上の応力の解放による岩盤応力測定に関する研究,京都大学学 位論文(1978)

63) 菅原 勝彦,尾原 祐三,岡村 宏,青木 俊郎;球面孔底ひずみ測定による3次元岩盤応力の決 定,日本鉱業会誌,第101巻,第1067号,pp.(1985)

64) Leeman.E.R.and D.F.Hayes; A technique for determing the complete state of stress in rock using a single borehole, Proc.1st International Cong. ISRM, pp.17-24(1967)

65) Hiltscher, R., J. Martna and L. Strindell: The measurement of triaxial rock stresses in deep boreholes and the use of rock stress measurements in the design and construction of rock opening. Proc. 4th International Cong. ISRM, pp.227-234(1979) 66) Obert,L.;In-situ determination of stress in rock,Mining Engineering,pp.51-58 (1962)

67) Kovari.H.G.and C.Amstad; Sources of error in the determination of in-situ stresses by measurements, Tectonophysics, No. 29, pp. 29-39(1975)

68) Mayer, A., P. Habib and R. Marchand; Underground rock pressure testing, Int. Conf. Rock Pressure Support at the Working Face, pp.217-221(1951)

69) Rocha,M.,J.B.Ropes and J.N.Silva;A new technique for applying the method of the flat jack in the determination of stresses under rock masses, Proc.1st International Cong.ISRM, pp.57-65(1967)

70) Haimson, B.C.; The hydrofracturing stress measuring method and recent field results, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 167-178(1978)

71) 荻野 正二;水圧破砕による3次元岩盤応力測定法の研究,昭和58年度科学研究費補助金研究 成果報告書,(1984)

72) Hiramatsu, Y. and Y. Niwa and Y. Oka: Measurement of variation in stress by a photoelastic stressmeter, Tech. Rep. Engg. Res. Inst. Kyoto Univ., No. 131, pp. 58-75(1967)

73) 平松 良雄,岡 行俊;岩盤内の応力変化の測定,日本鉱業会誌,第80巻,第910号,pp.356-361 (1964)

74) Sharp, J.C., L.R. Richards and R.J. Byrue; Instrumentation consideration for large underground trial openings in civil engineering, Proc. Int. Symp. on Field Measurements in Rock Mech., Vol.2, pp.587-609(1977)

75) 水田 義明,平松 良雄,岡 行俊;地圧状態を監視するための計器の研究,水曜会誌,第16巻, 第7号,pp.526-529(1968)

76) 例えば、Londe,P.;Field measurements in tunnels,Proc.Int.Symp.on Field Measurements in Rock Mech.,Vol.2,pp.619-638(1977)

77)例えば、日比野 敏,本島 陸;実測結果による大規模地下空洞掘削時の岩盤挙動の検討, 第15回岩盤力学に関するシンボジウム講演論文集,pp.66-70(1983)

78) Hardy, H.R., Jr. and G.L. Mowrey; Study of underground structural stability using near-surface and down-hole microseismic techniques, Proc. Int. Symp. on Field Measurements in Rock Mech., Vol. 2, pp. 75-92(1977)

79) Langstaff.J.T.;Interpretation of acoustic emission data—star mine,Proc.2nd Conf.on AE/MSA in Geologic Structure and Materials,pp.163-178(1980)

80) 斉藤 敏明,平松 良雄;弾性波伝播速度測定による鉱柱の検査,水曜会誌,第16巻,第10号, pp.739-742(1969)

81) 本荘 静光,本島 勲;新高瀬川発電所の地下空洞掘削に伴う周辺岩盤の弾性波速度変化, 電力中央研究所報告,379003,(1979) 82) 伊藤 一郎、佐々 宏一、関 順一:き裂の存在および伸展に伴う弾性波伝播特性,第4回岩の力 学国内シンポジウム講演論文集,pp.55-60(1973)

83) Meister, D.; A new ultra-sonic borehole-meter for measuring the geotechnical properties of intact rock, Proc. 3rd Int. Cong. ISRM, Vol.2, pp. 410-417(1974)

第I部

鉱柱及び岩盤の変形性の評価法 に関する研究

.

第1章 不連続岩盤の変形性に関する理論的検討 1)

1.1 緒言

常圧下の岩石の力学的性質、特に変形性は岩石内に存在するクラックの特性に密接に関係している。Birch^{2),3)}, Brace^{4),5)}等の静水圧下の岩石の変形性及び弾性波伝播特性 に関する実験的研究、Walsh^{6),7),8)}のクラックモデルを用いた理論的研究はこの関係を 明快に説明している。

岩盤力学の分野においても、岩盤の力学的性質は岩盤内に存在する不連続面の特性に密接に 関係しているものと考えられている⁹⁾。Bieniawski¹⁰⁾によるRMR法、Bart on¹¹⁾によるQシステム法はこの観点のもとに開発された岩盤評価法である。これら2種類 の岩盤評価法の特徴は、現場経験則により導き出された Rating 手法¹²⁾であるとともに、岩 盤中の不連続面の評価を最重要視している点にある。上記の事実は、岩石のみならず岩盤にお いても、その内部に存在する不連続面の特性を適確に定量化することによりその変形性の予測 が可能であることを暗示しているであろう。

そこで、著者は、材料力学、岩石力学の分野で用いられているクラック理論¹³⁾を岩盤力学 に導入することにより、不連続面を有する岩盤の変形性を理論的に明らかにしようと考えた。 本章では、クラック理論を用いて不連続面を有する岩盤の応力ひずみ関係を定式化することに より、岩盤の変形性に及ぼす不連続面の影響を明らかにする。

1.2 クラックモデル及び座標系の定義

岩盤中には断層・節理等の種々の不連続面が存在しているが、ここでは問題を単純化するために、それらの不連続面の形状を楕円板形状とし、岩盤の岩石実質部を均質・等方弾性体と仮定する。すなわち、不連続面を有する岩盤を楕円板状クラックを内部に含む弾性体としてモデル化し、不連続面の存在が岩盤の変形性に及ぼす影響を検討する。楕円板状クラックの形状は、 長径2a、短径2b,開口幅2cとし、クラック中心を原点とし、長軸及び短軸をそれぞれ x 軸及び y軸と一致させた(x y z)座標系において、次式で現わされるものとする。

 $z = \pm c \{ 1 - (x/a)^2 - (y/b)^2 \}^{1/2}$

ただし、

 $0 \leq c \ll b \leq a$

であり、クラック先端の曲率半径は0とみなすことが可能であるものとする。ここで、c>0 である場合とc=0である場合とでは、それぞれクラックの力学的挙動が異なるため、以下で は、Walsh⁷⁾の表現にならって、前者を開口型クラック(open crack)、後者を閉合型ク ラック(closed crack)と呼びそれぞれ別途の解析を行うことにする。また、特に、a=bの 場合は円板状クラックと呼ぶことにする。なお、内部に楕円板状開口型クラックを有する弾性 体の有効弾性率に関する理論解¹⁴⁾はすでに報告されているが、ここでは、閉合型クラックの 問題との整合性を考えて、開口型クラックの問題についても新たに解を誘導する。以下では、 クラックを有する弾性体の実質部のヤング率、ボアソン比及びコンプライアンステンソルをそ れぞれE, ν及びλικiとおき、クラックを有する弾性体の有効ヤング率,有効ボアソン比及 び有効コンプライアンステンソルをそれぞれE*、ν*及びλ*ikiとおくことにする。すなわち、 前者の定数は岩盤の岩石実質部の性質を表す定数であり、後者の添字*を付した定数は不連続 面を有する岩盤全体としての性質を表す定数である。また、λ*ikiと入iikiの差、すなわち、 クラックの存在に起因した弾性体のコンプライアンス増分をΔλiikiとおくことにする。言い 換えれば、

 $\lambda_{11k1}^* = \lambda_{11k1} + \Delta \lambda_{11k1}$

である。弾性体実質部は等方均質弾性体であると仮定しているため、当然の事ながら、λ_{ιιk1} の成分はE及びνのみにより表現されることになる。

クラックの方位関係の記述と後の解析の便宜のために、座標系と座標系に付随した諸量を以下のように定義する。クラックの位置及び方位は絶対座標系G上において定義されるものとし、 G上の応力テンソル及びひずみテンソルをσュ及びεュとおくことにする。その上で、Fig. I.1.1に示すようなクラック中心を原点とした4種類の座標系G⁽⁰⁾,G⁽¹⁾,G⁽²⁾及び G⁽³⁾を設定する。ここで、G⁽⁰⁾はクラック中心が原点となるようにGを平行移動した座標系 であり、G⁽¹⁾,G⁽²⁾及びG⁽³⁾はG⁽⁰⁾を回転して得られる座標系である。また、G⁽ⁿ⁾座標 系における応力およびひずみテンソルをそれぞれσ⁽¹⁾及びε⁽¹⁾,G⁽ⁿ⁾座標系の座標軸を x⁽ⁿ⁾, x⁽ⁿ⁾及びx⁽ⁿ⁾と表し、x^(m)とx⁽ⁿ⁾との間の方向余弦をd⁽¹⁾)と表すことにする。 クラック面の単位法線ベクトルはGもしくはG⁽⁰⁾上で(cosøcosθ, cosøsinθ, sinø) (ただし0≦φ≦π/2,0≦θ <2π)で表され、クラック面の長軸方向はクラック面と (x⁽⁰⁾, x⁽⁰⁾)平面との交線とβなる角度を有しているものとする。G⁽¹⁾はクラック面の 法線方向をx⁽¹⁾, (x⁽⁰⁾, x⁽⁰⁾)平面とクラック面の交線方向をx⁽¹⁾として、(x⁽¹⁾, x⁽¹⁾)平面上にクラックが存在するようにG⁽⁰⁾を回転した座標系である。G⁽²⁾はx⁽¹⁾を x⁽²⁾として、クラック面の長軸方向がx⁽²⁾となるように、G⁽¹⁾をx⁽¹⁾に対して角β回転し た座標系である。G⁽³⁾はx⁽¹⁾をx⁽³⁾として、σ⁽³⁾=σ⁽³⁾=0となるようにG⁽¹⁾をx⁽¹⁾ 軸に対して回転したものである。なお、この場合の回転角をγと呼ぶことにする。

上記の前提のもとに、ジョイント等の不連続面を有する鉱柱及び岩盤を単一クラックを有す る弾性体モデル(単一クラックモデル)で取り扱い、数多くの不連続面を有する鉱柱及び岩盤 を分布クラックを有する弾性体モデル(分布クラックモデル)で取り扱うことにする。特に、 単一クラックモデルではG=G⁽⁰⁾とおいても一般性を失わないため、すべてG⁽⁰⁾を基本座標 系として問題を考えることにする。また、以下の解析ではすべて応力は直応力が圧縮応力であ る場合を正ととり、ひずみは直ひずみが圧縮ひずみである場合を正ととるものとする。

Fig. I.1.1 座標系G⁽⁰⁾, G⁽¹⁾, G⁽²⁾及びG⁽³⁾の定義

1.3 単一クラックモデルの解析

本節では、単一の楕円板状クラックを有する体積 v なる弾性体の外部境界に応力 σ (¹⁰⁾ が作用した場合に、クラックの存在が弾性体の変形挙動に及ぼす影響を検討し、クラックを有する 弾性体の有効弾性率の評価式を誘導する。

1.3.1 開口型クラック

単一の開口型クラックを含む体積 v の弾性体の外部境界に応力σ (?) が作用した場合、σ (?) により弾性体に供給される外部仕事Wexは弾性体実質部の弾性ひずみエネルギーWeiとクラックの存在に起因したコンプリメンタリエネルギーの増分ΔWeとの和によって表される。

$$W_{ex} = W_{e1} + \Delta W_c \qquad (I. 1. 1)$$

(Ⅰ.1.1)式を応力を用いて書き表すと(Ⅰ.1.2)式となる。

$$(v/2)\lambda_{iikl}^{*}\sigma_{ij}^{(0)} \sigma_{kl}^{(0)} = (v/2)\lambda_{iikl}\sigma_{ij}^{(0)} \sigma_{kl}^{(0)} + \Delta W_{c} \qquad (I. 1. 2)$$

コンプライアンステンソルの対称性を考慮して(I.1.2)式を $\sigma_{\rm s}^{\rm op}$ 及び $\sigma_{\rm s}^{\rm op}$ で偏微分すると(I.1.3)式となり、クラックの存在に起因したコンプライアンス増分 $\Delta \lambda_{\rm tright}$ は (I.1.4)式で表されることになる。

$\lambda_{1,1,k,1}^* = \lambda_{1,1,k,1} + (1/v) \cdot \partial^2 \Delta W_c / \partial \sigma_{1,1}^{(0)} \partial \sigma_{k,1}^{(0)}$	(1.1.3)
$\Delta \lambda_{1,1,k,1} = (1/v) \cdot \partial^2 \Delta W_c / \partial \sigma_{1,1}^{(0)} \partial \sigma_{k,1}^{(0)}$	(1.1.4)

ここで、クラックの存在に起因したコンプリメンタリエネルギーの増分ムW。はエネルギー 解放率gあるいは応力拡大係数K1、K11及びK111を用いて(I.1.5)式で表される。

$$\Delta W_{c} = \int_{0}^{A} g \, dA$$

=(1-\nu^{2})/E \cdot \int_{0}^{A} {K\tilde{r} + K\tilde{r}_{1} + K\tilde{r}_{1}/(1-\nu)} dA (I. 1. 5)

上式中のA及び dAはクラック表面積の1/2及びそ の微少増分であり、また、応力拡大係数K₁, K₁₁ 及びK₁₁₁はF i g. I. 1. 2で示すG⁽²⁾座標 上のクラック縁点Jにおいて(I. 1. 6)式で 表される¹³⁾。ただし、ξは離心角である。

$$K_{1} = \sigma_{\frac{3}{2}}^{\frac{3}{2}} (\pi b)^{1/2} / E(k) \cdot (1 - k^{2} \cos^{2} \xi)^{1/4}$$

$$K_{11} = \{\sigma_{\frac{3}{2}}^{\frac{3}{2}} k' \cos \xi / B(k, \nu) + \sigma_{\frac{3}{2}}^{\frac{3}{2}} \sin \xi / C(k, \nu)\}$$

$$\cdot (\pi b)^{1/2} k^{2} / (1 - k^{2} \cos^{2} \xi)^{1/4}$$

$$K_{111} = \{\sigma_{\frac{3}{2}}^{\frac{3}{2}} \sin \xi / B(k, \nu) - \sigma_{\frac{3}{2}}^{\frac{3}{2}} k' \cos \xi / C(k, \nu)\}$$

$$\cdot (1 - \nu) \cdot (\pi b)^{1/2} k^{2} / (1 - k^{2} \cos^{2} \xi)^{1/4}$$

クラック縁点 Jと 離心角をの説明図

(1.1.6)

ただし、

$$\sigma_{1}^{(2)} = d_{k}^{(02)} d_{1}^{(02)} \sigma_{k}^{(0)} ,$$

$$k' = b/a \leq 1 ,$$

$$k^{2} = 1 - k'^{2} ,$$

$$B(k, \nu) = (k^{2} - \nu)E(k) + \nu k'^{2}K(k) ,$$

$$C(k, \nu) = (k^{2} + \nu k'^{2})E(k) - \nu k'^{2}K(k) ,$$

$$(I, 1, 7)$$

$$K(k) = \int_{0}^{\pi/2} (1 - k^{2} \sin^{2} \xi)^{-1/2} d\xi \quad (第1種完全楕円積分) ,$$
$$E(k) = \int_{0}^{\pi/2} (1 - k^{2} \sin^{2} \xi)^{1/2} d\xi \quad (第2種完全楕円積分)$$

である。(I. 1.5)式中の dAはFig. I. 1.2に示した fを用いて(I. 1.8) 式で表される。

$$dA = k' a \cdot d\xi \cdot da \qquad (I. 1. 8)$$

(I.1.6) 式~(I.1.8) 式の関係式を用いて(I.1.5) 式の積分を行うと(I.

1.9) 式となる。

$$\Delta W_{c} = 4\pi/3 \cdot k^{2} a^{3} \cdot (1 - \nu^{2})/E$$

$$\cdot \{ (\sigma_{33}^{2})^{2}/E(k) + k^{2}(\sigma_{33}^{2})^{2}/B(k,\nu) + k^{2}(\sigma_{32}^{2})^{2}/C(k,\nu) \}$$

(I. 1. 9)

(1.1.9) 式を(1.1.4) 式に代入し偏微分を行うと(1.1.10) 式となる。

$$\Delta \lambda_{1,1,k,1} = \frac{16}{3} \cdot \frac{(1 - \nu^2)}{E} \cdot \Phi(N_{1,1}N_{k,1} + L_{1,1}L_{k,1}\Phi_1 + T_{1,1}T_{k,1}\Phi_2)$$

(I. 1. 10)

ただし、

 $\Phi = (a^{3}/v) \cdot (\pi k'^{2}/2E(k))$ $\Phi_{1} = k^{2}E(k)/B(k, \nu)$ $\Phi_{2} = k^{2}E(k)/C(k, \nu)$ $N_{13} = d_{1}^{(92)} d_{1}^{(92)}$ $I \cdot 1 \cdot 1 1)$ $L_{13} = d_{1}^{(92)} d_{1}^{(92)}$ $T_{13} = d_{1}^{(92)} d_{1}^{(92)}$

である。

したがって、単一の楕円板状開口型クラックを含む弾性体の有効コンプライアンスλ^{*}ικιは (I.1.12)式で表わされることになる。

 $\lambda_{i+k1}^* = \lambda_{i+k1} + \frac{16}{3} \cdot (1 - \nu^2) / E \cdot \Phi(N_i, N_{k1} + L_i, L_{k1} \Phi_1 + T_i, T_{k1} \Phi_2)$ (I. 1. 12)

なお、係数テンソルNコ、Lコ及びTコの各成分は以下のとおりである。

 $N_{11}; N_{11} = \cos^2 \phi \cos^2 \theta$ $N_{22} = \cos^2 \phi \sin^2 \theta$

 $N_{33} = \sin^2 \phi$ $N_{23} = N_{32} = \sin \phi \cos \phi \cos \theta$ $N_{31} = N_{13} = \sin \phi \cos \phi \sin \theta$ $N_{12} = N_{21} = \cos^2 \phi \sin \theta \cos \theta$

(I. 1. 13)

$$L_{11}: L_{11} = \cos\phi\cos\theta (-\sin\theta\cos\beta - \sin\phi\cos\theta\sin\beta)$$

$$L_{12} = \cos\phi\cos\theta (\cos\theta\cos\beta - \sin\phi\sin\theta\sin\beta)$$

$$L_{13} = \cos^2\phi\cos\theta\sin\beta$$

$$L_{21} = \cos\phi\cos\theta (-\sin\theta\cos\beta - \sin\phi\cos\theta\sin\beta)$$

$$L_{22} = \cos\phi\sin\theta (\cos\theta\cos\beta - \sin\phi\sin\theta\sin\beta)$$

$$L_{23} = \cos^2\phi\sin\theta\sin\beta$$

$$L_{31} = \sin\phi (-\sin\theta\cos\beta - \sin\phi\cos\theta\sin\beta)$$

$$L_{32} = \sin\phi(\cos\theta\cos\beta - \sin\phi\sin\theta\sin\beta)$$

$$L_{33} = \sin\phi\cos\phi\sin\beta$$
(I. 1. 14)

$$T_{11}; T_{11} = \cos\phi\cos\theta(\sin\theta\sin\beta-\sin\phi\cos\theta\cos\beta)$$

$$T_{12} = \cos\phi\cos\theta(-\cos\theta\sin\beta-\sin\phi\sin\theta\cos\beta)$$

$$T_{13} = \cos^{2}\phi\cos\theta\cos\beta$$

$$T_{21} = \cos\phi\sin\theta(\sin\theta\sin\beta-\sin\phi\cos\theta\cos\beta)$$

$$T_{22} = \cos\phi\sin\theta(-\cos\theta\sin\beta-\sin\phi\sin\theta\cos\beta)$$

$$T_{23} = \cos^{2}\phi\sin\theta\cos\beta$$

$$T_{31} = \sin\phi(\sin\theta\sin\beta-\sin\phi\cos\theta\cos\beta)$$

$$T_{32} = \sin\phi(-\cos\theta\sin\beta-\sin\phi\sin\theta\cos\beta)$$

$$T_{33} = \sin\phi\cos\phi\cos\beta$$
(I. 1. 15)

1.3.2 閉合型クラック

単一の楕円板状閉合型クラックを含む体積 v の弾性体について前節と同様な問題を考える。 閉合型クラックの場合は、クラック面上に生ずるせん断応力及び直応力とクラック相対面間の 摩擦係数μとの関係により、クラックの相対面間で摩擦すべりを生ずる場合と生じない場合の 2通りの場合が考えられる。クラック相対面間で摩擦すべりが生ずるためにはG⁽³⁾座標上に おいて応力σ⁽³⁾が(Ι.1.1.16)式の条件を満足する必要がある。

 $|\sigma_{\frac{3}{2}}\rangle | > \mu \sigma_{\frac{3}{2}}\rangle$ (I. 1. 16) $\sigma_{\frac{3}{2}} > 0$

ただし、

 $\sigma_{11}^{(3)} = d_{k1}^{(03)} d_{11}^{(03)} \sigma_{k1}^{(0)}$ (I. 1. 17)

である。(I.1.1.16)式の第1式の条件が満足されない場合は、相対するクラック面は互いに摩擦力により拘束されるため、弾性体はクラックを含まない場合と同様な力学挙動を示す ことになる。この場合は当然、

 $\lambda_{i,i,k,1}^* = \lambda_{i,i,k,1}$

である。したがって、以下では(I.1.16)式の条件が成立し、クラック相対面間で摩擦 すべりが生ずる場合について検討する。

クラック相対面間での摩擦すべりはクラック面上に作用するせん断応力が最大となる方向に 生ずることになる。G⁽³⁾座標系はこの摩擦すべりの方向を $x^{(3)}$ 軸に一致させた座標系である ため、この座標系を用いることにより以下の取り扱いが簡略化される。G⁽¹⁾座標系からG⁽³⁾ 座標系への回転角 γ は、クラック面上に作用するせん断応力が最大となる方向を $x^{(3)}$ 軸に一 致させる条件、いいかえれば、 $\sigma_{3}^{(3)} = \sigma_{3}^{(3)} = 0$ なる条件より(I.1.18)式で表わされ る。

 $\gamma = \arctan(-\sigma_{\frac{1}{2}}^{1} / \sigma_{\frac{1}{2}}^{2})$ (I. 1. 18)

ただし、

$$\sigma_{11}^{(1)} = \mathbf{d}_{k1}^{(01)} \mathbf{d}_{11}^{(01)} \sigma_{k1}^{(0)}$$

(I. 1. 19)

である。G⁽³⁾ 座標系において応力 σ ⁽³⁾をFig.I.1.3及び(I.1.20)式で表わ されるような σ ⁽³⁾ *及び σ ⁽³⁾ *の2種の応力の組に分けて考えてみる。

$$\sigma_{11}^{(3)} = \sigma_{11}^{(3)} + \sigma_{11}^{(3)}$$

- $\sigma_{i}^{(3)} = \sigma_{i}^{(3)} \qquad (i \ j \neq 32,23)$ $= \mu \sigma_{i}^{(3)} f \qquad (i \ j = 32,23)$
- $\sigma_{1}^{(3)} = 0 \qquad (i \ j \neq 32,23)$ $= \sigma_{1}^{(3)} \mu \sigma_{3}^{(3)} f (i \ j = 32,23)$

ただし、

 $\sigma_{1}^{(3)} = d_{k1}^{(03)} d_{1}^{(03)} \sigma_{k1}^{(0)}$ f = sgn ($\sigma_{13}^{(3)}$)

(I. 1. 21)

(1. 1. 20)

である。(Ι.1.20)式の表現は、σ⁽³⁾ *においては弾性体はクラックを含まない場合と

Fig. I.1.3 σ (引) と σ (引) き及び σ (引) の関係

等価な力学状態、すなわち、一様応力場にあり、また、 $\sigma^{(3)}$ においてはクラック面上に作用 する応力が零となるため、クラックが開口型クラックとして存在している場合と等価な力学状 態になることを意味している。したがって、クラックの存在に起因した弾性体のひずみ増分は $\sigma^{(3)}$ にのみ関係することになる。そこで、 $\sigma^{(3)}$ を $G^{(2)}$ 座標上に変換した応力を $\sigma^{(2)}$ と おくと、 $G^{(2)}$ 座標上でのクラックの存在に起因したひずみ増分 $\Delta \varepsilon^{(2)}$ は、(I.1.2)式 ~(I.1.4) 式と同様な関係により(I.1.22) 式で表わされる。

$$\Delta \varepsilon_{1}^{(2)} = 1/\mathbf{v} \cdot \partial \Delta W_c / \partial \sigma_{1}^{(2)} c \qquad (\mathbf{I}, \mathbf{1}, \mathbf{22})$$

ただし、

 $\sigma_{11}^{(2)} = d_{k1}^{(32)} d_{11}^{(32)} \sigma_{k1}^{(3)}$ (I. 1. 23)

である。ここで、ΔWcは応力σ (?) °によって定義されるクラックの存在に起因したコンプリ メンタリエネルギーの増分であり(Ι.1.24)式で表わされる。

$$\Delta W_{c} = (1 - \nu^{2})/E \cdot \int_{0}^{A} \{K_{1}^{2} + K_{1}^{2}/(1 - \nu)\} dA \qquad (I. 1. 24)$$

ただし、

$$K_{11} = \{\sigma_{31}^{(2)} \circ \mathbf{k}' \cos \xi / \mathbf{B}(\mathbf{k}, \nu) + \sigma_{32}^{(2)} \circ \sin \xi / \mathbf{C}(\mathbf{k}, \nu)\}$$

$$\cdot (\pi \mathbf{b})^{1/2} \mathbf{k}^{2} / (1 - \mathbf{k}^{2} \cos^{2} \xi)^{-1/4}$$

$$K_{111} = \{\sigma_{31}^{(2)} \circ \sin \xi / \mathbf{B}(\mathbf{k}, \nu) - \sigma_{32}^{(2)} \circ \mathbf{k}' \cos \xi / \mathbf{C}(\mathbf{k}, \nu)\} \qquad (\mathbf{I}. \ \mathbf{1}. \ \mathbf{25})$$

$$\cdot (1 - \nu) (\pi \mathbf{b})^{1/2} \mathbf{k}^{2} / (1 - \mathbf{k}^{2} \cos^{2} \xi)^{-1/4}$$

であり、(I.1.25)式中のk, k', B(k, v), C(k, v)及び ξ は前出の(I.1. 7)式及び Fig.I.1.2に示したとおりである。(I.1.8)式の条件を用いて、前 節と同様にして(I.1.24)式の積分を実行すると(I.1.26)式となる。

$$\Delta W_{c} = 8/3 \cdot (1 - \nu^{2})/E \cdot \Phi \{ (\sigma_{32}^{(2)})^{2} \Phi_{1} + (\sigma_{32}^{(2)})^{2} \Phi_{2} \}$$
(I. 1. 26)

ただし、Φ、Φ1及びΦ2は前出の(Ι. 1. 11)式に示したとおりである。 (Ι. 1. 26)式を(Ι. 1. 22)式に代入し偏微分を実行すると(Ι. 1. 27)式と なる。

$$\Delta \varepsilon_{1}^{(2)} = \frac{16}{3} \cdot (1 - \nu^{2}) / E \cdot \Phi \qquad (I. 1. 27)$$

$$\cdot \{ \Phi_{1} \sigma_{3}^{(2)} \circ \partial \sigma_{3}^{(2)} \circ / \partial \sigma_{1}^{(2)} \circ + \Phi_{2} \sigma_{3}^{(2)} \circ \partial \sigma_{3}^{(2)} \circ / \partial \sigma_{1}^{(2)} \circ \}$$

G⁽⁰⁾ 座標系においては、クラックの存在に起因するひずみ増分Δε^(P)は(I.1.28)式 となるので、クラックの存在に起因するコンプライアンス増分Δλ_{11k1}は(I.1.29)式 で表わされる。

$$\Delta \varepsilon_{11}^{(0)} = d_{k1}^{(20)} d_{12}^{(20)} \Delta \varepsilon_{k1}^{(2)}$$

$$\Delta \lambda_{11k1} = \partial \Delta \varepsilon_{11}^{(0)} / \partial \sigma_{k1}^{(0)}$$
(I. 1. 28)

=
$$16/3 \cdot (1 - v^2)/E$$

• $\Phi \{ \Phi_1 d_{31}^{(20)} d_{1}^{(20)} \partial \sigma_{31}^{(2)} \circ / \partial \sigma_{k}^{(0)} + \Phi_2 d_{31}^{(20)} d_{21}^{(20)} \partial \sigma_{32}^{(2)} \circ / \partial \sigma_{k}^{(0)} \}$ (1.1.29)

(I.1.29) 式中の微分項は(I.1.20) 式及び(I.1.23) 式を用いて

$$\partial \sigma_{31}^{(2)} \circ / \partial \sigma_{k0}^{(0)} = d_{332}^{(32)} d_{212}^{(32)} (d_{k93}^{(0)} d_{193}^{(0)} - \mu d_{k93}^{(0)} d_{193}^{(0)} f)$$

$$\partial \sigma_{32}^{(0)} \circ / \partial \sigma_{k0}^{(0)} = d_{332}^{(32)} d_{222}^{(2)} (d_{k93}^{(0)} d_{193}^{(0)} - \mu d_{k93}^{(0)} d_{193}^{(0)} f)$$

と表わされる。この関係を用いて(I.1.29)式を整理すると(I.1.30)式となる。

$$\Delta \lambda_{11k1} = \frac{16}{3} \cdot \frac{1-\nu^2}{E} \cdot \Phi(\Phi_1 L_{11} L_{k1}^2 + \Phi_2 T_{11} T_{k1}^2) \qquad (I. \ I. \ 30)$$

ただし、

 $L_{11} = d_{31}^{(20)} d_{11}^{(20)}$

 $L'_{k1} = d_{\frac{3}{2}2} d_{\frac{3}{2}2} (d_{k}^{(\bar{Q}^{3})} d_{\frac{1}{2}2}^{(\bar{Q}^{3})} - \mu d_{k}^{(\bar{Q}^{3})} d_{\frac{1}{2}3}^{(\bar{Q}^{3})} f)$ (I. 1. 31) $T_{11} = d_{\frac{3}{2}1} d_{\frac{2}{2}2} (d_{k}^{(\bar{Q}^{3})} d_{\frac{1}{2}3}^{(\bar{Q}^{3})} - \mu d_{k}^{(\bar{Q}^{3})} d_{\frac{1}{2}3}^{(\bar{Q}^{3})} f)$

である。

したがって、単一の楕円板状閉合型クラックを有する弾性体の有効コンプライアンスλ^{*}iki は(Ι.1.32)式で表わされることになる。

$$\lambda_{11k1}^{*} = \lambda_{11k1} + \frac{16}{3} \cdot (1 - \nu^{2}) / E \cdot \Phi \quad (\Phi_{1} L_{11} L'_{k1} + \Phi_{2} T_{11} T'_{k1})$$

$$\cdot \cdot \cdot \quad (| \sigma_{32}^{*} \rangle | > \mu \sigma_{33}^{*} \rangle) \quad (I. \ 1. \ 32)$$

$$= \lambda_{11k1} \quad \cdot \cdot \cdot \quad (| \sigma_{32}^{*} \rangle | \le \mu \sigma_{33}^{*} \rangle)$$

なお、係数テンソルL₁及びT₁は前述の(I \cdot 1 \cdot 1 4)式及び(I \cdot 1 \cdot 1 5)式と同一 であり、L'_{k1}及びT'_{k1}は(I \cdot 1 \cdot 3 3)式及び(I \cdot 1 \cdot 3 4)式で表わされる。

L'k1;

L'₁₁ = $\sin(\beta - \gamma) \{\cos\phi \cos\theta (\sin\theta \sin\gamma - \sin\phi \cos\theta \cos\gamma) - \mu f \cos^2\phi \cos^2\theta \}$ L'₁₂ = $\sin(\beta - \gamma) \{\cos\phi \cos\theta (-\cos\theta \sin\gamma - \sin\phi \sin\theta \cos\gamma) - \mu f \cos^2\phi \sin\theta \cos\theta \}$ L'₁₃ = $\sin(\beta - \gamma) \{\cos^2\phi \cos\theta \cos\gamma - \mu f \cos\phi \sin\phi \cos\theta \}$ L'₂₁ = $\sin(\beta - \gamma) \{\cos\phi \sin\theta (\sin\theta \sin\gamma - \sin\phi \cos\theta \cos\gamma) - \mu f \cos^2\phi \sin\theta \cos\theta \}$ L'₂₂ = $\sin(\beta - \gamma) \{\cos\phi \cos\theta (-\cos\theta \sin\gamma - \sin\phi \sin\theta \cos\gamma) - \mu f \cos^2\phi \sin^2\theta \}$ L'₂₃ = $\sin(\beta - \gamma) \{\cos^2\phi \sin\theta \cos\gamma - \mu f \cos\phi \sin\phi \sin\theta \}$ L'₃₁ = $\sin(\beta - \gamma) \{\sin\phi (-\sin\theta \sin\gamma - \sin\phi \cos\theta \cos\gamma) - \mu f \cos\phi \sin\phi \cos\theta \}$ L'₃₂ = $\sin(\beta - \gamma) \{\sin\phi (-\cos\theta \sin\gamma - \sin\phi \sin\theta \cos\gamma) - \mu f \cos\phi \sin\phi \cos\theta \}$ L'₃₂ = $\sin(\beta - \gamma) \{\sin\phi (-\cos\theta \sin\gamma - \sin\phi \sin\theta \cos\gamma) - \mu f \cos\phi \sin\phi \sin\theta \}$ L'₃₃ = $\sin(\beta - \gamma) \{\sin\phi \cos\phi \cos\gamma - \mu f \sin^2\phi \}$ (I. 1. 33)

$$T'_{k1}$$
: $T'_{k1} = L'_{k1} / \tan(\beta - \gamma)$ (1.1.34)

特にμ=0の場合は係数テンソルT'ҝュ及びL'ҝュは(I.1.31)式より次のように変形

される。

 $L'_{k1} = d_{\frac{3}{2}} d_{2}^{\frac{3}{2}} d_{k}^{\frac{3}{2}} d_{k}^$

 $T'_{kl} = d_{33}^{(32)} d_{23}^{(22)} d_{k}^{(33)} d_{12}^{(33)}$ = $d_{m}^{(32)} d_{n}^{(3R)} d_{k}^{(03)} d_{1}^{(03)}$ = $d_{k}^{(32)} d_{12}^{(32)}$ = T_{kl}

したがって、 $\mu = 0$ の場合はコンプライアンスマトリックスは対称となり、 $\Delta \lambda_{11k1}$ 及び λ_{11k1}^{*} は(I.1.10)式及び(I.1.12)式で N_{11} =0とおいた場合と一致する。

1.3.3 数値計算例

(I. 1. 12)式及び(I. 1. 32)式の数値計算結果の一例として、一軸圧縮下($\sigma_{3}^{(P)} > 0$ 及び $\sigma_{1}^{(P)} = 0$ (i j ≠33))の $\lambda_{3333}^*/\lambda_{3333}$ 及び $\lambda_{1133}^*/$

Fig. I.1.4 単一クラックを有する材料の有効コンプライアンスと実質部のコンプライアンスの関係 (a),(b),(c);開口型クラックの場合 (d),(e),(f):閉合型クラックの場合
板状クラックである場合及びa:b=2:1の楕円板状クラックである場合のそれぞれの条件 について計算を行っている。したがって、それぞれの条件において v の値が等しいものと考え た場合には、k'=1.0 .0.75 .0.5の条件とは楕円板の長径 a を一定として短径 b の値を a .3 a/4 及び a/2 と変化させて計算を行ったことを意味している。また、楕円板状クラックの場 合は β の値として β =0°.90°の条件、すなわち(x $\{^{(0)}, x\}^{(0)}$)平面内に楕円長軸がある場合 及び (x $\{^{(0)}, x\}^{(0)}$) 平面内に楕円短軸がある場合のそれぞれについて計算を行っている。

Fig. I. 1. 4より、閉合型クラックの場合はの> 63.4°で入物なステント スタンス ニンド 13.2/ λιιээ=1となっているが、これは、この冬件下ではクラック相対面間の摩擦すべりが生じて いないことを意味している。また、k'=0.75(4:3の楕円板状クラック)及びk'=0.5(2:1の楕円板状クラック)の場合はBの値により有効コンプライアンスの値が変化し、楕円 短軸が(x ┧^{0,} , x シ^{0,}) 平面内にある場合は楕円長軸が(x ┧^{0,} , x シ^{0,}) 平面内にある場合に 比べて有効コンプライアンスの値が大きくなり変形性に及ぼすクラックの影響が顕著となるこ とがわかる。この傾向は開口型クラックの入キャュョィ/入ャュョュでk'の値が小さい場合に顕著である。 k'=0.75 及びk'=0.5 の場合のそれぞれについてβ=0°及び90°の有効コンプライアン スの平均値をとると、それらの値は、k'=1.0(円板状クラック)の場合の有効コンプライア ンスの値の大略、5/8及び1/3となる。これは、この計算条件下ではk'=1.0 ,0.75 及び 0.5 のそれぞれの場合、(I.1.1.1)式に示したΦの値がそれぞれ 0.1 、0.064及び 0.032 となっていることに関係しており、変形性に及ぼすクラックの大きさの影響を示している。そ **こで、Walsh^つの表現を用いて変形性に及ぼすクラックの大きさの影響項をクラック密度** (crack density) と定義すれば、楕円板状クラックのクラック密度は(I.1.1.11)式の ●で表されることになる。したがって、Fig.Ⅰ.1.4に示した結果は、楕円板状クラッ クを有する弾性体の有効コンプライアンスは楕円長軸方位βの値により変動するが、平均的に は4の値の等しい円板状クラックを有する弾性体の有効コンプライアンスで近似されることを 意味しているものと考えられる。

1.4 分布クラックモデル

本節では、前節の結果を参考にして、体積Vなる弾性体中にN個の楕円板状クラックが均等 に分布して存在する場合に、その弾性体の有効弾性率を求める問題を考える。ただし、Nはク ラックの性質を統計量として表現しうる程度に十分大なる数であるものとする。

楕円板状クラックの分布特性はクラックの形状 k',長径a,及び方位θ,φ及びβのそれぞれ のパラメータで表現されるものである。いま、a 及びk'に対する分布とθ,φ及びβに対する分 布が互いに独立であり、かつ、θ,φ及びβに対 する分布がランダム分布であるものと仮定すると この場合には弾性体は巨視的等方性を示すことに なる。以下では上記の条件が成立して、クラック を有する弾性体に対して巨視的等方仮定が成立す *1 る場合を検討の対象にする。

まず、表現を系統化するために、V中のN個の Fig. I.1.5 分布クラックモデルの座標系 及びクラックnの説明図 クラックのそれぞれに番号n(n=1~N)を付 し、個々のクラックを表現する場合にはクラックnと表わし、また、クラックnに付随する諸 量にはnの添字を付すことにする。さらに、添字nを付していない諸量はN個のクラック全体、 もしくは、それらを含む弾性体全体に関する諸量であることにする。上記の前提のもとに、F ig.I.1.5に示すようなG座標系上でN個のクラックを有する体積Vなる弾性体を考え、 その弾性体の外部境界に応力のいが作用する場合を考える。ここで、Vの内部にクラックnの みを含む体積 v。の領域をとり、クラック n の中心を原点とした局所絶対座標系 G。⁽⁰⁾ をとる。 この場合、領域 ν nの外部境界に作用する応力 (σ Ψ) nはクラック相互間の力学的干渉の影 響により σ_{ij} とは異なるものとなることが予想されるが、系全体の釣合を考えれば、($\sigma_{i}^{(q)}$)。 の平均期待値はσコンと一致するとみなすことができる。したがって、統計量として表現しうる 程充分多くのクラックを含む弾性体について、その弾性体全体としての変形挙動を論じる場合 には、(σ (♀) ゙ = σ ; ;と仮定しても一般性を失わないであろう。また、巨視的等方仮定が成 立する場合には弾性体の有効弾性率の独立成分は2つのみとなるため、この場合は任意の広力 場に対して2つの独立なコンプライアンス増分を計算することによりクラックを有する弾性体 の有効弾性率を求めることができる。鉱柱は通常一軸圧縮応力場におかれていることを考慮し、 以下では、体積Vの弾性体の外部境界に一軸圧縮応力、すなわち、 σ 33> 0, σ 1 = 0 (i j ≠33)が作用した場合の△入3333及び△入1133を求め、有効弾性率E*及びν*を求めることに する。

1.4.1 開口型クラック

まず、N個のクラックがすべて開口型クラックである場合について考える。N個のクラック を有する弾性体のクラックの存在に起因するコンプリメンタリエネルギーの増分ΔWcはクラ ックnのコンプリメンタリエネルギーの増分ΔWcnの総和として表わされる。

$$\Delta W_{c} = \sum_{n=1}^{N} \Delta W_{c_{n}} \qquad (I. 1. 35)$$

クラック相互間の力学的干渉の影響が無視できる場合は、ΔWcnは(I.1.5)式と同様な 形で表現されるが、クラック相互間の力学的干渉の影響が無視できない場合にはその表現は (I.1.5)式と若干異なってくる。すなわち、クラックが密に存在し、クラック相互間の 力学的干渉の影響が無視できない場合には、ΔWcnは(I.1.36)式で表現されるものと 考えられる。

$$\Delta W_{c_n} = (1 - \nu^{*2})/E^* \cdot \int_0^{A_n} \{K_{1n}^2 + K_{1n}^2 + K_{1n}^2 + K_{1n}^2/(1 - \nu^{*})\} dA_n \quad (I. 1. 36)$$

ここで、A_n、 dA_n: クラック n の表面積の1/2及びその微少増分、K_{1n}, K_{11n}及びK_{111n}: クラック n の応力拡大係数である。(I.1.36)式の表現は Self consistent ¹⁴⁾と呼ば れ、クラックの存在に起因したコンプリメンタリエネルギーの増分に関与する弾性率が、弾性 体実質部の弾性率E及び ν ではなく、クラックを有する弾性体の有効弾性率E*及び ν *になる と考えることにより、クラック相互間のエネルギー干渉の影響を表現しているものである。し たがって、(I.1.36)式及び(I.1.6)式~(I.1.9)式より Δ W_cは(I. 1.37)式となる。

$$\Delta W_{c} = 4\pi/3 \cdot (1 - \nu^{*2})/E^{*} \cdot \sum_{n=1}^{N} k_{n}^{*2} a_{n}^{3}$$

$$\cdot \{ (\sigma_{33}^{*2})_{n}^{2}/E(k_{n}) + k_{n}^{2}(\sigma_{31}^{*2})_{n}^{2}/B(k_{n},\nu^{*}) + k_{n}^{2}(\sigma_{32}^{*2})_{n}^{2}/C(k_{n},\nu^{*}) \}$$

$$(I. 1. 37)$$

ただし、

$$(\sigma_{11}^{(2)})_{n} = (d_{31}^{(02)} d_{31}^{(02)})_{n} \sigma_{33}$$

(I. 1. 38)

である。Δλ₃₃₃₃及びΔλ₁₁₃₃は(I.1.37)式を応力により偏微分することにより求ま り、(I.1.39)式となる。

$$\Delta \lambda_{1,1,3,3} = \frac{16/3 \cdot (1 - \nu^{*2})}{E^{*}} + \frac{\sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n})]}{\cdot \{(N_{1,1}N_{3,3})_{n} + k_{n}^{2}E(k_{n})/B(k_{n}, \nu^{*}) \cdot (L_{1,1}L_{3,3})_{n} + k_{n}^{2}E(k_{n})/C(k_{n}, \nu^{*}) \cdot (T_{1,1}T_{3,3})_{n}\}]}{\cdot \cdot \cdot \cdot (ij=33,11)}$$

ただし、N₁₁, L₁₁, T₁₁は前出の(I.1.13)式~(I.1.15)式に示したとおり である。ここで、 a及び k'に対するクラックの分布と θ , ϕ 及び β に対するクラックの分布 が互いに独立であり、かつ、 θ , ϕ 及び β に対する分布がランダム分布である条件より(I. 1.39)式は(I.1.40)式となる。

$$\Delta \lambda_{1133} = 16/3 \cdot (1 - \nu^{*2})/E^*$$

•
$$[\overline{(N_{11}N_{33})_{n}}\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{2}/2E(k_{n})\}$$
+
$$\overline{(L_{11}L_{33})_{n}}\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{2}/2 \cdot k_{n}^{2}/B(k_{n},\nu^{*})\}$$
+
$$\overline{(T_{11}T_{33})_{n}}\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{2}/2 \cdot k_{n}^{2}/C(k_{n},\nu^{*})\}$$
+
$$\overline{(T_{11}T_{33})_{n}}\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{2}/2 \cdot k_{n}^{2}/C(k_{n},\nu^{*})\}$$
+
$$\overline{(I.1.40)}$$

ただし、

$$\overline{(N_1, N_{33})_n} = 1/2\pi^2 \cdot \int_0^{2\pi} \int_0^{\pi/2} \int_0^{\pi} N_1 N_{33} d\beta \cos\phi d\phi d\theta$$

$$\overline{(L_{11}L_{33})_{n}} = 1/2\pi^{2} \cdot \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\pi} L_{11}L_{33} d\beta \cos\phi d\phi d\theta$$

$$\overline{(T_{11}T_{33})_{n}} = 1/2\pi^{2} \cdot \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\pi} T_{11}T_{33} d\beta \cos\phi d\phi d\theta$$

••• (
$$ij=33,11$$
) (I. 1. 41)

である。したがって、Δλ3333及びΔλ1133は(Ι.1.42)式となる。

$$\lambda_{3333} = \frac{16}{45} \cdot (1 - \nu^{*2}) / E^{*}$$

$$\cdot \left[3 \sum_{n=1}^{N} \{ a_{n}^{3} / V \cdot \pi k_{n}^{*2} / 2E(k_{n}) \} \right]$$

$$+ \sum_{n=1}^{N} \{ a_{n}^{3} / V \cdot \pi k_{n}^{*2} / 2 \cdot k_{n}^{2} / B(k_{n}, \nu^{*}) \}$$

$$+ \sum_{n=1}^{N} \{ a_{n}^{3} / V \cdot \pi k_{n}^{*2} / 2 \cdot k_{n}^{2} / C(k_{n}, \nu^{*}) \}$$

Δ

$$\Delta \lambda_{1133} = \frac{8}{45} \cdot (1 - \nu^{*2})/E^{*} \qquad (I. 1. 42)$$

$$\cdot \left[2\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n})\}\right]$$

$$-\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2 \cdot k_{n}^{2}/B(k_{n}, \nu^{*})\}$$

$$-\sum_{n=1}^{N} \{a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2 \cdot k_{n}^{2}/C(k_{n}, \nu^{*})\}\right]$$

特に、k_n'=k'(一定)、すなわち、すべてのクラック形状が相似である場合には(I.1. 42)式は(I.1.43)式となる。

$$\Delta \lambda_{3333} = \frac{16}{45} \cdot \frac{1 - \nu^{*2}}{E^*} \cdot \Phi \left(3 + \Phi_1^* + \Phi_2^*\right)$$

$$\Delta \lambda_{1133} = \frac{8}{45} \cdot \frac{1 - \nu^{*2}}{E^*} \cdot \Phi \left(2 - \Phi_1^* - \Phi_2^*\right) \qquad (I. 1. 43)$$

ここで、

$$\Phi = \pi \mathbf{k}'^{2}/2\mathbf{E}(\mathbf{k}) \cdot \sum_{n=1}^{N} \mathbf{a}_{n}^{3}/V$$

$$\Phi_{1}^{*} = \mathbf{k}^{2}\mathbf{E}(\mathbf{k})/\mathbf{B}(\mathbf{k}, \nu^{*})$$

$$\Phi_{2}^{*} = \mathbf{k}^{2}\mathbf{E}(\mathbf{k})/C(\mathbf{k}, \nu^{*})$$

(I. 1. 44)

である。特に、上記のΦは前節の(I.1.1.11)式の表現を分布クラックに拡張したもので あり、分布クラックモデルにおける楕円板状クラックのクラック密度を表す量であると考える ことができる。したがって、以下では単一クラックモデルの場合と同様に(I.1.44)式 のΦをクラック密度と呼ぶことにする。また、

 $1/E^* = 1/E + \Delta \lambda_{3333}$

••

 $-\nu^{*}/E^{*} = -\nu/E + \Delta \lambda_{1133}$

なる関係より、(Ⅰ・1・43)式の場合の有効弾性率は(Ⅰ・1・45)式で求められる。

$$E^{*}/E = 1 - 16/45 \cdot (1 - \nu^{*2}) \cdot \Phi (3 + \Phi_{1}^{*} + \Phi_{2}^{*})$$

$$\nu - \nu^{*} = 8/45 \cdot (1 - \nu^{*2}) \cdot \Phi \{2 + 6\nu - (1 - 2\nu)(\Phi_{1}^{*} + \Phi_{2}^{*})\} \qquad (1. 1. 45)$$

$$\Phi = \sum_{n=1}^{N} a_n^3 / V$$

$$\Phi_1^* = \Phi_2^* = 2/(2 - \nu^*)$$
 (I. 1. 4.6)

なる関係より(1.1.45)式は(I.1.47)式となる。

$$E^*/E = 1 - \frac{16}{45} \cdot (1 - \nu^{*2})(10 - 3\nu^*)/(2 - \nu^*) \cdot \sum_{n=1}^{N} a_n^3/V$$

$$\sum_{n=1}^{N} a_n^3 / V = 45/16 \cdot (\nu - \nu^*)(2 - \nu^*)/(1 - \nu^{*2})\{10\nu - \nu^*(1 + 3\nu)\}$$
(I. 1. 47)

1.4.2 閉合型クラック

N個のクラックがすべて閉合型クラックである場合を考える。N個のクラックを有する弾性 体のクラックの存在に起因するひずみ増分 $\Delta \varepsilon_{33}$ 及び $\Delta \varepsilon_{11}$ はクラックnの存在に起因するひ ずみ増分($\Delta \varepsilon_{39}$)。及び($\Delta \varepsilon_{19}$?)。の総和として表わされる。

$$\Delta \varepsilon_{i,j} = \sum_{n=1}^{N} (\Delta \varepsilon_{i,j}^{(0)})_n \qquad (i \ j = 33, 11) \qquad (I. \ 1. \ 4.8)$$

前項と同様に Self consistent の概念を用いると、($\Delta \varepsilon \Re$)。及び($\Delta \varepsilon \Re$)。は(I. 1.49)式で表わされる。

$$(\Delta \varepsilon_{1}^{(0)})_{n} = 16/3 \cdot (1 - \nu^{*2})/E^{*} \cdot a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n}) \cdot (d_{k}^{(20)} d_{1}^{(20)})_{n}$$

$$\cdot \{k_{n}^{2}E(k_{n})/B(k_{n}, \nu^{*}) \cdot (\delta_{3k}\delta_{11})_{n}(\sigma_{3}^{2}f^{2})_{n}^{\circ}\}$$

$$+ k_{n}^{2}E(k_{n})/C(k_{n}, \nu^{*}) \cdot (\delta_{3k}\delta_{21})_{n}(\sigma_{3}^{2}f^{2})_{n}^{\circ}\}$$

$$\cdot \cdot |(\sigma_{3}^{2}f^{3})_{n}| > \mu(\sigma_{3}^{2}f^{3})_{n}|$$

$$= 0 \qquad \cdot \cdot |(\sigma_{3}^{2}f^{3})_{n}| \le \mu(\sigma_{3}^{2}f^{3})_{n}|$$

$$(i \ j = 33, 11) \qquad (I \cdot 1 \cdot 49)$$

ただし、

$$(\sigma_{1}^{(2)} \circ)_{n} = (d_{k1}^{(32)} d_{1}^{(32)})_{n} \{ (d_{3}^{(2)} \otimes d_{3}^{(2)})_{n} - \mu (d_{3}^{(2)} \otimes d_{3}^{(2)})_{n} f_{n} \} (\sigma_{3}^{(2)})_{n}$$

$$f_{n} = sgn[(d_{3}^{(2)} \otimes d_{3}^{(2)})_{n} (\sigma_{3}^{(2)})_{n}]$$
(I. 1. 50)

である。したがって、 $\Delta \varepsilon_{33}$ 及び $\Delta \varepsilon_{11}$, $\Delta \lambda_{3333}$ 及び $\Delta \lambda_{1133}$ はそれぞれ(I. 1. 51) 式及び(I. 1. 52)式となる。

$$\Delta \varepsilon_{i,i} = 16/3 \cdot (1 - \nu^{*2})/E^{*}$$

$$\sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n}) \cdot (d_{k1}^{(20)} d_{11}^{(20)})_{n} f_{n}^{*} (k_{n}^{2}E(k_{n})/B(k_{n}, \nu^{*}) \cdot (\delta_{k3}\delta_{11})_{n}(\sigma_{31}^{(2)})_{n}^{*} (k_{n}^{2}E(k_{n})/C(k_{n}, \nu^{*}) \cdot (\delta_{k3}\delta_{12})_{n}(\sigma_{32}^{(2)})_{n}^{*}]$$

$$+ k_{n}^{2}E(k_{n})/C(k_{n}, \nu^{*}) \cdot (\delta_{k3}\delta_{12})_{n}(\sigma_{32}^{(2)})_{n}^{*}]$$

$$(i j = 33, 11)$$

$$(I. 1. 51)$$

$$\Delta \lambda_{1/33} = 16/3 \cdot (1 - \nu^{*2})/E^{*}$$

$$\cdot \sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n}) \cdot f_{n}^{*} (k_{n}^{2}E(k_{n})/B(k_{n}, \nu^{*}) \cdot (L_{11}L_{33})_{n}^{*}]$$

+
$$k_n^2 E(k_n)/C(k_n, \nu^*) \cdot (L_1, L'_{33})_n$$
]
(i j = 33,11) (I. 1. 52)

ただし、

$$f_{n}' = 1 \qquad \cdot \cdot \cdot |(d_{3}^{(3)3}) d_{3}^{(2)3})_{n}| > \mu (d_{3}^{(3)3})_{n}^{2}$$

= 0
$$\cdot \cdot \cdot |(d_{3}^{(3)3}) d_{3}^{(2)3})_{n}| \le \mu (d_{3}^{(3)3})_{n}^{2} \qquad (I. 1. 53)$$

である。ここで、(I.1.53)式の条件はクラックnの方位角φ_nを用いて(I.1.5 4)式で表わすことができる。

$$f_{n}'=1 \qquad \cdot \cdot \cdot 0 \leq \phi_{n} < \arctan(1/\mu)$$

= 0
$$\cdot \cdot \cdot \arctan(1/\mu) \leq \phi_{n} \leq \pi/2 \qquad (I. 1. 54)$$

a及び k 'に対するクラックの分布と θ 、 ϕ 及び β に対するクラックの分布が互いに独立であ り、かつ、 θ , ϕ 及び β に対する分布がランダム分布である条件より、(I.1.52)式は (I.1.55)式となる。

$$\Delta \lambda_{1,133} = \frac{16}{3} \cdot (1 - \nu^{*2})/E^{*}$$

$$\cdot \{\overline{(L_{1,1}L'_{33})_{n}f_{n}}^{*}, \sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n}) \cdot k_{n}^{2}E(k_{n})/B(k_{n},\nu^{*})]$$

$$+ (\overline{T_{1,1}T'_{33}})_{n}f_{n}^{*}, \sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n}) \cdot k_{n}^{2}E(k_{n})/C(k_{n},\nu^{*})]\}$$

$$(i \ j = 33, 11) \qquad (I. \ 1. \ 55)$$

ただし、

$$\overline{(L_{11}L'_{33})_{n}f_{n}} = \frac{1}{2\pi} 2\pi^{2} \cdot \int_{0}^{2\pi} \int_{0}^{\arctan(1/\mu)} \int_{0}^{\pi} L_{11}L'_{33} d\beta \cos\phi \, d\phi \, d\theta$$

$$\overline{(T_{11}T'_{33})_{n}f_{n}} = \frac{1}{2\pi} 2\pi^{2} \cdot \int_{0}^{2\pi} \int_{0}^{\arctan(1/\mu)} \int_{0}^{\pi} T_{11}T'_{33} d\beta \cos\phi \, d\phi \, d\theta$$

$$(i \ j = 33, 11) \qquad (I. \ 1. \ 56)$$

である。したがって、Δλ3333及びΔλ1133は(Ι.1.57)式となる。

$$\Delta \lambda_{3333} = \frac{8}{45} \cdot (1 - \nu^{*2}) / E^* \cdot M(\mu)$$

$$\cdot \sum_{n=1}^{N} [a_n^3 / V \cdot \pi k_n'^2 / 2E(k_n) + \frac{k_n^2 E(k_n)}{k_n^2 E(k_n)} + \frac{k_n^2 E(k_n)}{k_n^2 E$$

$$\Delta \lambda_{1133} = -4/45 \cdot (1 - \nu^{*2})/E^{*} \cdot M(\mu)$$

$$\cdot \sum_{n=1}^{N} [a_{n}^{3}/V \cdot \pi k_{n}^{*2}/2E(k_{n})]$$

$$\cdot \{k_{n}^{2}E(k_{n})/B(k_{n},\nu^{*}) + k_{n}^{2}E(k_{n})/C(k_{n},\nu^{*})\}]$$

(I. 1. 57)

ただし、

$$M(\mu) = (2\mu^4 + 3\mu^2 + 2)/(\mu^2 + 1)^{3/2} - 2\mu \qquad (I. 1. 58)$$

である。特に、kⁿ'=k'(一定)、すなわち、すべてのクラック形状が相似である場合は(I. 1.57)式は(I.1.59)式となる。

$$\Delta \lambda_{3333} = 8/45 \cdot (1 - \nu^{*2})/E^* \cdot M(\mu) \cdot \Phi(\Phi_1^* + \Phi_2^*)$$

$$\Delta \lambda_{1133} = -4/45 \cdot (1 - \nu^{*2})/E^* \cdot M(\mu) \cdot \Phi(\Phi_1^* + \Phi_2^*) \qquad (I. 1. 59)$$

なお、Φ,Φ[†]及びΦ^{*}2はすでに(Ι.1.44)式として示した。(Ι.1.59)式の場合、 有効弾性率E*及びν*は(Ι.1.60)式で求められる。

$$E^{*}/E = 1 - 8/45 \cdot (1 - \nu^{*2}) \cdot M(\mu) \cdot \Phi(\Phi_{1}^{*} + \Phi_{2}^{*})$$

$$\nu - \nu^{*} = 4/45 \cdot (2\nu - 1)(1 - \nu^{*2}) \cdot M(\mu) \cdot \Phi(\Phi_{1}^{*} + \Phi_{2}^{*}) \qquad (I. 1. 60)$$

(I.1.60)式の第2式は(I.1.45)式の第2式と同様にッ*に関する3次方程式 となる。また、すべてのクラックが円板状クラックである場合は(I.1.60)式は(I. 1.61)式となる。

$$E^*/E = 1 - 32/45 \cdot (1 - \nu^{*2})/(2 - \nu^*) \cdot M(\mu) \cdot \sum_{n=1}^{N} a_n^3/V$$

м

$$\sum_{n=1}^{N} a_{n}^{3} / V = 45/16 \cdot (2 - \nu^{*})(\nu - \nu^{*}) / \{M(\mu)(1 - \nu^{*2})(2\nu - 1)\}$$
(I. 1. 61)

1.4.3 開口型クラックと閉合型クラックが混在する場合

1.4.1及び1.4.2の結果をもとにして、開口型クラックと閉合型クラックが混在する場合、すなわち、体積Vなる弾性体中にN個のクラックが存在し、そのうちqN個(ただし、0≤q≤1)が開口型クラックであり、(1-q)N個が閉合型クラックである場合を考える。この場合も、クラックの存在に起因する弾性体のひずみ増分及びコンプライアンス増分はクラックnによるひずみ増分及びコンプライアンス増分のそれぞれの総和として表わされる。した

がって、開口型クラック及び閉合型クラックのそれぞれについて、 a 及び k'に対するクラッ クの分布と θ 、 ϕ 及び β に対するクラックの分布が互いに独立であり、かつ、 θ 、 ϕ 及び β に 対する分布がランダム分布である条件が成立するならば、(I.1.42)式及び(I.1. 57)式より $\Delta\lambda_{3333}$ 及び $\Delta\lambda_{1133}$ を求めることができる。特に、kⁿ'=k'(一定)、すなわ ち、すべてのクラックの形状が相似である場合には、(I.1.45)式及び(I.1.60) 式より有効弾性率E*及び ν *は(I.1.62)式となる。

$$E^{*}/E = 1 - 8/45 \cdot (1 - \nu^{*2})$$

$$\cdot \Phi \left[q^{*}\{6+2(\Phi_{1}^{*}+\Phi_{2}^{*})\}+(1 - q^{*})(\Phi_{1}^{*}+\Phi_{2}^{*})M(\mu)\right]$$

$$\nu - \nu^{*} = 4/45 \cdot (1 - \nu^{*2})$$

$$\cdot \Phi \left[2q^{*}\{6\nu + 2 - (1 - 2\nu)(\Phi_{1}^{*}+\Phi_{2}^{*})\}-(1 - q^{*})(1 - 2\nu)(\Phi_{1}^{*}+\Phi_{2}^{*})M(\mu)\right]$$

$$(I \cdot 1 \cdot 62)$$

ただし、

$$q^{*} = \sum_{n=1}^{QN} a_{n}^{3} \sum_{n=1}^{N} a_{n}^{3}$$
 (I. 1. 63)

である。ここで、q*はクラック密度から定義された開口型クラックと閉合型クラックの分配 率であり、以下ではq*を状態係数と呼ぶことにする。特に、開口型クラック及び閉合型クラ ックのそれぞれについてaに対するクラックの分布が等しい場合にはq*=qとなる。すべて のクラックが円板状クラックである場合には、(I.1.62)式は(I.1.64)式とな る。

$$E^*/E = 1 - \frac{16}{45} \cdot (1 - \nu^{*2})/(2 - \nu^*)$$

$$\cdot \sum_{n=1}^{N} a_n^3 / V \cdot \{(10 - 3\nu^*)q^* + 2M(\mu)(1 - q^*)\}$$

$$45/16 \cdot (\nu - \nu^{*})(2 - \nu^{*})/(1 - \nu^{*2}) = \sum_{n=1}^{N} a_{n}^{3}/V \cdot [\{10\nu - \nu^{*}(1 + 3\nu)\}q^{*} + M(\mu)(2\nu - 1)(1 - q^{*})]$$
(1.1.64)

1.4.4 数値計算例

数値計算結果の一例として、円板状クラックを有する弾性体の有効弾性率とクラック密度の 関係をFig、I、1、6に示す。Fig、I、1、6は(I、1、64)式でμ=0.5とし た場合のクラック密度Φ=ウa³/Vとν*及びE*/Eの関係をq*及びνをパラメータとして表 したものである。 q * = 1 はすべてのクラックが開口型クラックの場合を示し、 a * = 0 はすべ てのクラックが閉合型クラックの場合を示している。図中、E*/Eとクラック密度の関係が一 本の直線で表されているが、これは、E*/Eの値は v の値にほとんど影響されずに、2 a 3/V, μ及び q*のみによって決定されることを示している。また、 q*=1.0, 0.75及び0.5の場合は E*/E> 0となる範囲のみを示しているが、クラック密度がより大きな場合には計算上E*/E ≤0となる。これは、クラック密度がある値以上になるとクラックを有する弾性体の系全体と してのエネルギバランスが成立しなくなることを意味しており、物理的には、この様な状態で は開口型クラックが閉合型クラックに移行する現象が生じるものと考えられる。したがって、 近似的には、この様な場合は新たなエネルギバランスが成立する状態、すなわちE*/E>Oと なる状態にまで q*の値が減少するものと解釈される。上記の事を前提として図を見ると、有 効ヤング率はクラック密度の増大に伴ってほぼ直線的に減少する傾向を示すが、その変化率は 開口型クラックと閉合型クラックのクラック密度の分配率である状態係数g*により大きく変 化することがわかる。そこで、クラック密度と有効ヤング率の関係がほぼ直線で表され、また、 有効ヤング率には弾性体実質部のボアソン比の影響が小さい事を留意して、有効ヤング率の近 似的表現を求めると(I.1.65)式となる。

 $E^*/E = 1 - \Phi\{16/45 \cdot M(\mu) \cdot (1 - q^*) + 16/9 \cdot q^*\}$ (I. 1.65)

次に、有効ボアソン比はクラック密度の増大に伴って増加する場合と減少する場合とがある が、ともに、クラック密度とほぼ直線関係を示していることがわかる。特に、E*/E=Oとな るときのッ*の値はッの値にかかわらず一定となることがわかる。このときのッ*の値をッ*の 収束値と呼ぶと、q*の減少に伴ってッ*の収束値は増大することがわかる。

次に、クラック形状が有効弾性率に及ぼす影響を検討する。楕円板状クラックの有効弾性率の評価式(I.1.62)式において、クラック形状に関係する項はΦ及びΦ¹+Φ¹2のみであることがわかる。そこで、まず、Φ¹+Φ²2とクラック形状の関係を調べるために、k²(=b

Fig. I.1.6 多数の円板状クラックを有する材料の有効ヤング率E*及び 有効ボアソン比v*とクラック密度凸a³/Vの関係

の値4/(2-v*)で代用することが可能であると思われる。この様に考えると、有効弾性率に及 ぼすクラック形状の影響は、k'に関係するもう一つのパラメータ、すなわち、Φの値のみに よって表現されることになると思われる。すなわち、k'の値が異なる場合であっても、Φの 値が等しい場合には、変形性に及ぼすクラックの影響はほぼ等しくなると考えることができる。 したがって、楕円板状クラックを有する弾性体の有効弾性率とクラック密度の関係はFig, I.1.6の横軸、すなわち、円板状クラックのクラック密度を(I.1.4.44)式で定義さ れる楕円板状クラックのクラック密度でおきかえたものにほぼ相当することになる。

1.5 結言

クラック理論を用いて、岩盤内に存在する不連続面が岩盤の変形特性に及ぼす影響を理論的 に検討した。特に、ジョイント等の不連続面を有する鉱柱及び岩盤の変形性の問題を単一クラ ックを有する弾性体モデルとして取り扱い、複数の不連続面を含む鉱柱及び岩盤の変形性の問 題を分布クラックを有する弾性体モデルとして取り扱った。また、不連続面の開口状態を考慮 し、開口している不連続面を開口型クラック(open crack)、閉合している不連続面を閉合型 クラック(closed crack)として、それぞれ別途の解析を行った。以下に、本章で得られた成 果をまとめることにする。 まず、単一クラックを有する弾性体モデルについて得られた結果を示す。

(1)単一の楕円板状開口型クラックを有する弾性体の有効コンプライアンスは(Ⅰ.1.12)
 式で表され、単一の楕円板状閉合型クラックを有する弾性体の有効コンプライアンスは(Ⅰ.
 1.32)式で表わされることを明らかにした。特に、変形性に及ぼすクラックの大きさの影響は(Ⅰ.1.1.11)式に示したクラック密度Φを用いて表わされることを示した。

(2)上記の理論解の数値計算を行い、クラックの形状及び方位が変形性に及ぼす影響を検討した。まず、載荷軸方向とクラック面の法線方向とのなす角度によって、有効コンプライアンスは顕著に変化し、特に、楕円板状クラックでは載荷軸方向とクラック面の長軸方向とのなす角度によっても有効コンプライアンスは変化することを示した。また、開口型クラックと閉合型クラックでは変形性に及ぼす影響が顕著に異なることを示した。

多数のクラックを有する弾性体モデルとしてはクラックの方位分布がランダム分布で与えら れ巨視的等方性が成り立つ場合を検討の対象とし、以下の結果を得た。

(3) 楕円板状開口型クラックが分布して存在する弾性体の有効ヤング率及び有効ボアソン比は (I.1.45) 式で表わされ、また、同様に円板状開口型クラックの場合は(I.1.47) 式で表わされる。楕円板状閉合型クラックが分布して存在する弾性体の有効ヤング率及び有効 ボアソン比は(I.1.60) 式で表わされ、また、同様に円板状閉合型クラックの場合は (I.1.61) 式で表わされる。さらに、一般的な場合として、楕円板状開口型クラックと 楕円板状閉合型クラックが混在する弾性体の有効ヤング率及び有効ボアソン比を(I.1.6 2) 式に、同様に円板状クラックの場合を(I.1.64) 式に示した。特に、開口型クラッ クと閉合型クラックが混在する場合には、(I.1.63) 式に示したそれぞれのクラックの 存在率を表す状態係数 g*が重要な因子となる。

(4)上記理論解の数値計算を行って、クラックの存在が変形性に及ぼす影響を検討し、次のことを明らかにした。有効ヤング率は、クラック密度の増大に伴ってほぼ直線的に減少する傾向を示すが、その低下率は状態係数q*に大きく依存する。また、有効ヤング率は弾性体実質部分のボアソン比の値にはほとんど依存せず、クラック密度、状態係数、クラック面の摩擦係数及び弾性体実質部のヤング率のみにより決定される。また、有効ボアソン比はクラック密度の増大に伴って増加する場合と減少する場合があるが、ともに、クラック密度に対してほぼ直線的な関係を示す。また、クラック密度の増大に伴って有効ボアソン比は一定の値に収束する傾向を示すが、この有効ボアソン比の収束値は状態係数の減少に伴って増大する。

参考文献

1) 金子 勝比古,柴 拓海,尾原 祐三,大見 美智人;岩盤の変形性に関する理論的研究-岩 盤の変形性の評価法に関する基礎的研究(第1報),日本鉱業会誌,第101巻,第1173号,pp. 699-675(1985)

2) Birch.F.: The velocity of compressional waves in rocks to 10 kiolbars, Part 1, J. Geophys.Res., Vol.65.No.4.pp.1083-1102(1960)

3) Birch.F.; The velocity of compressional waves in rocks to 10 kilobars.Part 2.J. Geophys.Res., Vol.66.No.7, pp.2199-2224(1961)

4) Brace, W.F.; Some new measurements of linear compressibility of rocks, J.Geophys. Res., Vol.70, No.2, pp.391-398(1965)

5) Brace, W.F.; Relation of elastic properties of rocks to fabric, J.Geophys.Res., Vol. 70, No.22, pp5657-5667(1965)

6) Walsh.J.B.; The effect of cracks on the compressibility of rocks.J.Geophys.Res., Vol.70.No.2, pp.381-389(1965)

7) Walsh, J.B.; The effect of cracks on the uniaxial elastic compression, J.Geophys., Vol.70.No.2, pp.399-411(1965)

8) Walsh, J.B.; The effect of cracks in rocks on Poisson's ratio, J.Geophys.Res., Vol. 70, No. 20, pp. 5249-5257(1965)

9) 例えば、Goodman.R.E.:Methods of geological engineering in discontinuous rocks, West publishing co.,St.Paul(1976)

10) Bieniawski,Z.T.:Rock mass classification of rock masses and it's application in tunnelling,Proc.3rd Int.Cong.ISRM,Vol.1,pp27-32(1974)

11) Barton, N., R.Lien and J.Lunde: Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, Vol.6, No.4, pp. 189-236(1974)

12) Wickham,G.E.,H.R.Tiedemann and E.H.Skinne; Support determination based on geological predictions.Proc.1st North Am.Rapid Excavation and Tunnelling Conf.AIME,pp.43-64(1972)

13) 例えば、岡村弘之;線形破壊力学入門,培風館,東京(1976)

14) Budiansky,B.and R.J.O'Connell:Elastic moduli of a cracked solid.Int.J.Solids Struct..Vol.12,pp.81-97(1976)

第2章 岩盤の不連続性の評価法に関する理論的検討

2.1 緒言

岩盤の力学的性質の評価を目的として、岩盤の不連続性を定量化しようとする試みは古くか らなされており、ジョイント間隔、RQD (Rock Quality Designation)等の不連続面の分布 状態を表わす種々の諸量が提案されてきている¹⁾。特に、Deere^{2),3)}はジョイント間隔 とRQDとについてそれぞれの値の対応関係を示し、RQDを用いた岩盤分類法を提案してい る。また、Piteau⁴⁾,Hudson^{5),6)}等は Scanline survey による不連続性の評 価法について詳細な検討を行っている。これらの岩盤の不連続面の間隔や性質の調査は通常、 採掘空洞や坑道周囲の岩盤壁面、ボーリング孔の孔壁及びコアの観察により成されるものであ る。しかし、不連続面は岩盤中に3次元的に分布しているものであるから、壁面及びボーリン グ孔等の2次元的もしくは1次元的観察によってその特性を知るためには極めて繁雑な作業を 必要とすることになる。小田^{7),8)}は、この問題の解決を目的としてクラックテンソル⁹⁾に関 する研究を実施している。すなわち、小田は、岩盤中の不連続面を円板状クラックと仮定して 不連続面の分布特性に関する理論的検討を行い、岩盤の不連続性の評価法に関する基礎理論を 明らかにしている。

本章では上記の研究成果をもとにして、岩盤内不連続面の分布特性に関する確率統計論を展 開し、岩盤の変形性を検討する上で重要なパラメータであるクラック密度を評価する方法を検 討する。具体的には、まず、2.2節でクラック分布に関する基礎理論である小田の理論を紹 介し、2.3節で原位置岩盤における簡易計測により岩盤のクラック密度を評価する方法を提 案する。また、従来から広く用いられてきている不連続面の尺度であるRQDについて理論的 考察を行い、RQDと岩盤の変形係数との関係を明らかにする。

2.2 クラック分布関数

2.2.1 クラック分布関数の定義

前章で論じたクラックモデルの前提を踏襲すると、個々のクラックの特性は、そのクラック

の形状、大きさ及びクラックの方位により表現されることになる。また、体積Vの岩盤中にその中心をもつN個のクラックが一様に分布している場合を考えれば体積V内に存在しているクラックの程度は単位体積当りのクラック数N/Vにより表現しうる。これを以後クラックの分布密度と呼ぶことにする。したがって、今、問題を円板状クラックに限定して考えれば、クラックの分布性状はクラックの直径r及び方位に関する分布を表わす確率密度関数とクラックの分布密度N/Vにより表現されることになる。なお、前章ではクラックの大きさをクラック半径aを用いて表わしてきたが、本章では表現の便宜を考えて、クラックの大きさをクラック半径aを用いて表わしてきたが、本章では表現の便宜を考えて、クラック直径rを用いることにする。また、クラックの位置及び方位は前述の絶対座標系G上で、それぞれクラック中心の座標及びクラック面の単位法線ベクトル見として定義されるものとする。見はG又はG⁽⁰⁾上のクラックの方位角∂及び々を用いて見=($\cos\phi\cos\theta$, $\cos\phi\sin\theta$, $\sin\phi$)(ただし、0≤ $\phi \le \pi/2$)で表わされる。すなわち、クラック面の単位法線ベクトルとしては、互いに逆向きの2つのベクトルが存在するが、ここではそのうち、上半球上にあるもののみを採用することにしている。

この様な前提のもとに、クラックの直径が $r \sim r + d r$ の範囲にあり、その単位法線ベクト ルが見を中心とした微少立体角 d Q内にあるクラックを (r, D) クラックと呼び、 (r, D) クラックの分布を表わす確率密度関数を $P_{RN}(r, D)$ と表わすことにする。当然、

$$\int_{\Omega} \int_{0}^{\infty} P_{RN}(r, \Omega) dr d\Omega = 1 \qquad (I. 2. 1)$$

である。ここで「Ωは上半球上の積分を表わし、θ及びφを用いれば(I.2.2)式となる。

$$\int_{\Omega} d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\phi \, d\phi d\theta \qquad (I. 2. 2)$$

 $P_{RN}(r, \mu)$ においてrと見が統計的に互いに独立な確率変数であるものと仮定すると、 $P_{RN}(r, \mu)$ はrの分布を表わす確率密度関数 $P_{R}(r)$ と見の分布を表わす確率密度関数 $P_{N}(\mu)$ の積として表現されることになる。

 $P_{RN}(r, \mathfrak{N}) = P_{R}(r)P_{N}(\mathfrak{N}) \qquad (I. 2. 3)$

当然、

$$\int_{0}^{\infty} P_{R}(r) dr = \int_{\Omega} P_{N}(\mathfrak{D}) d\Omega = 1 \qquad (I. 2. 4)$$

である。以下では、上記の確率密度関数 $P_{RN}(r, \Omega), P_{R}(r)$ 及 $UP_{N}(\Omega)$ を総称してクラック分布関数と呼び、(I.2.3)式の成立を前提として検討を行う。

次に、基底ベクトル ይ, に対するクラックの単位法線ベクトル Dの方向余弦 n, を(I.2. 5)式で定義する。

$$\mathbf{n}_1 = | \mathbf{g}_1 \cdot \mathbf{g} | \tag{I. 2. 5}$$

以下では上記n、をもって、基底ベクトル 足、に対するクラックの方向余弦と呼ぶことにする。

2.2.2 クラック分布関数の性質

前節の前提で表される岩盤中に 、ある基底ベクトルይ、と平行な 長さし⁽¹⁾の線分し⁽¹⁾を考えた場 合、この線分と交差するクラック の数N⁽¹⁾は以下のようにして求 めることができる。(r, D)ク ラックが線分し⁽¹⁾と交差する条 件はL⁽¹⁾に垂直な面に(r, D)クラックを投影してできる楕円

Fig. I.2.1 線分L^いと交差する (r, n)クラックの説明図

形の内部をL⁽¹⁾が通る条件と等しくなり、これは、(r, D)クラックの中心がL⁽¹⁾を中心 軸とした長径r,短径rn₂,高さL⁽¹⁾の楕円柱の内部に存在する条件と等しくなる(Fig, I.2.1参照)。したがって、L⁽¹⁾と交差する(r, D)クラックの数は(I.2.6) 式で表わされることになる。 $N/V \cdot L^{(1)} \pi r^2 n_1 / 4 \cdot P_N(\mathfrak{D}) P_R(r) dr d\Omega \qquad (I. 2. 6)$

(1.2.6) 式を積分することにより、N_L⁽¹⁾/L⁽¹⁾は(1.2.7) 式で求められる。

 $N_{L}^{(1)}/L^{(1)} = \pi/4 \cdot N/V \cdot \int_{0}^{\infty} r^{2} P_{R}(r) dr \int_{\Omega} n_{1} P_{N}(\Omega) d\Omega$ (I. 2. 7)

また、L⁽¹⁾と交差するクラックの確率密度関数をP⁽¹⁾(r, D)とおくと、P⁽¹⁾(r, D) は(I.2.8)式となる。

 $P_{L}^{(1)}(r, \mathfrak{D}) = \pi/4 \cdot N/V \cdot L^{(1)}/N_{L}^{(1)} \cdot r^{2}P_{R}(r)n_{1} \cdot P_{N}(\mathfrak{D}) \quad (I. 2. 8)$

すなわち $P_{L}^{(1)}(r, \Omega)$ は $P_{RN}(r, \Omega)$ に $L^{(1)}$ と交差する条件が付された条件付確率となる。

次に、この岩盤中に、ある基底ベク トル \mathfrak{L}_1 に垂直な面積 $\mathfrak{L}_2^{(1)}$ なる平面 $\mathfrak{L}_2^{(1)}$ なる平面 $\mathfrak{L}_2^{(1)}$ なる平面 $\mathfrak{L}_2^{(1)}$ と交 差するクラックの数 $\mathfrak{L}_2^{(1)}$ は以下の様 にして求められる。 (r, \mathfrak{L}_2) クラッ クが平面 $\mathfrak{L}_2^{(1)}$ と交差する条件は $\mathfrak{L}_2^{(1)}$ から $(1 - n^2)^{1/2} r / 2$ 以内の距離 に (r, \mathfrak{L}_2) クラックの中心が存在す る条件と等しくなり、これは底面積 $\mathfrak{L}_2^{(1)}$ 、高さ $(1 - n^2)^{1/2} r$ の立体 の内部に (r, \mathfrak{L}_2) クラックの中心が

存在する条件と等しくなる(Fig.I.2.2参照)。したがって、S⁽¹⁾と交差する(r, Q) クラックの数は(I.2.9)式で表わされることになる。

N/V • S⁽¹⁾ r(1-n₁²)^{1/2} • P_N(Ω)P_R(r) dr dΩ (1.2.9)

(I.2.9)式を積分することによってN⁽¹⁾/S⁽¹⁾は(I.2.10)式で求められる。

$$N_{s}^{(1)}/S^{(1)} = N/V \cdot \int_{0}^{\infty} r P_{R}(r) dr \cdot \int_{\Omega} (1 - n_{1}^{2})^{1/2} \cdot P_{N}(\mathfrak{D}) d\Omega$$
(I. 2. 10)

また、S⁽¹⁾と交線をなすクラックの確率密度関数をP⁽¹⁾(r, D)とおくと、P⁽¹⁾(r, D) は上記と同様にして(I.2.11)式で求められる。

$$P_{s}^{(1)}(r, \mathfrak{D}) = N/V \cdot S^{(1)}/N_{s}^{(1)} \cdot r P_{R}(r) \cdot (1 - n_{1}^{2})^{1/2} P_{N}(\mathfrak{D})$$

(1. 2. 11)

(Ⅰ.2.11)式はP {⁽¹⁾(r, Ω)が平面S ⁽¹⁾と交差する条件付確率となることを意味して いる。

次に、上記の平面S⁽¹⁾と交差するクラッ クがS⁽¹⁾となす交線の長さをt、交線の長 さの分布を表わす確率密度関数をP^{{1)}(t)</sup> とおくとt及びP^{{1)}(t)は以下の様にして 求められる。(r, D) クラックの中心が S⁽¹⁾から距離hの位置にある場合(ただし 、0 <h < (1 - n²) ^{1/2} r / 2)、(r , D) クラックがS⁽¹⁾となす交線の長さt は(I.2.12)式で表わされる(F i g, I.2.3参照)。

平面S⁽¹⁾と交差する(r, n)クラック の交線長 t の説明図

 $t = \{ r^{2} - 4h^{2} / (1 - n^{2}_{1}) \}^{1/2}$ (I. 2. 12)

S⁽¹⁾と交差する(r, D) クラックのうちで、S⁽¹⁾とクラック中心間の距離がh~h+dh の範囲にあるものの数は(I.2.13)式となる。

$$N_{s}^{(i)} P_{s}^{(i)}(r, \mathbb{Q}) \cdot 2S^{(i)} dh / \{S^{(i)} r(1-n_{1}^{2})^{1/2}\} \cdot d\Omega dr$$
 (I. 2. 13)

(I.2.12)式及び、h,dh、t,dt>Oなる条件を用いて、(I.2.13)式中の
 変数hを変数tに変換すると、S⁽¹⁾と交差する(r,D)クラックのうちで交線長がt~t
 +dtの範囲にあるものの数が求められる。すなわち、(I.2.14)式となる。

$$N_{s}^{(1)} P_{s}^{(1)}(r, \mathbf{Q}) \cdot tr^{-1}(r^{2} - t^{2})^{-1/2} dt d\Omega dr$$
 (I. 2. 14)

したがって、交線長が t ~ t + d t なるクラックの数N ∮¹ P f¹¹(t) d t は (I.2.14) 式を積分して (I.2.15) 式で求められる。

$$N_{s}^{(1)} P_{t}^{(1)}(t) dt = N_{s}^{(1)} \int_{0}^{\infty} \int_{\Omega} P_{s}^{(1)}(r, \mathbb{R}) \cdot t dt r^{-1}(r^{2} - t^{2})^{-1/2} d\Omega dr$$
$$= N/V \cdot S^{(1)} t dt \cdot \int_{0}^{\infty} P_{R}(r)(r^{2} - t^{2})^{-1/2} dr$$
$$\cdot \int_{\Omega} P_{N}(\mathbb{R})(1 - n_{1}^{2})^{1/2} d\Omega \qquad (I. 2. 15)$$

(1.2.10)式及び(1.2.15)式よりPf¹(t)は(1.2.16)式となる。

$$P_{t}^{(i)}(t) = \int_{t}^{\infty} t P_{R}(r)(r^{2} - t^{2})^{-1/2} dr / \int_{0}^{\infty} r P_{R}(r) dr \quad (I. 2. 16)$$

(I.2.16)式の右辺にはS⁽¹⁾の方向を与える量が含まれていないことから、Pf⁽¹⁾(t) は面S⁽¹⁾の方位に独立な関数となることがわかる。したがって、以下では交線長の確率密度 関数Pf⁽¹⁾(t)は方位を表わす添字を省略してPt(t)と表現する。すなわち、(I.2.17) 式となる。

$$P_{T}(t) = \int_{t}^{\infty} t P_{R}(r)(r^{2} - t^{2})^{-1/2} dr / \int_{0}^{\infty} r P_{R}(r) dr \qquad (I. 2. 17)$$

(I.2.17)式右辺の分子の積分はAbelの式として知られていて(I.2.18)式の性質を有する。

$$\int_{0}^{\infty} t^{m} \int_{t}^{\infty} P_{R}(r)(r^{2}-t^{2})^{-1/2} dr dt = \int_{0}^{\infty} r^{m} P_{R}(r) dr \cdot \int_{0}^{\pi/2} \sin^{m}\theta d\theta$$
(1.2.18)

ただし、m:整数である。

....

(I.2.17)式の関係を考慮して、(I.2.18)式にm=0,2,3をそれぞれ代入すると(I.2.19)式~(I.2.21)式の関係式が求まる。

$$\int_{0}^{\infty} t^{-1} P_{T}(t) dt = \pi/2 \cdot \left(\int_{0}^{\infty} r P_{R}(r) dr\right)^{-1} \qquad (I. 2. 19)$$
$$\int_{0}^{\infty} t P_{T}(t) dt = 1/2 \cdot \int_{0}^{\infty} t^{-1} P_{T}(t) dt \cdot \int_{0}^{\infty} r^{2} P_{R}(r) dr \qquad (I. 2. 20)$$
$$\int_{0}^{\infty} t^{2} P_{T}(t) dt = 4/3\pi \cdot \int_{0}^{\infty} t^{-1} P_{T}(t) dt \cdot \int_{0}^{\infty} r^{3} P_{R}(r) dr \qquad (I. 2. 21)$$

ここで、前章の(Ⅰ.1.46)式に示した円板状クラックのクラック密度Φ(=党a³/Ⅴ) を本章で定義したパラメータを用いて、

$$N/8V \cdot \int_{0}^{\infty} r^{3} P_{R}(r) dr$$
 (I. 2. 22)

と表すと、これは、(Ⅰ.2.10)式、(Ⅰ.2.19)式及び(Ⅰ.2.21)式を用い て(Ⅰ.2.23)式で表わされる。

$$N/8V \cdot \int_{0}^{\infty} r^{3} P_{R}(r) dr = 3/16 \cdot N_{S}^{(1)} / S_{0}^{(1)} \cdot \int_{0}^{\infty} t^{2} P_{T}(t) dt$$

$$/ \int_{\Omega} (1 - n_{T}^{2})^{1/2} P_{N}(D) d\Omega \qquad (I. 2. 23)$$

また、同様に(Ⅰ.2.7)式、(Ⅰ.2.20)式及び(Ⅰ.2.21)式を用いると(Ⅰ. 2.24)式となる。

$$N/8V \cdot \int_{0}^{t} r^{3} P_{R}(r) dr = 3/16 \cdot N_{L}^{(1)} / L^{(1)} \cdot \int_{0}^{\infty} t^{2} P_{T}(t) dt$$

$$/ \{ \int_{0}^{\infty} t P_{T}(t) dt \int_{\Omega} n_{1} P_{N}(\mathfrak{D}) d\Omega \}$$

$$(1. 2. 24)$$

2.3 クラック密度の簡易評価法

前節ではクラック分布関数の性質に関する基礎理論を紹介した。本節では、クラックの方位 分布がランダム分布であると仮定して問題を単純化し、クラック密度とクラック分布関数の関 係を検討する。また、有効クラック及び測定クラックの概念を新たに導入し、簡便な不連続面 の測定により岩盤のクラック密度を評価する方法¹⁰⁾を提案する。

2.3.1 有効クラック密度

クラック方位分布がランダム分布、すなわち、

$$P_N(\mathfrak{Q}) = 1/2\pi$$
 (1.2.25)

である場合には、クラック分布関数PRN(r,D)はrのみの関数として表現されることになる。

 $P_{RN}(r, D) = 1/2\pi \cdot P_{R}(r)$ (1.2.26)

また、(Ⅰ.2.22)式に示したようにクラック密度Φは、円板状クラックの場合には(Ⅰ. 2.27)式で表わされる。

$$\Phi = N/8V \cdot \int_{0}^{\infty} r^{3} P_{R}(r) dr \qquad (1.2.27)$$

この場合には、(I.2.23)式及び(I.2.24)式中の方位に関する積分項が定数と なるので、それらの表現は(I.2.28)式及び(I.2.29)式となる。

$$\Phi = 3/4\pi \cdot N_{s}/S \cdot \int_{0}^{\infty} t^{2} P_{T}(t) dt \qquad (I. 2. 28)$$

$$\Phi = 3/8 \cdot N_{L}/L \cdot \int_{0}^{\infty} t^{2} P_{T}(t) dt / \int_{0}^{\infty} t P_{T}(t) dt \qquad (I. 2. 29)$$

また、前述のNセンノL ^い及びN ♀ンノS ^い はともに方位に独立な量としてNτ/L及びNs/ Sと表現され、(Ⅰ.2.7)式及び(Ⅰ.2.10)式は(Ⅰ.2.30)式及び(Ⅰ.2. 31)式となる。

$$N_{L}/L = \pi/8 \cdot N/V \cdot \int_{0}^{\infty} r^{2} P_{R}(r) dr \qquad (I. 2. 30)$$
$$N_{S}/S = \pi/4 \cdot N/V \cdot \int_{0}^{\infty} r P_{R}(r) dr \qquad (I. 2. 31)$$

したがって、(I.2.28)式又は(I.2.29)式を用いて岩盤のクラック密度を推 定するためには、岩盤表面において、クラック交線長の頻度分布を測定する必要がある。しか しながら、岩盤表面においてクラック交線長さを統計的に有意な程度に測定することは極めて 繁雑な作業を要するであろう。また、(I.2.28)式及び(I.2.29)式ではクラッ ク密度はO くt く∞の積分として表現されているが、現実に測定可能な交線長には上限と下限 が存在するであろう。また、前章の理論を用いて岩盤の変形性を予測する場合には、モデルの 弾性体実質部分の弾性率E及びvは岩盤から採取された岩石供試体の載荷試験により求められ る弾性塞で与えられるものと考えられる。この場合、岩石供試体には供試体寸法より大きなク ラックは存在しえないが、供試体寸法より小さなクラックは存在しうるものと考えられる。す なわち、岩石供試体の弾性率は供試体寸法より小さなクラックの影響をすでに受けているもの と考えられる。したがって、岩石供試体の弾性率を理論式の弾性体実質部分の弾性率として用 いる場合には、クラック密度は供試体寸法より大きなクラックについて求める必要がある。以 下では、この評価の対象とすべきクラックを有効クラック、そのクラック密度を有効クラック 密度Φ * とよび、前述の岩盤表面で観察可能なクラックを測定クラックと呼ぶことにする。し たがって、有効クラックの上限値及び下限値をそれぞれ「min及び「maxとおくと有効クラック 密度Φ^{•1}は(1.2.32)式で表わされることになる。

$$\Phi^{e_{f}} = N/8V \cdot \int_{\Gamma_{min}}^{\Gamma_{max}} r^{3} P_{R}(r) dr \qquad (1. 2. 32)$$

 $\mathbf{53}$

ここで、rmaxは問題の対象とする岩盤領域の大きさに対応するものと考えられるが、対象と する岩盤領域が充分大なるものとすればrmax=∞として取り扱うことが可能である。そこで、 以下ではrmax=∞として議論を進めることにする。また、測定クラックについては、個々の クラック交線長の値を測定するのでなければ、すなわち、岩盤壁面のある領域において一定の 長さ以上の交線長を有するクラックの数のみを測定の対象とするのであれば、その下限値のみ を設定すればよいことになる。以下では、この測定されるクラック交線長の下限値をtminと おくことにする。

2.3.2 測定クラックと有効クラックの関係

(I.2.30)式及び(I.2.31)式に示したNL/L及びNs/Sを有効クラックについて表わしたものをNℓ1/L及びN§1/Sとおくと、それらは(I.2.33)式及び(I.2.34)式で表わされる。

$$N_{L}^{e^{i}}/L = \pi/8 \cdot N/V \cdot \int_{r_{min}}^{\infty} r^{2} P_{R}(r) dr$$
 (I. 2. 33)

$$N_{s}^{*}/S = \pi/4 \cdot N/V \cdot \int_{\Gamma_{min}} r P_{R}(r) dr$$
 (I. 2. 34)

すなわち、Ntⁱ/L及びN^{§i}/Sは有効クラックの単位測線長当りの個数及び単位面積当りの 個数を表わしている。同様にして、有効クラックについてクラック交線長の分布関数をP^{†i}(t)とおけばP^{‡i}(t)は(I.2.35)式で表わされる。

$$Pf^{i}(t) = \int_{r_{\min}}^{\infty} t P_{R}(t) (r^{2} - t^{2})^{-1/2} dr / \int_{r_{\min}}^{\infty} r P_{R}(r) dr \cdot \cdot 0 \langle t \leq r_{\min} r \rangle$$
$$= \int_{t}^{\infty} t P_{R}(t) (r^{2} - t^{2})^{-1/2} dr / \int_{r_{\min}}^{\infty} r P_{R}(r) dr \cdot \cdot r_{\min} \leq t$$
(I. 2. 35)

当然、

$$\int_{0}^{\infty} P^{\frac{1}{2}}(t) dt = 1$$
 (I. 2. 36)

である。(Ⅰ.2.35)式及び(Ⅰ.2.36)式より(Ⅰ.2.37)式の関係式が求ま る。

$$\int_{\Gamma_{min}}^{\infty} r P_{R}(r) dr = \int_{0}^{\Gamma_{min}} \int_{\Gamma_{min}}^{\infty} t P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt$$
$$+ \int_{\Gamma_{min}}^{\infty} \int_{t}^{\infty} t P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt \qquad (I. 2. 37)$$

したがって、(1.2.34)式は(1.2.38)式のように変形することができる。

$$N\xi^{t}/S = \pi/4 \cdot N/V \cdot \left[\int_{0}^{r_{\min}} \int_{r_{\min}}^{\infty} t P_{R}(r)(r^{2} - t^{2})^{-1/2} dr dt + \left(\int_{r_{\min}}^{\infty} \int_{t}^{\infty} t P_{R}(r)(r^{2} - t^{2})^{-1/2} dr dt \right]$$
(1.2.38)

また、N ${}^{t}/L$ をN ${}^{t}/S$ 及UP ${}^{t}(t)$ を用いて表わせば(1.2.39)式となる。

$$N\xi^{i}/L = N\xi^{i}/S \cdot \int_{0}^{\infty} t Pf^{i}(t) dt \cdot 2/\pi \cdot \int_{0}^{\pi/2} \sin\theta' d\theta'$$
$$= 2/\pi \cdot N\xi^{i}/S \cdot \int_{0}^{\infty} t Pf^{i}(t) dt \qquad (I. 2. 39)$$

ここで、(I・2・39)式の積分は平面Sと交差する有効クラックの交線と平面S上に設定 された測線Lとが交差する条件を意味している。(I・2・35)式を(I・2・39)式に 代入するとNt¹/Lは(I・2・40)式のように表わされる。

$$Nt^{t}/L = 1/2 \cdot N/V \cdot \left[\int_{0}^{r_{\min}} \int_{r_{\min}}^{\infty} t^{2} P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt + \int_{r_{\min}}^{\infty} \int_{t}^{\infty} t^{2} P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt \right]$$
(I.2.40)

次に、前述のN_L/L及びN_s/Sを測定クラックについて表わしたものをそれぞれN₂^b/L

及びN§^b/Sとおくことにする。すなわち、Nℓ^b/Lは岩盤表面上に設定した測線と交差する クラックのうち、交線長がt_{min}以上であるものの単位測線長当りの数であり、N§^b/Sは岩 盤表面で観察されるクラック交線のうち、交線長がt_{min}以上であるものの単位面積当りの数 を表わしている。Nℓ^b/L及びN§^b/Sは交線長の分布関数P_T(t)を用いて(1.2.41) 式及び(1.2.42)式で表わされる。

$$N\ell^{b}/L = N_{s}/S \cdot \int_{t_{min}}^{\infty} t P_{T}(t) dt \cdot 2/\pi \cdot \int_{0}^{\pi/2} \sin\theta' d\theta'$$
$$= 2/\pi \cdot N_{s}/S \cdot \int_{t_{min}}^{\infty} t P_{T}(t) dt \qquad (I. 2. 41)$$

$$N_{s}^{b}/S = N_{s}/S \cdot \int_{t_{min}}^{\infty} P_{T}(t) dt$$
 (1.2.42)

(I.2.41)式の積分は平面Sとクラックの交線が平面S上に設定された測線Lと交差す る為の条件を表わしている。(I.2.41)式及び(I.2.42)式に(I.2.17) 式を代入すると(I.2.43)式及び(I.2.44)式となる。

$$N\xi^{b}/L = 1/2 \cdot N/V \cdot \int_{t_{min}}^{\infty} \int_{t}^{\infty} t^{2} P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt$$

$$(I. 2. 43)$$

$$N\xi^{b}/S = \pi/4 \cdot N/V \cdot \int_{t_{min}}^{\infty} \int_{t}^{\infty} t P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt$$

$$(I. 2. 44)$$

ここで、 $r_{min} = t_{min}$ 、すなわち、有効クラックの下限値 r_{min} に合わせて測定クラックの 下限値 t_{min} を設定して、岩盤表面上に現われるクラックの測定を行った場合を考える。この 場合には、(I.2.38)式、(I.2.40)式、(I.2.43)式及び(I.2.4 4)式よりNt'/LとNt'/L及びNt'/SとNt'/Sの間にそれぞれ(I.2.45)式及 び(I.2.46)式の関係が求まる。

$$N\xi^{i}/L = N\xi^{b}/L + 1/2 \cdot N/V \cdot \int_{0}^{t_{\min}} \int_{t_{\min}}^{\infty} t^{2} P_{R}(r)(r^{2} - t^{2})^{-1/2} dr dt$$
(I. 2. 45)

$$N\xi^{1}/S = N\xi^{0}/S + \pi/4 \cdot N/V \cdot \int_{0}^{t_{m+n}} \int_{t_{m+n}}^{\infty} t P_{R}(r)(r^{2} - t^{2})^{-1/2} dr dt$$
(I. 2. 46)

(1.2.45)式及び(1.2.46)式をそれぞれ(1.2.33)式及び(1.2.3
4)式を用いて変形すると(1.2.47)式及び(1.2.48)式となる。

$$N_{L}^{e_{1}}/L = B_{L} \cdot N_{L}^{e_{1}}/L$$
 (1.2.47)

$$N_{s}^{t}/S = B_{s} \cdot N_{s}^{b}/S$$
 (1.2.48)

ここで、

$$B_{L} = \{1 - 4/\pi \cdot \int_{0}^{t_{min}} \int_{t_{min}}^{\infty} t^{2} P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt / \int_{t_{min}}^{\infty} r^{2} P_{R}(r) dr \}^{-1}$$

$$B_{S} = \{1 - 4/\pi \cdot \int_{0}^{t_{min}} \int_{t_{min}}^{\infty} t P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt / \int_{t_{min}}^{\infty} r P_{R}(r) dr \}^{-1}$$

$$(1.2.49)$$

$$B_{S} = \{1 - 4/\pi \cdot \int_{0}^{t_{min}} \int_{t_{min}}^{\infty} t P_{R}(r) (r^{2} - t^{2})^{-1/2} dr dt / \int_{t_{min}}^{\infty} r P_{R}(r) dr \}^{-1}$$

$$(1.2.50)$$

である。(I.2.47)式~(I.2.50)式は r_{min} = t_{min}の場合の有効クラックと測 定クラックの関係を示したものであり、測定クラックの諸量から有効クラックの諸量を推定す るための基礎式となる。特に、係数B_L及びB_sは測定値から有効クラックの諸量を求める際の 補正係数としての意味をもっている。

2.3.3 有効クラック密度の評価式

一般に材料中に存在するクラックの長さに関する分布は指数分布で近似されることが知られ ている¹¹⁾。ここでは、岩盤内に存在するクラックの直径rに関する分布関数が、上記と同様 に指数分布で近似されるものと仮定し、前項の結果をもとにして有効クラック密度の評価式を 誘導する。

クラック分布関数P_R(r)が(I.2.51)式に示すような指数分布で与えられるものと する。

ζ =0.5

ζ =4.0

 $P_R(r) = \zeta \exp(-\zeta r)$

(I. 2. 51)

ここで、 ζ は正の定数であり、岩盤固有の性質を表わすものである。なお、この場合のすべて のクラック (0 くr く∞) に対するクラック密度はΦ=6N/8V ζ³となる。原位置岩盤におい てζ がどのような値を示すかを予想するために、岩盤壁面で観察されるクラック交線の状況を 計算したものがFig. I. 2. 4である。Fig. I. 2. 4は (I. 2. 51) 式を (I. 2. 17) 式及び (I. 2. 31) 式に代入し、岩盤壁面の2m×2mの領域と交差するクラッ クの交線長をモンテカルロ法を用いて求めたものであり、それぞれζ=0.5, 1, 2, 4, 6, 10 でΦ=1.0, 2.0, 3.0, 4.0の場合を示している。Fig. I. 2. 4より、大略 0.5 ζζ ζ10 の場合を考えれば、通常観察される岩盤の状態を表現することができるものと思われる。し たがって、以下の数値計算等では 0.5 ζζ ζ10 の範囲内を問題とする。

クラック分布関数 $P_R(r)$ が(I.2.51)式で表わされる場合、前述の有効クラックに 関する諸量 Φ^{e_i} 、N ξ^i /L、N ξ^i /Sはそれぞれ、(I.2.52)式、(I.2.53)式 及び(I.2.54)式で表わされる。

$$\Phi^{e_{1}} = N/8V \cdot (r_{\min}^{3} + 3r_{\min}^{2}/\zeta + 6r_{\min}/\zeta^{2} + 6/\zeta^{3}) \cdot exp(-\zeta r_{\min})$$
(I. 2. 52)
$$N\xi^{i}/L = \pi/8 \cdot N/V \cdot (r_{\min}^{2} + 2r_{\min}/\zeta + 2/\zeta^{2}) \cdot exp(-\zeta r_{\min})$$
(I. 2. 53)
$$N\xi^{i}/S = \pi/4 \cdot N/V \cdot (r_{\min} + 1/\zeta) \cdot exp(-\zeta r_{\min})$$
(I. 2. 54)

(Ⅰ.2.52)式~(Ⅰ.2.54)式より、Φ^{*} 'とN^t / L及びN^t / Sとの間には(Ⅰ.
 2.55)式の関係が成立する。

 $\Phi^{e_{1}} = (r_{\min}^{2} + 2/\zeta^{2})/2\pi \cdot N\xi^{i}/S + 2/\pi\zeta \cdot N\xi^{i}/L \qquad (1.2.55)$

Nfⁱ/LとN^{§i}/Sの比をkfisとおくと、く、kfis及びrminの間には(I.2.57)式の 関係が成立し、く>0の条件を考慮するとくは(I.2.58)式で求められる。

 $k\xi = (N\xi^{i}/L)/(N\xi^{i}/S)$

$$(2k_{1}^{\epsilon_{1}}r_{min} - r_{min}^{2})\xi^{2} + 2(k_{1}^{\epsilon_{1}} - r_{min})\xi - 2 = 0 \qquad (I. 2. 57)$$

$$\zeta = [(r_{min} - k_{1}^{\epsilon_{1}}) + \{(k_{1}^{\epsilon_{1}} - r_{min})^{2} + 2r_{min}(2k_{1}^{\epsilon_{1}} - r_{min})\}^{1/2}]$$

$$/\{r_{min}(2k_{1}^{\epsilon_{1}} - r_{min})\} \qquad \cdots \qquad r_{min} > 0$$

$$= 1 / k_{1}^{\epsilon_{1}} \qquad \cdots \qquad r_{min} = 0 \qquad (I. 2. 58)$$

すなわち、(I.2.58)式は単位面積当りの有効クラックの数及び単位測線長当りの有効 クラックの数が既知であれば、定数とが求められることを意味している。したがって、測定値 からN&⁽/L及びN&⁽/Sの値が推定されれば(I.2.58)式及び(I.2.55)式を 用いて有効クラック密度が求められることになる。

次に、測定クラックの諸量N l^b /L及びN l^b /Sと有効クラックの諸量N l^t /L及びN l^t / Sの関係を調べることにする。(I.2.47)式~(I.2.50)式より、測定クラック の下限値 t_{min} を有効クラックの下限値 r_{min} に等しくとった場合には、N l^t /L及びN l^t /S とN l^b /L及びN l^b /Sの間に(I.2.59)式及び(I.2.60)式の関係が成立する。

$$N\xi^{i}/L = B_{L} \cdot N\xi^{b}/L$$
 (I. 2. 59)

 $N\xi^{1}/S = B_{s} \cdot N\xi^{b}/S$ (I. 2. 60)

ただし、

$$B_{L} = [1 - 4\zeta/\pi \cdot \exp(\zeta t_{min})/(t_{min}^{2} + 2t_{min}/\zeta + 2/\zeta^{2})$$

$$(I. 2. 61)$$

$$\cdot \int_{0}^{t_{min}} \int_{t_{min}}^{\infty} t^{2} \exp(-\zeta r)(r^{2} - t^{2})^{-1/2} dr dt]^{-1}$$

 $B_{s} = [1 - \zeta \cdot exp(\zeta t_{min})/(t_{min} + 1/\zeta)]$

(1.2.62)

$$\int_{0}^{t_{\min}} \int_{t_{\min}}^{\infty} t \exp(-\zeta r) (r^{2} - t^{2})^{-1/2} dr dt]^{-1}$$

(I.2.61)式及び(I.2.62)式における積分は積分変数を(I.2.63)式の ように変換することにより通常の数値積分が可能となる。

$$r^{2} - t^{2} = r^{2}$$
(I. 2. 63)
$$\int_{0}^{t_{min}} \int_{t_{min}}^{\infty} \exp(-\zeta r) (r^{2} - t^{2})^{-1/2} dr dt$$
(I. 2. 64)
$$= \int_{0}^{t_{min}} \int_{(t_{min}^{2} - t^{2})^{1/2}}^{\infty} \exp\{-\zeta (r^{2} + t^{2})^{1/2}\} (r^{2} + t^{2})^{-1/2} dr' dt$$

(1.2.59) 式及び(1.2.60) 式はく及び tmin(=rmin)が既知であればN2^b/ L及びN8^b/Sの値からNEⁱ/L及びN8ⁱ/Sの値の推定が可能であることを示している。

以上まとめると、 t_{min} (= r_{min})、 N_{L}^{b}/L 及び N_{L}^{b}/S の値が既知であれば、(I.2. 58) 式~(I.2.62) 式を連立させて解く事により N_{L}^{t}/L 、 N_{L}^{s}/S 及びなの値が求 まり、これらを(I.2.55) 式に代入することにより有効クラック密度 $\Phi^{e'}$ が求められる ことになる。そこで、 N_{L}^{b}/L と N_{L}^{b}/S の比を k_{L}^{t} とおき、 k_{L}^{t} を(I.2.66) 式で表 わして各バラメータ間の関係を示すことにする。

 $k! = (N!^{b}/L) / (N!^{b}/S)$ (1.2.65)

 $k_{1}^{s} = B_{1}/B_{s} \cdot k_{1}^{s}$ (1.2.66)

すなわち、Fig. I. 2. 5 (a) は (I. 2. 66) 式の係数B_L/B_sとくの関係を t_{min} をパラメータとして表わしたものであり、Fig. I. 2. 5 (b) は (I. 2. 58) 式で表わされるくとktioの関係を t_{min} をパラメータとして表わしたものである。Fig. I. 2. 6 (a) はくとB_Lの関係、Fig. I. 2. 6 (b) はくとB_sの関係をともに t_{min} を パラメータとして表わしたものである。これらの関係図を用いると岩盤壁面における測定値 t_{min} 、Nt^b/L及びN^b/Sの値から有効クラック密度Φ^{ef}を簡単に求めることができる。

Fig.1.2.6 バラメータ間の関係 (a)さ及び t_{min}とB_Lの関係, (b)さ及び t_{min}とB_sの関係

この手順をフローチャートとして表わすとFig.I.2.7となる。

次に、具体例として実際の岩盤壁面の不連続面の観察から有効クラック密度を算定してみる。 Fig. I. 2.8はJ.A.Hudson等⁶⁾の論文から引用したものであり、Cambrian砂 岩からなる岩盤壁面の不連続面のスケッチである。今、この岩盤の不連続面の方位分布がラン ダム分布であるものと仮定し、t_{min}=0.2mとして、Fig.I.2.8からNt^b/L及び Ns^b/Sのそれぞれの値を求めるとNt^b/L=10.4 及びNs^b/S=21.4 となる。これらの値 をもとにして、Fig.I.2.7の手順に従ってく及びΦ^{e1}のそれぞれの値を求めるとζ= 2.3 及びΦ^{e1}=4.5 となる。Fig.I.2.8とFig.I.2.4を比較すると上記の値 はほぼ妥当なものであると思われる。参考のため、この有効クラック密度の値を前章に示した 有効弾性率評価式(I.1.64)式に代入して、この岩盤の有効ヤング率E*を求めるとq^{*} = 0で μ =1.0、すなわち、すべてのクラックが閉合型クラックで摩擦係数が1.0の場合、E^{*} /E=0.24 となる。

2.4 RQDに関する考察

2.4.1 RQDの理論的解釈

Deere²⁾によればRQDの定義は(I.2.67)式で表わされる。

$$RQD = 100\sum_{i=1}^{m} w_{i}/L \qquad (1.2.67)$$

ここで、Lは測線の長さもしくはボーリング孔長、wiは測線の中で不連続面により分割され た線分の長さもしくは不連続面で分割されたコア片の長さでその長さが0.1m以上のもの、m' はwiの個数である。ここで、不連続面により分割された線分の長さもしくは不連続面で分割 されたコア片の長さをw(m)、分割された線分もしくはコア片の個数をNc'、wの分布を表 す確率密度関数をPw(w)とおいて、(I.2.67)式を×100を省略した形で書換えると (I.2.68)式となる。

$$RQD = N_c'/L \cdot \int_{0.1}^{L} wP_w(w) dw \qquad (I. 2. 68)$$

Priest等¹²⁾は(I.2.68)式中のPw(w)が指数分布で表されるものと仮定して RQDに関する理論的検討を行っているが、L=∞が前提とされているため、有限の測線長も しくはボーリング孔長に対してその解を用いる事には問題があると思われる。ここでは、0 くL≦∞について適用可能なwの確率分布とRQDの理論式を明らかにする。まず、Prie st等にならってRQDxを(I.2.67)式及び(I.2.68)式と同様な式で定義す る。ただし、RQDxは通常のRQDが0.1m以上の線分もしくはコア片に対して定義されるの に対し、長さがx/100m以上のものに対して定義される量であって、長さLの線分をNc(= Nc'-1)個の断面で切断した場合に切断された各線分要素の長さがx/100m以上のものの 総和が全体に占める割合である。したがって、通常のRQDはRQD10となる。この問題は粉 砕学における破砕物の粒度分布の推定の問題と極めて類似している。そこで、ここでは粉砕学 におけるGaudin-Meloy¹³⁾の理論を参考にしてRQDxとL及びNcの関係を理論 的に検討する。

まず、Fig.I.2.9に示すよ うな長さLの線分をNc個の断面で切 断した場合を考える。ここで、線分の 左端を原点とした1次元座標を2とお

$$p_{1}(z_{n},w) = N_{c}! / \{(n-1)! (N_{c}-n-1)! \}$$

$$\cdot L^{-N_{c}} z_{n}^{n-1} (L-w-z_{n})^{N_{c}-n-1} dz_{n} dw \qquad (I. 2. 69)$$

切断面nが入る位置、すなわち z_n の範囲は $0 < z_n < L - w$ であることを考慮すると、長さwの線分要素が生成する確率 $p_2(w)$ は(I、2、70)式となる。

$$p_2(w) = N_c ! / \{ (n-1) ! (N_c - n - 1) ! \} \cdot L^{-N_c} dw$$

$$\cdot \int_{0}^{L-w} z_{n}^{n-1} (L-w-z_{n})^{Nc-n-1} dz_{n} \qquad (I. 2. 70)$$

ここで、(I.2.70)式中の積分変数 Z ¹を、

$$z_n = (L - w)y$$

 $dz_n = (L - w) dy$

と変換し、また、

 $p_2(w) = P_w(w) dw$

であることを考慮すると、(I.2.70)式は(I.2.71)式と書換えられる。

$$P_{w}(w) = N_{c}! / \{(n-1)! (N_{c}-n-1)!\} \cdot L^{-N_{c}}(L-w)^{N_{c}-1}$$

•
$$\int_{0}^{1} y^{n-1} (1-y)^{Nc-n-1} dy$$
 (I. 2. 71)

(I.2.71)式中の積分は Bata関数Bもしくは Gamma関数Fを用いて(I.2.72) 式で表わされる。

$$\int_{0}^{1} y^{n-1} (1-y)^{N_{c}-n-1} dy = B(n, N_{c}-n)$$

= $\Gamma(n)\Gamma(N_{c}-n)/\Gamma(N_{c})$
= $(n-1)!(N_{c}-n-1)!/(N_{c}-1)!$ (I. 2. 72)

したがって、Pw(w)は(I.2.73)式となる。

$$P_{w}(w) = N_{c}L^{-N_{c}}(L-w)^{N_{c}-1}$$
 (1.2.73)

また、w~w+ dwの長さを有する線分の数は(N_c +1) P_w (w) dwとなるため、x/100 (m)以上の長さの線分の総和が全長Lに対して占める割合RQD_xは(I.2.73)式を 用いて(I.2.74)式で表わされることになる。

$$RQD_{x} = (N_{c}+1)/L \cdot \int_{x/100}^{L} wP_{w}(w) dw$$

= x/100L \cdot (N_{c}+1)(1-x/100L)^{N_{c}} + (1-x/100L)^{N_{c}+1} (I. 2. 74)

したがって、RQD10の場合は(I.2.75)式になる。

$$RQD_{10}=0.1/L \cdot (N_{c}+1) \cdot (1-0.1/L)^{N_{c}} + (1-0.1/L)^{N_{c}+1}$$
(I. 2. 75)

また、単位長さ当りの切断面の数の期待値ncを(I.2.76)式で定義し、(I.2.7 4)式のL→∞における極限値を求めると(I.2.77)式となる。

$$n_c = \lim_{L \to \infty} (N_c/L)$$
 (I. 2. 76)

 $\lim_{L \to \infty} (R Q D_X) = (1 + n_c X / 100) \exp(-n_c X / 100)$ (I. 2. 77)

(I.2.77)式にx=10 を代入したものをRQD₁₀[∞] とおくとそれは(I.2.78) 式となる。

 $RQD_{10}^{\infty} = (1 + n_c/10) \exp(-n_c/10)$ (1.2.78)

(I.2.77)式及び(I.2.78)式はPriest等¹²⁾の求めた解と一致する。F ig.I.2.10は(I.2.75)式で表わされるRQD₁₀とN_c/Lの関係をL=1(m)及びL= ∞ (m)のそれぞれの場合について示したものである。Fig.I.2.10よりL =1(m)として求めたRQD₁₀はL= ∞ (m)として求めたRQD₁₀に対して大略5程度その値 が小さくなることがわかる。図中のブロットはPriest等¹²⁾が種々の岩盤において Scan line survey を行って得た実測値である。Fig.I.2.10より実測値と理論値が良く

Fig. I.2.10 不連続面の頻度Nc/LとRQD10の関係 図中の記号はS.D.Priest¹²⁾による実測結果であり、実線は それぞれL=1.0(m)及びL=∞(m)の場合の理論曲線を示す。

一致していること及び実測値がL=1(m)とL=∞(m)の場合の曲線の間にあり有限な測線長の影響が端的に現われていることがわかる。

2.4.2 RQDと岩盤の変形性の関係¹⁴⁾

前項ではRQDとN_c/Lの関係を理論的に明らかにした。ここで、N_c/Lは測線における 平均き裂頻度を表わすものであり、その逆数は通常ジョイント間かくと呼ばれるものである。 また、本章2.3節の考えをもとにすれば、Scan line survey におけるN_c/Lは測定クラッ クのN^b/Lに対応し、ボーリングにおけるN_c/Lは、ボーリング孔径より大きな直径を有 する不連続面によってコアが切断されるものと考えれば、有効クラックのN^b/Lに対応する ことになる。ここで、通常RQDを求めるボーリングがNXサイズのビットで行われる事を考 慮し、測定クラック及び有効クラックの下限値を t_{min}=r_{min}=0.05 (m) と仮定すると、前 節Fig.I.2.6の関係からB_L=1.0となり、N^b/LとN^b/Lは互いにほぼ等しくな る。そこで、以下では、N_c/Lがr_{min}=0.05 (m) の場合のN^b/Lで表されるものと仮定 し、前述の議論をもとにRQDと岩盤の変形性の関連を検討する。

今、クラック分布が前節(Ⅰ.2.51)式で示すような指数分布で与えられるものと考え、

Fig. I.2.11 クラック密度 Φ と R Q D の関係

(I.2.52)式、(I.2.53)式及び(I.2.74)式を用いてRQDと有効クラ ック密度 Φ^{ei} の関係を求めるとFig. I. 2. 11となる。Fig. I. 2. 11では、 r_{min}=0.05(m)とし、L=1.0(m)の場合とL=∞(m)の場合の両者を指数分布の係数 とをパラメータとして表わしている。Fig.I.2.11より、との値が定まればRQDの 値から大略のクラック密度がわかることになる。次に、この関係を第1章に示した変形性評価 式(I.1.64)式に代入してRQDと岩橋のE*/Eの関係を求めたものがFig.I. 2.12である。 Fig. I.2.12 (a) はと=2の場合、 Fig. I.2.12 (b) はと=4の場合であり、ともに、開口型不連続面と閉合型不連続面のそれぞれのクラック密度 の分配率を表す状態係数 q*と閉合型不連続面の摩擦係数 μをパラメータとして表わしてある。 図に示した結果はL=1(m)とし、また、前述のようにボアソン比vの値はE*/Eの値に さほど影響を与えないため、〃=0.25の条件のみで計算を行っている。Fig・I・2・13 はBieniawski¹⁵⁾によりまとめられた原位置岩盤試験(主として平板載荷試験)に より求められた岩盤の変形係数Emとその岩盤から採取されたコアの一軸圧縮試験により求め られた変形係数E:との比EM/E:と原位置岩盤のRQDとの関係を示したものである。ここ で、コアの変形係数E₁は岩盤の岩石実質部のヤング率Eに対応し、岩盤の変形係数Eルは不連 続面を有する岩盤の有効ヤング率E*に対応するものと考えれば、Fig.I.2.12のE* **/EとFig.I.2.13のEм/ELは互いに等価な量であると考えられる。この様な考え** をもとにすれば、Fig・I.2.12に示した理論値の傾向はFig・I.2.13に示し た実験値の傾向を比較的良く表わしているものと思われる。特に、Fig、I・2、13より E_M/E_Lの値はRQDの値が一定である場合でもかなり変動することが認められるが、Fig. 1.2.12の結果をもとにすれば、この傾向はその岩盤の不連続面の分布特性及び不連続面 の性状に密接に関係しているものと考えることができる。上記の結果は逆に、原位置岩盤の不 連続面の分布特性(この場合はとの値)、不連続面の閉合状態、すなわち状態係数 q * 及び摩 **擦係数μが評価されればRQDの値をもとにして岩盤の変形係数の予測が可能であることを示** 唆している。

2.5 結言

岩盤内の不連続面の分布に関する確率統計論を展開し、岩盤の変形性を推定する上で重要な パラメータとなるクラック密度の評価法に関する理論的検討を行った。さらに、岩盤の不連続

性を表わす指標値として従来から広く用いられているRQDを岩盤内の不連続面の分布特性の 観点から検討し、RQDと岩盤の変形係数との関連について言及した。本章で得られた成果を まとめて以下に示す。

(1) 有効クラック及び測定クラックの概念を導入して、岩盤の変形性を知る上で直接的に関係 する因子である有効クラック密度を推定する方法を検討した。ここで、有効クラックとは岩盤 から採取されたコアの弾性率と岩盤の弾性率との間に差を生じさせる不連続面であり、有効ク ラック密度は岩盤の変形性を知る上で評価対象とされる不連続面のクラック密度である。また、 測定クラックとは、岩盤表面において観察される不連続面である。測定クラックの諸量と有効 クラックの諸量の間には(I.2.47)式及び(I.2.48)式の関係が成立し、これら の式を用いることにより、岩盤表面における不連続面の測定により、有効クラックの諸量を推 定しうる。

(2)不連続面の大きさに関する確率分布が指数分布で与えられる場合について詳細な検討を加え、岩盤表面に現われる不連続面の計数により有効クラック密度を簡便に評価する方法を提案した。特に、本方法を用いると、岩盤表面に現われる所定の交線長さ以上の長さを有するクラックについてその単位面積当りの数と単位測線長当りの数のみを測定すれば有効クラック密度が求められる。したがって、原位置岩盤表面における不連続面の測定が極めて簡略化される。また、測定された値をもとにして、有効クラック密度を図式的に簡単に求める方法も示した。
(3)岩盤の不連続面の分布状態を表わす重要な指標値であるRQDについて基礎的な検討を行い、RQDの理論的背景を明らかにした。すなわち、RQDとジョイント間かくの関係を(I.2.74)式に示すとともに、RQDと岩盤の変形係数の関係を理論的に明らかにした。

参考文献

1) 例えば Suggested methods for the quantitative description of discontinuities in rock masses.ISRM.Int.I.Rock Mech.Min.Sci.& Geomech.Abstr.,Vol.15,pp.319-368(1978)

2) Deere.D.V.:Technical description of rock cores for engineering purpose.Rock Mech. Eng.Geol.,Vol.1,pp.17-22(1964)

3) Deere.D.V.,A.J.Henderon,F.D.Patton and E.J.Cording;Design of surface and near surface construction in rock,Failure and Breakage of Rock(Edited by C.Fairhurst), AIME.pp.237-302(1967)

4) Piteau.D.R.: Characterizing and extrapolating rock joint properties in engineering practice.Rock Mechanics.Vol.2,pp.31-55(1973)

5) Hudson, J.A. and S.D. Priest: Discontinuities and rock mass Geometry, Int. J. Rock Mech. Min.Sci.& Geomech. Abstr., Vol. 16, pp. 339-362(1979)

6) Hudson, J.A. and S.D. Priest: Discontinuities frequency in rock masses. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr. Vol. 20, No. 2, pp. 73-89(1983)

7) Oda.M:Fabric tensor for discontinuous geological materials.Soil and Foundation. Vol. 22.No.4.pp.96-108(1982)

8)小田匡寛,鈴木健一郎:クラックテンソルによる不連続岩盤のモデル化に関する研究,第15 回岩盤力学に関するシンボジウム講演論文集,pp.96-100(1983)

9) Kachanov.M:Continuum model of medium with cracks.J.of ASCE.EM.5,pp.1039-1051 (1980)

10) 金子 勝比古,菅原 勝彦,尾原 祐三,大見 美智人;岩盤の変形性の評価,昭和59年度全国 地下資源関係学協会合同秋季大会分科研究会資料,C2,pp.5-8(1984)

11) 例えば岡村 弘之,板垣 浩:強度の統計的取扱い,培風館,東京(1976)

12) Priest.S.D.and J.A.Hudson:Discontinuity spacings in rock, Int.J.Rock Mech.Min. Sci.& Geomech.Abstr., Vol.13, pp.135-148(1976)

13) Gaudin, A.M. and T.P. Meloy: Model and comminution distribution equation for single fracture. SME Transactions, Vol. 223, pp. 40-50(1962)

14) 金子 勝比古,柴拓海,尾原祐三,大見 美智人;岩盤の変形性に関する理論的研究-岩盤の変 形性の評価法に関する基礎的研究(第1報),日本鉱業会誌,第101巻,第1173号,pp.699-675 (1985)

15) Bieniawski,Z.T.:Determining rock mass deformability-experience from case histories.Int.l.Rock Mech.Min.Sci.& Geomech.Abstr..Vol.15.pp.237-247(1978)

第3章 岩石の変形性に関する実験的検討 1)

3.1 緒言

第1章及び第2章では岩盤の変形性評価法に関する基礎理論を示してきたが、それらを実際 現場の問題に適用するためには、まず、上記理論の妥当性を検証する必要がある。そこで、鉱 柱の変形性に関するモデル実験として、クラック分布特性の異なる種々の花崗岩供試体につい て、供試体の変形性と内部のクラック分布特性との関係を実験的に検討し上記理論の妥当性を 検証しようと試みた。具体的には、まず、クラック分布特性の異なる4種類の花崗岩供試体に ついて構成鉱物含分比の測定、供試体表面のクラック観察及び静水圧試験を実施し、変形性評 価の上で重要なパラメータとなるクラック密度及び岩石実質部の弾性率を算定した。これらの 値を用いて各供試体の有効弾性率の理論推定値を求めるとともに、一軸圧縮試験により各供試 体の有効弾性率を求め、両者を比較検討することにより上記理論の適用性を明らかにした。ま た、これらの実験的検証の結果にもとづき、上記理論を用いた鉱柱及び岩盤の変形性評価法に ついて考察を加える。

3.2 岩石試料

3.2.1 供試体

実験に用いた岩石は庵治花崗岩,大島花崗岩,倉橋島花崗岩及び北木島花崗岩の4種類の花 歯岩である。それぞれの岩石の産地、通称と略記号及び各岩石の写真をTable.I.3. 1及びFig.I.3.1に示す。Fig.I.3.1より、岩石の産地により結晶粒径が顕 著に異なっていることがわかり、それぞれクラックの分布特性も異なっていることが類推され る。花崗岩は内部に存在するクラックの配向に起因した力学的異方性を示すことが知られてい る^{2).3)}。そこで、採石場より切りだした岩石ブロックから互いに直交する3方向のコアボー リングを行い、供試体の軸方向が直交する3方向となっている3種の供試体を作製した。以下 ではこれら3種の供試体をそれぞれI, II及びIIIの番号を付して表すことにする。供試体寸法 は実験の目的により異なり、クラック観察用は 3cmø×1cm、静水圧試験用は 3cmø×7 cm、一軸圧縮試験用は 3.5cmø×9cmである。また、各岩石について薄片試料を作製し、

Rock	Symbol	Locality
Aji granite	AG	Kagawa Pref.
(Aji-ishi) Ohshima granite	OG	Ehime Pref.
(Ohshima-ishi) Kurahashijima granite	GG	Hiroshima Pref.
(Giin-ishi) Kitagishima granite	KG	Okayama Pref.
(Kitagi-ishi)		

Table. I.3.1 岩石試料

Fig. I.3.1 花園岩供試体

Mineral				
Quartz	Felsper	Biotite	Amphibole	Chlorite
1~1.5	0.5~1	0.5>		0.5>
2~2.5	1~2	- 1>	0.5	0.5>
3~4	2~3	1> Max.2		0.2-0.5
2~3	2~3 Max.4	0.5~1		0.3~0.7
	Quartz 1~1.5 2~2.5 3~4 2~3	Mine Quartz Felsper 1~1.5 0.5~1 2~2.5 1~2 3~4 2~3 2~3 2~3 2~3 2~3 Max.4	Mineral Quartz Felsper Biotite 1-1.5 0.5-1 0.5> 2-2.5 1-2 1> 3-4 2-3 1> Max.2 2-3 2-3 Max.4 0.5-1	Mineral Quartz Felsper Biotite Amphibole 1~1.5 0.5~1 0.5> 2~2.5 1~2 1> 0.5 3~4 2~3 1> 2~3 2~3 0.5~1 Max.4 0.5~1

Table. I.3.2 各岩石の結晶粒径(単位はmm)

Table. I.3.3 各岩石の鉱物含分比(単位は%)

Poek	Mineral				
ROCK	Quartz	Plagioclase	Orthoclase	Biotite	Chlorite
Aji granite (AG)	32.2	47.8	11.1	7.8	1.1
Ohshima granite (OG)	30.6	47.2	14.4	7.8	
Kurahashijima granite (GG)	37.1	33.0	24.4	5.0	0.5
Kitagishima granite (KG)	34.6	34.4	27.7	2.2	1.1

偏光顕微鏡観察により構成鉱物の結晶粒径及び鉱物含分比(鉱物の体積率)を求めた。その結 果はTable.I.3.2及びTable.I.3.3に示すとおりである。

3.2.2 岩石実質部の弾性率

Birch⁴⁾ 及びBrace⁵⁾ は、100MPa以上の静水圧下では岩石内のクラックのほと んどが閉合するため、岩石は内部にクラックが存在しない場合の変形挙動、すなわち、岩石実 質部の変形挙動を示すことを実験的に明らかにしている。そして、Brace⁵⁾ はこれらの実 験結果をもとにして、岩石実質部の圧縮率(Compressibility) β_c は岩石の構成鉱物の圧縮率 の平均期待値として(I.3.1)式で表されることを明らかにした。

 $\beta_{c} = \sum c_{1} \beta_{c_{1}} \qquad (I. 3. 1)$

ここで、c₁は構成鉱物の含分比であり、 β_{c_1} はc₁に対応する鉱物の圧縮率である。Tabl e. I. 3. 3の鉱物含分比の値を(I. 3. 1)式に代入して、各岩石の β_c の値を推定す ると、それぞれAGが19.9 (TPa)⁻¹, OGが19.9 (TPa)⁻¹, GGが20.9 (TPa)⁻¹, KGが20.8 (TPa)⁻¹となる。なお、鉱物の圧縮率 β_{c_1} の値はBabb⁶⁹の実験結果をもと にして、石英 26.8 (TPa)⁻¹, 斜長石 (An60) 14.2 (TPa)⁻¹, カリ長石 21.0 (TP a)⁻¹, 雲母 23.2 (TPa)⁻¹とした。なお、上記以外の微量鉱物の β_{c_1} はすべて石英の値 と等しいものとして計算を行ったが、それらの含分比は微量であるため結果にはほとんど影響 しない。この様にして求められた圧縮率の値はBrace⁵⁹がWesterly花崗岩、Stone Mount ain花崗岩等について求めた圧縮率の値とほぼ一致し、通常の花崗岩では岩石実質部の圧縮率 は大略 20 (TPa)⁻¹程度であると推量することができる。また、Walsh等⁷⁹及びBi rch⁸⁹の別の実験結果によれば、100~200MPa以上の静水圧下もしくは準静水圧下では花 崗岩のボアソン比の値はほぼ一定値0.25となることが明らかにされている。そこで、今回の 実験に用いた4種の花崗岩についても岩石実質部のボアソン比の値はすべて 0.25であるもの と仮定し、この値と先に示した圧縮率の値を用いて岩石実質部のヤング率の値を推定すると、 それぞれAGが75GPa,OGが75GPa,GGが72GPa,KGが72GPaとなる。

3.3 クラックの分布特性

3.3.1 クラックの測定

各岩石のクラック密度を推定するために、各供試体表面のクラックを観察し、供試体表面に 現われるクラックの長さ及び個数を測定した。クラックの測定では、供試体表面中央部の10~ 12mm四方の領域を反射型顕微鏡により観察し、顕微鏡下で判定可能なすべてのクラックにつ いてその長さを調べた。この方法で測定可能なクラック長の下限値は大略0.05mmであった。 各岩石ごとに採取方向の異なる3種の供試体それぞれについて測定を行った。一般に、クラッ ク長の長いクラックは長石中に多く存在しており、この傾向はKG及びGGの供試体に顕著で あった。各岩石ごとの観察した供試体表面積の総和はそれぞれAGが464mm², OGが404m m², GGが446mm², KGが392mm²であり、測定したクラック数の総和はそれぞれAGが 1947個, OGが 1960個, GGが2331個, KGが 2276個である。

3.3.2 クラック密度の推定

前節において、岩石実質部の弾性率が岩石を構成している鉱物の弾性率と含分比から推定さ れることを示した。したがって、各岩石の有効弾性率を推定するために必要となるクラック密 度は、供試体中に存在するすべての大きさのクラックについて求める必要がある。ここで、花 歯岩中に潜在するクラックの形状がすべて円板状であり、その方位分布がランダム分布で表さ れるものと仮定すると、この場合のクラック密度Φは(I.2.27)式から(I.3.2) 式で表される。

$$\Phi = N/8V \cdot \int_{0}^{\Gamma_{max}} r^{3} P_{R}(r) dr \qquad (I. 3. 2)$$

ここで、N,V,r,P_R(r):前出(第2章第2節)。また、r_{max}は供試体中に存在するク ラックの最大直径であり、供試体寸法に対応した大きさをもつものである。P_R(r)が供試体 中に存在するクラックの確率密度関数であると考えれば、当然、P_R(r)=0(r>r_{max})で あるとみなすことができる。したがって、この場合には、クラック方位分布が一様分布である ものと仮定すれば、クラック密度はクラック交線長分布の確率密度関数P_T(t)と単位面積当 りのクラックの数N_S/Sを用いて(I.2.28)式より(I.3.3)式で表される。

 $\Phi = 3/4\pi \cdot N_{s}/S \cdot \int_{0}^{r_{max}} t^{2}P_{T}(t) dt \qquad (I.3.3)$

花崗岩中のクラックは若干配向性を有していることが知られているが、ここではクラック方位 分布が一様分布で与えられるものと仮定し、(I.3.3)式を用いてクラック密度の値を推 定することにした。測定により求められた各岩石の(Ns/S)Pr(t)、すなわち、交隷長が tであるクラックの単位面積当りの数とクラック交線長tとの関係をFig.I.3.2に示 す。ここで、(Ns/S)Pr(t)の値は採取方向の異なる3種の供試体について求められた値の 平均値を用いて表している。Fig.I.3.2より(Ns/S)Pr(t)とtの関係は片対数 上で折れ線で表される分布をなしていることがわかる。これは、交線長の長いクラックは比較 的長石中に多いことから、鉱物の種類により、その内部に存在するクラックの長さの分布が異 なることに関係しているものと考えられる。すなわち、この分布特性は、用いた供試体が多結 晶岩石であることを示しているものと思われる。そこで、(Ns/S) Pr(t)がFig.I. 3.2中に実線で示した折れ線分布であると仮定し、(I.3.3)式の積分を実行してクラ ック密度の値を算定した。なお、rmaxの値は供試体直径に合せてrmax=30(mm)として計算

を行ったが、rmaxが10(mm)以上の場合には求められるクラック密度の値はほとんど変化し なかった。求められたクラック密度の値はそれぞれAGが 0.128, OGが 0.250, GGが 0.3 33, KGが 0.375となった。なお、前述した方法によるクラック観察では、常圧下で閉合型ク ラックとして存在している様なクラックや開口幅の小さなクラックはその読み取りが充分にな されているとは言いがたいため、求められたクラック密度の値は真の値よりも若干小さめの値 となる可能性を含んでいるものと思われる。

3.4 静水圧試験

3.4.1 実験の概要

応力の増大に伴う岩石内のクラックの閉合過程及び3.2節に示した岩石実質部の圧縮率の 値の妥当性を検討することを目的として、各供試体を用いて静水圧試験を行った。静水圧試験 養置は通常の三輪試験に用いられる封圧試験装置と同様なものであるが、軸圧ビストンを供試 体と接触させずに封圧室内の流体を加圧するようにして静水圧を発生させるものである。なお、 静水圧容器は最大容量300MP a であり、計測用ケーブル24本が封圧室内から外部へ取り だせるように設計されている。実験では、各静水圧力下における供試体のひずみを測定した。 静水圧の値は軸圧ビストンの軸力から換算して求めたが、予備実験により低圧下の軸圧ビスト ンの摩擦抵抗は無視可能な量であることを確認している。供試体のひずみは供試体側面にクロ ス型抵抗線ひずみゲージを計4枚接着して測定した。特に、ひずみゲージの接着にあたっては 高圧下でのゲージの損傷を防ぐため、まず供試体表面をエポキシ系樹脂で被覆し、その上にゲ ージをシアン系接着剤で接着した。この様な作業を行った上で、供試体全体をシリコン系樹脂 でモールドして実験に供した。

3.4.2 実験結果及び考察

実験により求められた各供試体の静水圧力と軸ひずみの関係をFig.I.3.3に示す。 Fig.I.3.3において、(a)はAG、(b)はOG、(c)はGG、(d)はKGの それぞれの供試体の結果を示している。Fig.I.3.3より、100MPa以上の高静水圧 下では、4種の花崗岩ともに圧力-軸ひずみ関係が直線となりその傾きは、供試体採取方向に さほど依存せずほぼ一定であることがわかる。また、50MPa以下の低圧下では圧力-軸ひず み関係が下に凸の曲線となり、その非線形性の程度は岩石の種類及び供試体採取方向によって

異なっていることがわかる。これは 、低圧下では、圧力の増大に伴って 岩石内に存在する開口型クラックが 閉合型クラックに移行していくため 、圧力ー軸ひずみ関係が非線形とな り、高圧下では、岩石中に存在して いた開口型クラックのほとんどが閉 合した状態になるため圧力ー軸ひず み関係が線形となるものと説明され る。供試体採取方向による圧力一軸

Table. I.3.4 圧縮率 β cの理論値と実験値の比較

Rock	Experimental value (l/TPa)	Theoretical value (l/Tpa)
Aji granite (AG)	19.6	19.9
Ohshima granite (OG)	20.3	19.9
Kurahashijima granite (GG)	20.0	20.9
Kitagishima granite (KG)	21.2	20.8

ひずみ関係の非線形性の差異はクラックの配向性に関係しているものと考えられる。ここで、 Fig.I.3.3に示した結果をもとに、100MPa以上の圧力における各岩石の圧縮率を 求めたものがTable.I.3.4である。なお、Table.I.3.4には3.2節で 示した岩石実質部の圧縮率の理論推定値を併記してある。Table.I.3.4より実測値 と岩石実質部の圧縮率の推定値とが良く一致していることがわかる。すなわち、この結果は、 3.2節で示した圧縮率の推定法の妥当性を示すとともに、各岩石中に存在する開口型クラッ クを閉合させるのに要する圧力が大略 100MPa以下であることを示しているものと考えられ る。

3.5 一輪圧縮試験

3.5.1 実験の概要

各供試体の応力と接線ヤング率及び接線ボアソン比の関係を実験的に検討することを目的と して一軸圧縮試験を行った。ここで、接線ボアソン比とは、任意の応力段階における応力一軸 ひずみ曲線の接線勾配 dɛ₁/dσ (ここで、ɛ₁;軸ひずみ,σ;応力)と応力-周ひずみ曲線 の接線勾配 dɛ₁/dσ (ここで、ɛ₁;周ひずみ)とを用いて-(dɛ₁/dσ)/(dɛ₁/dσ)=-(d ɛ₁/dɛ₁)で定義される量である。載荷はアムスラー型万能試験機を用いて、応力速度ほぼ一 定 (20 kPa/s)の条件で行った。供試体のひずみの測定は供試体側面にクロス型抵抗線 ひずみゲージを4枚接着し、その抵抗変化をディジタルひずみ計を用いて計測するという方法 で行った。

3.5.2 実験結果及び考察

実験によって得られた各供試体の応力-軸ひずみ関係をFig.I.3.4及びFig.I. 3.5に示す。Fig.I.3.4は全応力範囲にわたって描いたものであり、Fig.I. 3.5は30MPa以下の低応力範囲を拡大して描いたものである。Fig. I.3.4及びF ig.I.3.5より、応力ー軸ひずみ関係は低応力下では下に凸の曲線となるが、その後応 力の増大に伴って直線になり、さらに応力が増大して破壊応力に近付くと上に凸の曲線となる ことがわかる。この応力-軸ひずみ関係の低応力下における非線形性は潜在する開口型クラッ クの閉合現象に対応し、高応力下における非線形性は岩石内のマイクロフラクチャーの発生、 すなわち、ダイラタンシー現象に対応しているものと説明される^{9),10)}。また、同一の試料で も、供試体の採取方向により、低応力下の非線形性の程度が異なることが認められるが、これ は静水圧試験の場合と同様に、クラックの方位分布が一様でないことに関係しているものと考 えられる。ここで、Fig.I.3.4及びFig.I.3.5の結果をもとにして、応力と 接線ヤング率の関係を求めたものがFig.I.3.6である。また、Fig.I.3.7は 各応力における軸ひずみと周ひずみの値をもとにして、応力と接線ボアソン比の関係を求めた ものである。Fig.I.3.6より、岩種によりその傾向は若千異なるが、大略 50~100M P a 以下の応力では、応力の増大に伴って接線ヤング率が増大することが認められ、その傾向 はクラック密度の値が大きい岩石程顕著であることがわかる。この低応力下における接線ヤン グ率の増大は、潜在する開口型クラックが閉合型クラックに移行する現象¹¹⁾、すなわち、第 1章の表現を用いればq*の値の低下現象として解釈することができる。したがって、クラッ ク密度が大きい程この傾向が顕著に現われてくることになる。同様な傾向はFig.I.3. **7の応力とボアソン比の関係にも現われている。応力の増大に伴って、岩石内にマイクロフラ** クチャーが発生し始めると岩石内部に新たなクラックが生成するため接線ヤング率は低下し、 接線ボアソン比は増大することになる。特に、マイクロフラクチャーによって生成するクラッ クは、その法線ベクトルが加圧方向と直交するものが卓越するため、その影響は接線ヤング率 よりも接線ボアソン比に顕著に現われてくる¹⁰⁾。また、クラック密度の高い岩石程、このダ イラタンシーの開始する応力が低くなっているが、これはFig.I.3.2に示したように、 クラック密度の高い岩石程、比較的大きなクラックを数多く有していることに関係しているも のと考えられる。

Fig. I.3.4 一軸圧縮試験における応力-軸ひずみ曲線(全応力範囲) (a)庵治花崗岩、(b)大島花崗岩, (c)倉橋島花崗岩,(d)北木島花崗岩

Fig. I.3.5 一軸圧縮試験における応力ー軸ひずみ曲線(低応力範囲) (a)庵治花園岩,(b)大島花園岩,(c)倉橋島花園岩,(d)北木島花園岩

(c) 倉橋島花園岩, (d) 北木島花崗岩 Fig. I.3.6 応力と接線ヤング率の関係 (a) 庵治花崗岩,(b) 大島花崗岩,

3.6 弾性率の評価

第1章第4節に示した有効弾性率評価式((I.1.64)式)は分布クラックを有する岩 石の有効弾性率は、岩石実質部の弾性率E及びν,クラック密度Φ,状態係数q*及びクラッ ク相対面間の摩擦係数μの値により決定されることを示している。本節では、本章第2節~第 4節までの結果と他の研究報告例をもとにして上記のパラメータの値を算定し、これらを(I. 1.64)式に代入して各岩石の有効弾性率の理論推定値を求める。そして、これらの理論推 定値を本章第5節に示した実験結果と対比することにより、上記理論の適用性を検討する。

まず、v=0.25と仮定し、このvの値と本章第2節に示した岩石実質部の圧縮率の値とから

求められたEの値及び本章第3 節に示したクラック密度Φの値 をそれぞれTable.I.3 .5に示す。摩擦係数μの値に ついては、本論文では検討を行 っていないが、Byerlee ¹²⁾の研究成果を参考にすると 花崗岩では大略μ=0.5である ことが推察される。状態係数

Table. I.3.5 推定された各岩石の物性値

Rock	Intrinsic Young's modulus E (GPa)	Intrinsic Poisson's ratio v	Crack density ¢
Aji granite (AG)	75	0.25	0.128
Ohshima granite (OG)	75	0.25	0.250
Kurahashijima granite (GG)	72	0.25	0.333
Kitagishima granite (KG)	72	0.25	0.375

q*は著者が新たに導入したバラメータであり、その定義から0≦q*≦1の値を有するもので ある。ここで、q*=1は存在するクラックがすべて開口型クラックである場合を示し、q*= 0は存在するクラックがすべて閉合型クラックである場合を示す。また、本章第4節及び第5 節の実験結果をもとにすると、q*の値は応力に依存し、低応力下で大きく、高応力下で小さ くなる事が予想される。特に、100MP a 以上の静水圧下では q*≒0となるものと思われる。 上記の点を考慮すると、q*=1として求められる有効弾性率は理論的に予測される値の下限 値を与え、q*=0として求められる有効弾性率は理論的に予測される値の上限値を与えるこ とになる。したがって、以下では、上記の考えを前提として、各岩石の弾性率の下限値及び上 限値について理論値と実験値を比較する。なお、一軸圧縮試験により求められた各供試体の弾 性率は異方性を有しているが、以下では、この異方性の影響を除去するために、各岩石の弾性 率の値として互いに直交する3方向の供試体について求められた値の平均値を用いることにす る。

Table.I.3.6は有効ヤング率及び有効ボアソン比の下限値について理論値と実験

Rock	Experimental values		Theoretical values (q*=1.0)	
	Young's modulus(GPa)	Poisson's ratio	Young's modulus(GPa)	Poisson's ratio
Aji granite (AG)	52	0.17	57	0.19
Ohshima granite (OG)	35	0.12	41	0.14
Kurahashijima granite (GG)	28	0.11	29	0.11
Kitagishima granite (KG)	17	0.11	23	0.09

Table. I.3.6 弾性率の下限値に関する理論値と実験値の比較

値を比較したものである。ここで、理論値はTable.I.3.5に示した値を(I.1. 64)式に代入しq*=1として求めた有効弾性率であり、存在するクラックがすべて開口型 クラックである場合の計算値を示している。実験値はFig.I.3.6及びFig.I.3. 7に示した結果から応力0~5MPaの範囲における接線ヤング率及び接線ボアソン比の値を 調べたものであり、実験により求められた接線弾性率の最低値を示している。ここで、常圧下 もしくは5MPa以下の応力下では岩石内に潜在するクラックのほとんどが開口型クラックと して存在しているものと仮定すると、Table.I.3.6に示した理論値と実験値は互い に対応するものであると考えることができる。この様な考えのもとで理論値と実験値は互い に対応するものであると考えることができる。この様な考えのもとで理論値と実験値に比較す ると、両者の値は大略の一致をみているものと思われる。特に、若干、理論値が実験値に比べ て高い値となっているが、これは観察によって求められたクラック密度の値が過小に評価され ていることに関係しているものと思われる。すなわち、常圧下においても閉合型クラックとし て存在しているクラックや開口幅の極めて小さいクラックは本章第3節に示した測定の構度で は読み取られていない事を意味しているものと思われる。しかしながら、表に示した理論値は 岩石供試体の表面の観察結果のみから求められている事を考慮すれば、理論値と実験値は良く 対応していると考えられる。

次に、有効ヤング率及び有効ボアソン比の上限値について理論値と実験値を比較したものが Table.I.3.7である。ここで、理論値はTable.I.3.5の値を(I.1. 64)式に代入しα*=0及びμ=0.5として求めた有効弾性率であり、存在するクラックがす べて閉合型クラックである場合の計算値を示している。なお、前述したように、Table.

Rock	Experimental values		Theoretical values (q*=0.0,µ=0.5)	
	Young's modulus(GPa)	Poisson's ratio	Young's modulus(GPa)	Poisson's ratio
Aji granite (AG)	63	0.32	71	0.26
Ohshima granite (OG)	62	0.35	67	0.27
Kurahashijima granite (GG)	58	0.31	63	0.28
Kitagishima granite (KG)	47		61	0.29

Table, I.3.7 弾性率の上限値に関する理論値と実験値の比較

I.3.5に示したクラック密度は実際よりも若干過小に評価されているものと考えると、T able.I.3.7に示した理論値は若干過大に評価されているものと考えられる。実験値 はFig.I.3.6及びFig.I.3.7に示した結果から、接線ヤング率の最大値とそ の応力における接線ボアソン比の値を求めたものである。したがって、実験値にはダイラタン シーの影響が含まれているため、破壊を考慮しない場合に比べてヤング率は若干過小に、ボア ソン比は過大に評価されているものと考えられる。上記の前提のもとで、理論値と実験値を比 較すると両者はほぼ対応関係をもっていることがわかる。ここで、Table.I.3.6に 示した有効弾性率の下限値の理論値と実験値との差異がクラック観察で読み落されている閉合

型クラックの存在に関係しているも のと仮定し、この常圧下で閉合型ク ラックとして存在するクラックのク ラック密度を実験値から逆算して求 めるとそれぞれAGが 0.19, OG が 0.21, GGが 0.03, KGが 0.2 3となった。これらの値を用いてT able. I.3.5に示したクラ ック密度の値を補正し q*=0, μ= 0.5の場合の有効弾性率の理論推定 値を求めるとTable.I.3.

Table. I.3.8 補正	Eされたクラック密度による
弾性	E率上限値の理論値

Rock	Theoretical values (q*=0.0,µ=0.5)		
	Young's modulus(GPa)	Poisson's ratio	
Aji granite (AG)	65	0.28	
Ohshima granite (OG)	62	0.29	
Kurahashijima granite (GG)	62	0.29	
Kitagishima granite (KG)	55	0.31	

8となる。Table.I.3.8とTable.I.3.7を比較すると上記のクラック密 度の補正により理論値と実験値とが良く一致してくることがわかる。しかし、ヤング率に関し ては理論値は実験値に比べて若干大きめの値となり、ボアソン比に関しては理論値は実験値に 比べて小さい値となっているが、これは理論値にはダイラタンシーの影響が考慮されていない ことに関係しているものと思われる。したがって、より詳細なクラック観察とダイラタンシー に伴うクラック密度の増加量の推定がなされれば、(I.1.64)式を用いて岩石の弾性率 をかなりの精度で推定することが可能となるものと思われる。しかし、今回の実験の範囲にお いても、理論値と実験値がほぼ対応した値を示していることが確かめられたものと思われる。

3.7 岩盤の変形性の評価法に関する一考察

前節までに示した実験的検討により、クラック理論を用いた変形性評価式、(I.1.64) 式、の妥当性が確認されたものと考える。そこで、本節では、以上の基礎研究の成果をまとめ るとともに、実際に鉱柱及び岩盤の変形性を評価する上で問題となる事項について検討を加え る。

数多くの不連続面を有する鉱柱及び岩盤の有効ヤング率E*は、不連続面の方位分布が一様 であると仮定される場合には(I.1.64)式で表される。特に、近似式(I.1.65) 式を用いれば(I.3.4)式で表される。

$$E^*/E = 1 - \Phi^{e_1} \{ 16/45 \cdot M(\mu) \cdot (1 - q^*) + 16/9 \cdot q^* \}$$
 (I. 3. 4)

ただし、

 $M(\mu) = (2\mu^4 + 3\mu^2 + 2)/(\mu^2 + 1)^{3/2} - 2\mu$

である。(I.3.4)式のパラメータは、岩盤を構成している岩石のヤング率E,岩盤の有 効クラック密度Φ^{*1},不連続面の摩擦係数μ及び開口型不連続面と閉合型不連続面との比率を 表す状態係数q*の4つであり、これら4つの諸量が定量化されれば岩盤の有効ヤング率が推 定されることになる。ここで、構成岩石のヤング率Eはその岩盤から採取した岩石供試体の材 料試験により決定される量である。また、有効クラック密度 Φ^{e_i} は、岩盤壁面において、上記 の供試体寸法より大きな交線長をもつクラックを計数し、その単位面積当りの数N $\b /Sと単 位測線長当りの数N $\b /Lを求めれば、第2章第3節で示した方法によってその値を推定する ことができる。不連続面の摩擦係数 μ の評価法としては種々の方法¹³⁾が提案されている。特 に、Patton¹⁴⁾は不連続面の粗さが摩擦係数に及ぼす影響を検討し、不連続面の摩擦係 数が基本摩擦角 ϕ_b 及び平均粗さ角 θ_d を用いて(I.3.5)式で表されることを示している。

 $\mu = \tan(\phi_b + \theta_d) \qquad (I. 3. 5)$

ここで、基本摩擦角φ_bはダイヤモンドカッターで切断された平な岩石表面の摩擦角であり、 種々の岩石についてその値が求められている。また、平均粗さ角はすべりの方向から見た不連 続面の起伏の平均角度であり、岩盤表面に現われる不連続面の観察により求められる量である。 したがって、(I.3.5)式を用いれば、岩盤表面の簡単な計測によりµの値が推定される ことになる。なお、Barton¹⁵⁾は不連続面に作用する鉛直応力の影響を考慮して(I. 3.5)式を書換えた表現を与えている。また、不連続面を含む岩石供試体の三軸圧縮試験及 び直接せん断試験により不連続面の摩擦係数を実験的に求めることも可能であると思われる ¹⁶⁾。状態係数q*は著者が新たに導入した量であり、その評価法に関する研究は例を見ないが、 この量は従来の岩盤評価法¹⁷⁾において不連続面の開口状態として取り扱われている事項と対 応するものと思われる。特にq*は応力に依存する量であるため、同一の岩盤においても深度 により異なり、また、地下空洞開削に伴う応力変化によっても変化する量であると考えられる。 そこで、以下では原位置岩盤のq*の値を定量的に推定するための方法論について若干の考察 を行う。

Walsh¹¹ は岩石の動弾性係数と静弾性係数の値の差異が岩石内に存在する閉合型クラ ックの性質に起因していることを理論的に明らかにしている。すなわち、弾性波による動的応 力が作用する場合は、静的一軸応力が作用する場合に比較して閉合型クラックの摩擦すべりが 生じにくくなることを指摘している。特に、静的な一軸圧縮応力下にある岩石中をその一軸圧 縮応力の作用方向と直交する方向にP波が伝播する場合には、P波による動的応力の作用によ っては閉合型クラックの摩擦すべりはほとんど生じえないことを示している。このWalsh の考えをもとにして、岩盤中に存在する閉合型不連続面を、弾性波による動的応力下で摩擦す べりが生じうるものと生じえないものに分類し、それらのクラック密度の比率を1-kd:kd

(ここで、0 くka≦1である。)とおくと、岩盤内の不連続面は次の3種のクラックに分類 され、それらのクラック密度は次の様になる。

a*Φ*i

① 開口型クラック

② 弾性波による応力変化により
 摩擦すべりが生じうる閉合型クラック (1-k_d)(1-q*)Φ^{*1}
 ③ 弾性波による応力変化では

摩擦すべりが生じえない閉合型クラック k_d(1-q*)Φ^{ef}

ここで、弾性波の波長がクラック長に比較して充分大であり、動的問題を準静的問題として取 り扱うことが可能であるものと仮定すると、岩盤の静弾性率には上記①, ②及び③のすべての クラックが関係するが、岩盤の動弾性率には①及び②のクラックのみが関係することになる。 したがって、弾性波速度から求められる岩盤の動的ヤング率E¹よとその岩盤を構成する岩石の 動的ヤング率E¹の間には(I.3.6)式の関係が成立することになる。

 $E_{d}^{*}/E_{d} = 1 - \Phi^{e_{1}}\{16/45 \cdot M(\mu)(1 - q^{*})(1 - k_{d}) + 16/9 \cdot q^{*}\}$ (I. 3. 6)

(Ⅰ、3、6)式中のΦ^{*1}及びμは前述の方法により推定される量であり、E^{*}/E₄は原位置 岩盤とその岩盤から採取された岩石供試体の弾性波速度の測定により求められる値である。し たがって、いま、k₄が既知定数であると仮定すると、(Ⅰ、3、6)式の未知数はq*のみと なる。そこで、(Ⅰ、3、6)式をq*について解けば(Ⅰ、3、7)式となる。

 $q^{*} = \{(1 - E_{d}^{*}/E_{d})/\Phi^{*'} - 16/45 \cdot M(\mu)(1 - k_{d})\}/\{16/9 - 16/45 \cdot M(\mu)(1 - k_{d})\}$ (I. 3. 7)

O≦q*≦1, O くka≦1であることを考慮すると、(I.3.7)式はka=1のときq*の 値が最大値をとることを示しており、また、(I.3.4)式はq*の値が大きい程E*の値が 小さくなることを示している。そこで、ka=1であると仮定すると(I.3.7)式は(I. 3.8)式となる。 $q^* = 9/16 \cdot (1 - E_d^*/E_d)/\Phi^{e_f}$ (I. 3. 8)

(Ⅰ, 3, 8) 式は a*の最大推定値を与えるものであり、この a*の値を用いて推定される E*の値は最小推定値となる。したがって、工学的に安全側の推定値を得る場合には(I.3. 8)式を用いて q*の値を推定しても良いものと思われる。なお、より正確な q*の値を推定す るためには、その岩盤の初期応力状態と弾性波による動的応力の特性を考慮した解析を行い、 より適確なkェの値を求める必要があると思われる。しかしながら、(I.3.7)式及び(1.3.8)式は、前述した岩盤壁面における不連続面計測とともに原位置岩盤の弾性波速度 と供試体の弾性波速度の計測を行うことによりa*の大略の値が推定されることを表している。 なお、岩盤のP波伝播速度Vpmとその構成岩石のP波伝播速度VpLの比の2乗(Vpm/VpL)²は Velocity index18)と呼ばれ岩盤のき裂状態を表す一指標値として用いられている。ここで、 Velocity index は岩盤と岩石供試体の動的ヤング塞、動的ボアソン比及び密度の差異を表す 量であるが、一次近似的には岩盤と岩石供試体の動的ヤング率の比率EオノEュを表す量として とらえることができる。したがって、(I.3.7)式及び(I.3.8)式中のE#/Eaは Velocity index(Vpm/Vpl)2で近似的に表現されるものと思われる。すなわち、(I.3. 7) 式及び(I.3.8) 式は、Velocity indexを用いた岩盤分類法の物理的背景を考える上 でも興味あるものと思われる。なお、上記の結論は、厳密さに欠ける点もあるため、その適用 性の検討は今後の課題であると思われるが、通常用いられる計測法を応用することによりa* の値を簡便に評価できる可能性を示せたものと考える。

以上、変形性評価式のパラメータの推定法について述べてきたが、パラメータ推定のために 必要となる測定の項目、すなわち、岩盤表面における不連続面の観察、岩盤から採取した供試 体の材料試験及び岩盤の弾性波伝播速度の測定は、個々には従来の経験的岩盤評価法において も重要な測定項目として挙げられているものである。したがって、著者の提案する変形性評価 式のパラメータ、E、Φ^{ef}、q*及びμはこれらの測定項目に対応した不連続岩盤の種々の力 学特性を表現したものであると考えることができる。

3.8 結言

4種の花崗岩供試体をモデルとして、鉱柱及び岩盤の変形性評価法に関する実験的検討を行った。得られた結果をまとめて以下に示す。

(1) 構成鉱物の含分比から(I.3.1)式によって求められる各岩石の圧縮率はそれぞれ 庵治花崗岩が 19.9(TPa)⁻¹,大島花崗岩が 19.9(TPa)⁻¹,倉橋島花崗岩が 20.9(TPa)⁻¹,北木島花崗岩が 20.8(TPa)⁻¹となり、これらの値は 100MPa以上の静水 圧下における各岩石の圧縮率の値とほぼ一致することが確かめられた。これらの結果から各岩 石の岩石実質部のヤング率はそれぞれ庵治花崗岩が 75GPa,大島花崗岩が 75GPa,倉橋 島花崗岩が 72GPa,北木島花崗岩が 72GPaであることが推定された。

(2) 供試体表面のクラック観察により各岩石のクラック密度の値を推定した。求められたクラック密度の値はそれぞれ庵治花崗岩が 0.128, 大島花崗岩が 0.25, 倉橋島花崗岩が 0.333, 北木島花崗岩が 0.375であった。

(3) 一軸圧縮試験により各岩石の接線弾性率と応力の関係を実験的に明らかにした。そして、 (1)及び(2)の結果をもとにして求められる各岩石の有効弾性率の理論推定値が実験値とほぼ一 致することを確かめた。この結果により、第1章に示した有効弾性率評価式の妥当性が確認されたものと思われる。

(4) 鉱柱及び岩盤の変形性を評価する上での具体的問題として、変形性評価式のパラメータの推定法について考察を加えた。特に、状態係数 q*の推定法について検討し、岩盤と岩石供 試体の動的ヤング率の比率から q*の値を推定しうる可能性を示した。

参考文献

1) 金子 勝比古,村田 健司,柴 拓海,大見 美智人;花園岩の弾性率とその評価-岩盤の変形性 の評価法に関する基礎的研究(第2報),日本鉱業会誌投稿中

2) 金子 勝比古,柴 拓海,大見 美智人;花崗岩の力学的性質について,昭和58年度日本鉱業会 春季大会講演要旨集,pp.249-250(1983)

3) 佐野 修,工藤 洋三;岩石力学からみた石目について,昭和59年度全国地下資源関係学協会 合同秋季大会分科研究会資料,G6,pp.21-24(1984)

4) Birch.F.; The velocity of compressional waves in rocks to 10 kilobars-Part1, J. Geophys.Res., Vol.65, No.4, pp.1083-1102, (1960)

5) Brace, W.F.; Some new measurements of linear compressibility of rocks, J.Geophys. Res., Vol.70, No.2, pp.391-398, (1965)

6) Babb,S.E., Jr.; Some notes concerning Bridgman's manganin pressure scale, in High Pressure Measurement (edited by A.A.Giardini and E.D.Lloyd), pp.115-124, Butterworth (1963)

7) Walsh, J.B.and W.F.Brace; Elasiticity of rock in uniaxial strain, Int. J.Rock Mech. Min.Sci.& Geomech.Abstr., Vol.9, pp.7-15(1972)

8) Brich, F.; The velocity of compressional waves in rocks to 10 kilopars-Part2, J. Geophys. Res., Vol. 66, No. 7, pp. 2199-2224 (1961)

9) Brace, W.F., B.W.Paulding Jr.and C.Scholz; Dilatancy in fracture of crystalline rock s, J.Geophys.Res., Vol.71, No.16, pp.3939-3953(1966)

10) Scholz,C.H.;Microfracturing and inelastic deformation of rock in compression, J.Geophys.Res.,Vol.73,No.4,pp.1417-1433(1968)

11) Walsh, J.B.: The effect of cracks on the uniaxial elastic compression of rocks, J.Geophys. Res., Vol. 70, No. 2, pp. 399-411(1965)

12) Byerlee, J., Friction of rocks, Rock friction and earthquake prediction, SI, Pure and Applied Geophys., Vol.116, pp.615-626(1978)

13) Goodman,R.E.;The mechanical propaties of joints,Proc.3rd Int.Cong.ISRM,Vol.1,pp. 127-133(1974)

14) Patton, F.D.; Multiple modes of shear failure in rock, Proc.1st Int.Cong.ISRM, Vol. 1, pp.509-513(1966)

15) Barton,N.and S.Bandis;Some effect of scale on the shear strength of joints,Int. J.Rock Mech.Min.Sci.& Geomech.Abstr.,Vol.17,pp.69-73(1980)

16) Goodman,R.E.and Y.Ohnishi;Undrained shear testing of jointed rock,Rock Mechanics ,Vol.5,pp.129-139(1973) 17) 例えば Hoek,E.and E.T.Brown;Underground exavations in rock,IMM,London(1982) 18) 例えば 岩盤分類,日本応用地質学会(1984)

第Ⅱ部

鉱柱及び岩盤の安定性の評価法 に関する研究

第1章 AE計測による岩石の破壊特性に関する実験的検討[:]>

1.1 緒言

岩石の破壊機構は岩石内に発生するマイクロフラクチャーの集積を仮定することにより定性 的にはかなりよく説明されている^{2,9}。このマイクロフラクチャーが発生する際に岩石内に投射 される応力波であるAE (Acoustic Emission)を測定することにより、岩石内のマイクロフ ラクチャーの発生状況を検出して、岩石の破壊機構を定量的に解明しようとする試みがなされ てきている。この問題に関する先駆的研究としては茂木^{3),4),5)}、Scholz^{6),7),8)}等の 研究をあげることができるが、近年の計測技術の進歩に伴ってこの方面の研究は飛躍的に発展 してきている。^{9),10)}特に、佐野^{11),12)}は、AE計測の結果をもとにして岩石の破壊過程と その時間依存性に関する明解な理論を展開している。また、AE計測法は岩盤の非破壊検査法 としても実用化され、すでに本邦の炭鉱においては山はね・ガス突出の予知を目的としたAE 計測にもとづく岩盤監視^{13),14),15)}が実施されてきている。

ここでは、次章以降に詳述する鉱柱の安定性の評価を目的とした岩石の破壊の進展に伴う弾 性波伝播特性に関する研究のための基礎資料として、種々の岩石のAE発生頻度特性に関する 実験的検討を行った結果を示す。すなわち、岩石はその成因、化学組成及び組織・構造等によ り多くの種類に分類され、多種多様な性質を有している。したがって、唯一種類の岩石を用い た実験により得られた結果をもとにして岩石一般の性質を論じることにはかなりの無理がある ものと思われる。そこで、種々の岩石供試体を用いて一軸圧縮下のAE発生頻度特性を調べ、 岩石の破壊を問題とする場合、すべての種類の岩石において認められる一般的破壊現象ととも に岩石の種類の差に基づくその特異性⁴⁾を明らかにする。

1.2 実験

1.2.1 岩石試料

実験に用いた12種類の岩石試料とその物性値をTable.II,1.1に示す。すなわち、 火成岩としては花崗岩、玄武岩、流紋岩及び凝灰岩を、堆積岩としては砂岩及び頁岩を実験に 用い、また、これらの珪酸塩岩石との比較のため、炭酸塩岩石である大理石を実験に用いた。
Kind of Rock	Symbol	Compressive strength (MPa)	Tensile strength (MPa)	Longitudinal wave velocity (m/s)	Porosity (%)
Medium grained granite	KG	171.5	8.84	4690	1.04
(Kitagishima) Fine grained granite (Ohshima) Basalt (Kofu)	OG	189.1	9.39	4278	0.89
	в	228.8	17.8	5658	3.09
Rhyolite (Yanahara)	R	155.0	12.5	4919	3.08
Medium grained sandstone	MS	155.8	8.79	3785	4.17
(Izumi) Coarse grained sandstone (Izumi) Tuff I (Ogino)	CS	113.2	5.99	3381	6.18
	от	50.4	4.98	2737	32.6
Tuff II (Kunnui)	КT	74.7	6.86	3582	22.7
Tuff III (Izu)	IT	28.3	3.60	3283	29.2
Shell (Yanahara)	SH		5.30	4699	
Fine grained marble	FM	91.4	6.44	5484	0.40
(Mine) Coarse grained marble (Mine)	СМ	73.7	6.06	5875	0.16

Table. II.1.1 岩石の物性値

Fig.Ⅱ.1.1 偏光顕微鏡写真の一例 (a)細粒花コウ岩(OG),(b)中粒砂岩(MS), (c)玄武岩(B),(d)流紋岩(R),(e)凝灰岩(TL)

なお、中粒花崗岩(KG)及び細粒花崗岩(OG)は、第1部第3章の実験で使用した略称K G及びOGの花崗岩とその産地が同じものであり、結晶粒径はそれぞれ0.5~4mm及び0.5~2 mmである。また、細粒大理石及び粗粒大理石の結晶粒径はそれぞれ0.2~0.5mm及び2~4m mであった。中粒砂岩及び粗粒砂岩は、粒子径がそれぞれ0.2~0.8mm及び0.5~1.5mmであ り、共に層理面は不明瞭であったが、頁岩では極めて明瞭な層理面が認められた。

一軸圧縮試験に用いた供試体は25mm Ø×50mm、圧裂試験に用いた供試体は25mm Ø×25 mmで、いずれも円柱供試体であり、各岩石についてそれぞれ数個を同一の岩塊から採取した。 特に、頁岩の一軸圧縮試験用供試体は、層理面の方向が供試体軸(加圧軸)に対して約30度傾 いたものである。なお、供試体はすべて乾燥状態で実験に供した。また、同一の岩石試料につ いて薄片を作製し、偏光顕微鏡による観察を行った。偏光顕微鏡観察の一例として細粒花崗岩、 玄武岩、中粒砂岩、流紋岩及び凝灰岩Iのそれぞれの顕微鏡写真をFig.II.1.1に示す。

1.2.2 実験装置及び実験方法

岩石供試体の一軸圧縮試験を実施し、その際、岩石内に発生するAEの規模別発生頻度を測

定した。加圧にはアムスラー型試験機を使用 し、ほぼ一定の荷重速度(4.9kN/min)で 試験を行った。

AEの規模別発生頻度の測定は共振周波数 が6MHz、大きさが 5mm×5mm×0.5

mmの正方板型のPZT(チタン酸デルコン酸鉛系圧電振動 子)を供試体側面中央に接着し、PZTの出力をバンドパス フィルター(100kHz~2MHz)を内蔵した前置増幅器及び 増幅器により50dB増幅した後、12chパルスハイトアナライ ザーを用いて各信号の最大振幅レベルごとに計数した。12ch パルスハイトアナライザーの設定電圧をTable. Π .1.2に示す。用いた前置増幅器及び増幅器の総合周波数特性 は 100kHz~1.5MHzで一定の感度を有している。測定系 統をFig. Π .1.2に示す。なお、圧裂試験も同時に実

Fig.Ⅱ.1.2 測定系統

Table.Ⅱ.1.2 パルスハイトアナライザー の設定電圧

Channel	Threshold level (mV)
1	50
2	106
3	166
4	220
5	277
6	348
7	404
8	494
9	599
10	714
11	848
12	1001

施し、引張り強度を求めた。

1.3 実験結果及び考察

各岩石供試体について得られたAEの規模別発生頻度と比応力 σ_r (破壊応力を100%として 正規化した応力)との関係をFig. II.1.3(a)~(1)に示す。AE発生頻度は比応 力に対する発生頻度dN/d σ_r で示してある。

Fig. Π.1.3より、すべての岩石供試体について、破壊応力に近づくとAE発生頻度 が増大する傾向が認められる。この結果は多くの報告例と一致しており、岩石の破壊がマイク ロフラクチャーの集積に起因していることが確かめられる。また、最終破壊の直前においては 規模の大きなAE程増加率が大きくなることが認められる。これは、最終破壊の直前においては は、岩石内の破壊の進行速度が急激に上昇し、エネルギー的に大きなマイクロフラクチャーが 生じやすくなることを示している。この結果は岩石の破壊に先行するb値(Gutenberug-Richt erの式¹⁶⁾ log N_(M) = a - b logMの係数b、ここでM:マグニチュード、N_(M):Mより大き な規模をもつAEの発生数、a、b:定数)の低下現象⁸⁾と等価である。また、低応力下にお けるAEの発生は、岩石内部に存在するクラックのうち、加圧方向に直交する方向のクラック が閉合することにより生ずるものとして説明することができる。

以上の結果は加圧に伴って各岩石のすべてについて認められる一般的な性質であるが、詳し く見ると、各岩石のAE発生頻度特性は岩石の種類によりそれぞれ固有の特徴を示しているこ とが解る。そこで、各岩石のAE発生頻度特性の特徴と偏光顕微鏡観察により得られた各岩石 の組織構造の特徴をまとめて以下に示す。

花園岩;中粒花園岩及び細粒花園岩ともにAEの発生は低応力下から非常に活発であり、最 終破壊に至るまでに発生するAEの総発生数は 5×10⁴~10⁵と他の岩石に比べて著しく多い。 また、AE発生頻度が増大し始める点でのgrの値は約30%である。これらの特徴は、茂木³⁾ による万成花園岩、稲田花園岩及びScholz⁶⁾によるWesterly花園岩の場合についても同 様に認められ、花園岩の大きな特徴であると考えられる。また、Fig.II.1.1(a)に 示したように、深成岩である花園岩は比較的大きな結晶粒よりなる完晶質岩石であり、結晶粒 内及び結晶粒界に比較的大きなものから小さなものまでの種々の大きさの潜在クラックを数多 く有している。この点で、実験に供した他の珪酸塩岩石とその組織構造が顕著に異なっている。

Fig.Ⅱ.1.3 比応力σ,とAE発生頻度dN/dσ,の関係 (続き)

凝灰岩;3種の凝灰岩のいずれにおいても、σ_r=80~90%付近からAE発生頻度が急激に 増大し、供試体は破断に至っている。AEの総発生数はいずれも10³~10⁴程度と少なく、さら に、そのうちの大部分が最終破壊の直前に発生している。これらの傾向は花崗岩と顕著に異な っている。凝灰岩は火山灰の固結により生成された岩石であり、Fig.II.1.1(e)に 示すように、その組織構造はほぼ非晶質により形成されている。すなわち、凝灰岩では、花崗 岩で見られるような結晶粒及び結晶粒界が存在しないため比較的大きな潜在クラックが少なく、 また、内部は非晶質で比較的均質であるものと思われる。

玄武岩:AEの総発生数は10⁴~5×10⁵程度であり、AE発生頻度の増大し始める点でのσ_r の値は70%程度である。そして、花崗岩と凝灰岩との中間的なAE発生頻度特性を示している と見なすことができる。Fig. II. 1.1 (c)に示すように、玄武岩は長さが0.05~0.2 mm程度の短冊状の斜長石を主体とした結晶粒を非晶質もしくは微晶質で充填した組織構造を 有している。したがって、花崗岩に比べればその結晶粒径は小さく比較的大きな潜在クラック が少ないものと思われる。しかし、玄武岩は結晶質であるため、凝灰岩に比べれば比較的大き な潜在クラックの数は多いであろうと思われる。

流紋岩;AEの総発生数は 5×10³~10⁴であり、AE発生頻度はσ_r=80~90%付近から急 激に増大する。AE発生頻度特性からみれば、玄武岩と凝灰岩との中間的な挙動を示すとみる ことができる。Fig.I.1.1.1(d)に示したように、流紋岩は非晶質もしくは微晶質の 石基の中に粒径0.05~0.1mm程度の結晶粒が点在した組織構造を有している。したがって、 単に組織構造的観点からいえば、流紋岩は玄武岩と凝灰岩との間に位置付けられる岩石である と思われる。また、流紋岩は化学組成上は花崗岩とほぼ同等であることを考慮すれば、流紋岩 と花崗岩とのAE発生頻度特性の差はその化学組成よりも組織構造に関係していると類推する ことができる。

砂岩:中粒砂岩及び粗粒砂岩のいずれにおいても、花崗岩と凝灰岩との中間的なAE発生頻 度特性を示す。すなわち、AEの総発生数は中粒砂岩で10⁴~5×10⁵程度であり、AE発生頻 度の増大し始める点での応力はともにσ_r=30~40%程度である。砂岩は堆積岩であり、花崗 岩及び凝灰岩等の火成岩とは成因的に顕著に異なっている。そして、Fig. II. 1. 1 (b) に示す様に、砂岩は粒径のほぼ一定(中粒砂岩で0.2~0.8mm、粗粒砂岩で 0.5~1.5mm) した砂粒子よりなる組織構造を有している。

頁岩;層理面の方向が加圧軸に対して約30°傾いた供試体について圧縮試験を行ったため、

層理に沿ったすべり破壊により供試体が破断した。しかし、層理に沿ったすべり破壊に対応し て σ₁=60%付近からAE発生頻度の増加が認められる。この場合、破壊形態が他の岩石と異 なるため、AE発生頻度特性を他の岩石と比較して論じることはできないが、層理面に沿った 破壊の場合でも破断面付近にマイクロフラクチャーが集積することを意味するものであろう。 この結果は、Scholz¹⁷⁾によるfrictional sliding試験の結果に対応するものであると 考えることもできる。

大理石;他の岩石と異なり、最終破壊以前のAE発生頻度の増加率が小さく、この傾向は細 粒大理石に顕著である。また、同時に実施したひずみ計測の結果によれば細粒大理石及び粗粒 大理石ともにσ_r=60~80%程度から非弾性体積ひずみの増大が顕著に認められるが、それに 対応するAE発生数の増大は、粗粒大理石ではわずかに認められるが細粒大理石ではほとんど 認められない。これは、大理石が炭酸塩鉱物よりなる結晶質構造を有し、極めて延性的な力学 挙動を示すことに関係していると思われる。すなわち、大理石は他の珪酸塩質岩石とは異なる 変形破壊特性を有しているものと推察される。なお、細粒大理石に比べれば、粗粒大理石はA Eの発生が活発であり、σ_r=50~60%付近からAE発生頻度の増大が認められるが、これは、 大理石においても結晶粒の大きさがAE発生頻度に影響を与えることを示しているものと考え ることができる。

以上に述べた結果をまとめると、今回実験を行った範囲では、火成岩のAE発生頻度特性は その岩石の化学組成的要因よりも組織構造的要因もしくは成因に大きく影響されるのであろう。 すなわち、大略の傾向として、結晶質構造で比較的結晶が発達した岩石ほどAEの発生は活発 であり、AE発生頻度の増大し始める点でのσrの値が低く、また、非晶質構造を示す岩石ほ どAEの発生数は少なく、AE発生頻度の増大し始める点でのσrの値が高い。前者の岩石と しては深成岩である花崗岩が、後者の岩石としては凝灰岩があげられる。また、火山岩である 玄武岩及び流紋岩は、これら両者の中間的なAE発生頻度特性を示す。そして、これらのAE 発生頻度特性の特徴は岩石内に潜在するクラックの分布特性に関係しているものと考えること ができる。

堆積岩では、層理の比較的不明瞭な砂岩は玄武岩及び流紋岩と同様に花崗岩と凝灰岩との中 間的なAE発生頻度特性を示すが、層理の明瞭な頁岩は層理面にそった破壊に関係したAE発 生頻度特性を示す。また、炭酸塩岩石である大理石は、上記の珪酸塩岩石とは極めて異なるA E発生頻度特性を示す。

1.4 結言

種々の岩石供試体について一軸圧縮試験を実施し、その際発生するAEの発生頻度特性を測 定し、各岩石のAE発生頻度特性の特徴について検討した。得られた結果をまとめるとつぎの ようである。

(1)岩石の種類にかかわらず、破壊応力に近づくとAE発生頻度が増大し、また、最終破壊の 直前においては、規模の大きなAE程その増加率が大きくなる。しかし、AE発生頻度の増加 の傾向は岩石の種類によって異なる。

(2)今回実験を行った範囲では、火成岩のAE発生頻度特性はその岩石の化学組成的要因より も組織構造的要因もしくは成因に大きく影響されるのであろうと推察された。すなわち、大略 の傾向として、花崗岩の様な結晶質構造で比較的結晶が発達した岩石ほどAEの発生は活発で あり、AE発生頻度の増大し始める点での比応力の値が低く、また、凝灰岩のような非晶質構 造を示す岩石ほどAEの発生数は少なく、AE発生頻度の増大し始める点での比応力の値が高 い。玄武岩及び流紋岩等は、これら両者の中間的なAE発生頻度特性を示す。

(3) 堆積岩では、層理の比較的不明瞭な砂岩は花崗岩と凝灰岩との中間的なAE規模別発生頻 度特性を示すが、層理の明瞭な頁岩では層理面に沿ったすべり破壊に関係したAE発生頻度特 性を示すのであろう。

(4) 大理石等の炭酸塩質岩石は珪酸塩質岩石とは顕著に異なったAE発生頻度特性を示す。

参考文献

1) 金子 勝比古;岩石のAE発生頻度特性に関する基礎的研究,熊本大学工学部研究報告,第30巻, 第3号,pp.135-142(1980)

2) Brace, W.F., B.W.Paulding Jr.and C.Scholz; Dilatancy in fracture of crystalline rocks, J.Geophys.Res., Vol.71, No.16, pp.3939-3953(1966)

3) Mogi,K.;Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena,Bull.Earthq.Res.Inst.,Vol.40,pp.125-173 (1962)

4) Mogi,k.;Magnitude frequency relation for elastic shocks accompanying fractures of various materials and some related problem in earthquake,Bull.Earthq.Res.Inst.,Vol. 40,pp.831-853(1962)

5) Mogi,k.;Source location of elastic shocks in the fracturing process in rocks, Bull.Earthq.Res.Inst.,Vol.46,pp.1103-1125(1968)

6) Scholz, C.H.; Microfracturing and inelastic deformation of rock in compression, J. Geophys.Res., Vol. 73. No. 4, pp. 1417-1433 (1968)

7) Scholz,C.H.;Mechanism of creep in brittle rock, J.Geophys.Res., Vol.73, pp.3295-3302 (1968)

8) Scholz, C.H.; The frequency-magnitude relation of microfracturing in rock and its relation to earthquake, Bull.Seism.Soc.Am., Vol.58, No.1, pp.399-415(1968)

9) 例えば、Proceedings of the 2nd conference on AE/MSA in geologic structures and materials,Trans Tech Poblications(1980)

10) 例えば、第3回アコースティックエミッション総合コンファレンス論文集(1981)

11) Sano,0.;Fundamental study on the mechanism of brittle fracture of rocks,Dr. thesis,Kyoto Univ.(1978)

12) Sano.O..l.lto and M.Terada; Influence of strain rate on dilatancy and strength of Ohsima granite under uniaxial compression, J.Geophys.Res., Vol.86, No.B10, pp.9299-9311 (1981)

13) 渡辺 慶輝,中島 巌,深井 哲,板倉 賢一;岩石の異常破壊に伴うAE活動の予知の可能性, 昭和56年度全国地下資源関係学協会合同秋季大会分科研究会資料,E3,pp.13-16(1981)

14) 菅原 勝彦,金子 勝比古,野々目 洋,岡村 宏;AE計測による払地圧の監視について,昭和5 6年度全国地下資源関係学協会合同秋季大会分科研究会資料,D3,pp.9-12(1981)

15) 深井 哲,中島 巌,渡辺 慶輝;沿層ボーリングに伴うAEの計測,日本鉱業会誌,第99巻, 第1150号,pp.1041-1048(1983)

16) 例えば、岩波講座地球科学8「地震の物理」,岩波書店,東京(1978)

17) Scholz.C.,P.Molnar and T.Johnson:Detailed studies of frictional sliding of granite and implications for earthquake mechanism,J.Geophys.Res.,Vol.77,pp.6392-6406 (1972)

第2章 岩石の破壊の進展に伴う弾性波伝播速度の変化 1)

2.1 緒言

岩石は加圧に伴ってその内部にマイクロフラクチャーを生じ、その際発生したクラックが岩 石内に集積することにより有効弾性率が低下する。岩石の破壊の進展現象はマイクロフラクチ ャーによって伸長、生成したクラックの集積現象であるため、岩石内に破壊が進展するにつれ て有効弾性率が低下し、それに伴って、岩石内を伝播する弾性波の伝播速度も低下するように なる。この現象は松島^{2)・3)}により発見され、マイクロクラックの発生に伴うダイラタンシー 現象にもとづくものと解釈された。その後、岩石及び岩盤の破壊予知の観点から、多くの研究 者がこの現象に注目するようになり、現在までに種々の研究成果^{4)・5)}が発表されてきている。 また、地震の前駆現象として測地学的にダイラタンシーが観測され、それにもとづく地殻内を 伝わる弾性波の伝播速度の変化⁶⁾が観測されている。この現象が地震予知計画の一環として取り 上げられている⁷⁾。しかしながら、この岩石の破壊の進展に伴う弾性波伝播速度の低下現象に 関する従来の研究は、現象の定性的な解釈が主となっており、この現象と破壊によって生ずる クラックとの関係について定量的見地から検討した例⁸⁾は少ないものと思われる。

そこで、著者は、弾性波伝播速度の低下現象とマイクロフラクチャーとの関係について実験 的に検討し、弾性波伝播速度の低下現象を定量的に評価する方法について考察を加えた。具体 的には、岩石供試体について一軸圧縮剛性試験を行い、その際、加圧方向と直交する方向のP 波の伝播速度を測定し、得られた結果について多孔質媒体の弾性波伝播理論にもとづいた考察 を行った。

2.2 実験

2.2.1 岩石試料

実験に用いた岩石試料は次章のTable.II.3.1に示す6種類の岩石であるが、ここでは特に、中粒花崗岩(KG1),細粒花崗岩(OG1),砂岩(MS1)及び凝灰岩(OT 1)について測定した結果を考察の対象とする。KG,OG,MS,OTで示されている岩石

はすべて前章Table.Ⅱ.1.1に示した岩石と同じである。供試体はすべて6×6×12cm の角柱形に仕上げシリカゲル入のデシケータ中で100日以上乾燥した後実験に供した。

2.2.2 実験装置及び実験方法

岩石供試体について一軸圧縮剛性試験を行い、供試体内の破壊の進展に伴って生ずる加圧方 向に対して直交する方向の弾性波の伝播特性(P波伝播速度及びP波の初動の振幅減衰、特に

本章ではP波伝播速度に関 して論ずる)の変化を測定 した。また、同時に、供試 体内の破壊の進展状況を推 定するため、供試体のひず み及びAEの規模別発生頻 度も測定した。

Fig.Ⅱ.2.1に測 定系統を示す。弾性波伝播 特性の測定では、発振子及 Pulse generator Platen Pre-amplifier Filter Amplifier 12ch.pulse height analyzer (AE counts rate measurement line)

Table.Ⅱ.2.1 パルスハイトアナライザー の設定電圧

び受振子としていずれも固有振動数が390 k H2の立方体形状のの設定 PZT(詳細は3.2.2参照)を用い、これらを供試体側面 Channel に接着剤で接着し、パルスジェネレータからのパルス電圧を発 振子に加えて供試体内へP波を送りこんだ。受振子の出力は前 置増幅器、フィルターを通した後、トランジェントレコーダに 記憶させ、その波形をX-Tレコーダ上に記録した。また、場 合によっては、トランジェントレコーダの出力をシンクロスコ 10 11 12 -ブに入力し、写真楊影を行った。伝播時間はパルスジェネレ

Threshold level (mV) 1 30 ī 89 3456789 135 182 246 334 453 613 10 1096 11 1491 12 1994

ータのパルス電圧をトリガー信号としてトランジェントレコーダの外部トリガーに入れること により、発振パルスと受振波形の立ち上りとの時間差より求め、それを用いて伝播速度を算出 した。さらに、これらの測定とは別に、固有振動数1MH2のPZTを供試体側面に接着し、 その出力を前置増幅器、フィルターを通し、50dB増幅した後に12chパルスハイトアナライ ザーを用いてビーク電圧ごとのAE規模別発生頻度を測定した。パルスハイトアナライザーの 設定電圧をTable.Ⅱ.2.1に示す。なお、本章での研究に用いたAE用受振子(PZ T)は、第1章で述べた研究に用いたAE用受振子(PZT)とその寸法及び共振周波数は異 なるが、圧電素子の出力は、圧電材料が同一の場合、その素子の厚みに比例すると考えられて いる。したがって、両者のPZTの厚みの比から考えると、本章における研究に用いたAE用 受振子は第1章の研究で用いたそれの約4倍の感度をもつと推定できる。つまり、例えば第1 章における研究で用いた受振子により測定された50dB増幅でビーク電圧100mVのAEは、 本章の研究に用いた受振子によれば同じ50dB増幅でビーク電圧400mVのAEとして測定さ れることになる。一方、供試体のひずみは、供試体の4側面に各2枚ずつのクロス型ひずみゲ ージ(計8枚)を接着して測定した。

加圧に用いた試験機は、島津製作所製REH200S高速制御試験機である。試験機の制御 信号としては、岩石供試体の種類に応じて、加圧軸方向の変形速度一定あるいは横方向(加圧 軸と直角方向)の変形速度一定の2通りの制御信号のうちのいずれか1つを用いた。前者の制 御試験では、花崗岩あるいは砂岩のようなclassII型⁹⁾に属する岩石は破壊荷重近傍で急激な 破壊が生じて測定が非常に困難となる。したがって、このようなclassII型の岩石の破壊荷重 近傍での資料を正確に得るためには後者の制御試験¹⁰⁾によって測定を行った。

2.3 実験結果及び考察

実験結果の一例として、Fig. II.2.2~Fig. II.2.4に、中粒花崗岩及び砂岩 供試体のP波伝播速度C_L、AEの規模別発生頻度dN/dσ及びひずみのそれぞれと応力との 関係を示す。これらの図において、(a)は中粒花崗岩について、(b)は砂岩について得ら れた結果である。また、Fig. II.2.4において、 ε_1 , ε_2 , ε_3 はそれぞれ供試体の縦 ひずみ(加圧軸方向)、横ひずみ(加圧軸と直角方向)及び体積ひずみを表わすが、体積ひず みは $\varepsilon_3 = \varepsilon_1 + 2\varepsilon_1$ の関係式から求めたものである。なお、Fig. II.2.3に示したAE の規模別発生頻度は受振子の出力を50dB増幅したビーク電圧の値で表示してある。

Fig. Ⅱ.2.2より、花崗岩及び砂岩のいずれにおいても、最終破壊以前のある応力以 上においてP波伝播速度の低下が認められるが、花崗岩の場合は砂岩の場合に比べてより低い 応力においてP波伝播速度の低下が始まり、その低下率も大きいことがわかる。また、Fig. Ⅱ.2.4より、花崗岩,砂岩のいずれにおいても顕著なダイラタンシー現象が認められるが、 花崗岩の方がより低い応力下でダイラタンシーが始まっている。これらの現象は、Fig. Ⅱ. 2.3に示したAEの発生状況とも一致しており、ダイラタンシーが岩石内に発生し伸長する

Fig.Ⅱ.2.2 応力とP波伝播速度の関係 (a)中粒花コウ岩(KGI), (b)砂岩(MSI)

114

Fig.II.2.4 応力ひずみ曲線 (a)中粒花コウ岩(KG1), (b)砂岩(MS1)

クラックの集積により生ずることを理解することができる。 ここで、Fig. II. 2.4に おいて、ダイラタンシーが生じないものと仮定した場合に予想される供試体の弾性的な収縮の 体積ひずみ(図中の点線)とダイラタンシー開始応力以上で測定された供試体の体積ひずみと の差を非弾性体積ひずみと」と定義すると、非弾性体積ひずみはマイクロマラクチャーにより 発生・伸長したクラックに起因した膨張の体積ひずみであると考えることができる。したがっ て、花崗岩,砂岩ともに、破壊応力の90%以上においては、マイクロフラクチャーにより発生 ・伸長したクラックの集積状態(非弾性体積ひずみ ε,)はほぼ等しく、すなわち、同程度に 破壊は進展していると考えることができるが、P波伝播速度の低下現象に関しては花崗岩,砂 岩の2種の岩石の間に明らかに差異が認められる。すなわち、破壊の進展に伴うP波伝播速度 の低下には、供試体内のクラックの集積のみでなく、伸長し発生するクラックの特性が関係し ているのではないかと考えられる。そこで、この点を明確にするため、次節においては、マイ クロフラクチャーによって発生するクラックの特性を考慮して弾性波伝播速度の変化に関する 解析を行い、クラックの性状とP波伝播速度との関係を考察することにした。

2.4 クラックの特性を考慮した弾性波伝播速度の変化に関する解析

2.4.1 インクルージョンモデル

内部にクラックを含む岩石の変形特性や弾性波伝播速度は第1部第1章で詳述したように、 内部にクラックを有する弾性体の有効弾性率によって支配される。特に、クラックが開口型ク ラックであり、その内部に流体等の異種の物質を含む場合には、この有効弾性率を求める問題 はインクルージョンモデル¹¹⁾として取り扱われる。ここでは、クラック内の含有水の影響に 関する検討をも考慮し、インクルージョンモデルを用いて岩石の破壊の進展に伴う弾性波伝播 速度の変化を解析しようと考えた。検討に際しては問題が動的であることを考え、Kuste r等の提案したインクルージョンモデルを採用することにした。

Kuster等¹²⁾¹³⁾は回転楕円体形状のインクルージョンをその内部に含む弾性体の有効 動的弾性率を平面波の散乱理論を用いて解析的に解き、岩石の弾性波伝播特性の理論的表現を 明らかにした。ここで、Kuster等によって求められた結果のうちから本研究に関係の深 い式のみを示すと次の通りである。

 $C_{L} = \{ (K^* + 4 G^* / 3) / \rho^* \}^{1/2}$

$$C_T = (G^* \swarrow \rho^*)^{-1/2}$$

(I. 2. 1)

ただし、

 $(K^*-K) / (3K^*+4G) = d_c (T_{+++}/3) (K'-K) / (3K+4G)$ $(G^*-G) / \{6G^*(K+2G)+G(9K+8G)\}$

 $= d_{c}(G'-G) / \{25G(3K+4G)\} \cdot (T_{1111} - T_{1111}/3) \quad (II. 2. 2)$ $\rho^{*} = \rho(1-d_{c}) + \rho' d_{c}$

ここで、C_L,C_T;内部にインクルージョンを含む複合材料のP波伝播速度及びS波伝播速度、 K*, G*, ρ*;内部にインクルージョンを含む複合材料の有効体積弾性率,有効剛性率及び 密度、K,G,ρ;複合材料のマトリックスの体積弾性率,剛性率及び密度、K',G',ρ' ;インクルージョンの体積弾性率,剛性率及び密度、dc;(インクルージョンの体積)/(複合材料の体積)で決まるインクルージョンの体積率、Tiii,Tiii;インクルージョンの 形状(回転楕円体のAspect ratio α)及びK,G,K',G'により決まる定数である。さて、 先にも示した様に、非弾性体積ひずみε,は供試体内部に発生したクラックによる体積ひずみ であると考えることができる。そこで、(Ⅱ.2.2)式をもとに、岩石の破壊の進展を岩石 内にAspect ratio αのクラックが発生・増加していく現象であるとモデル化し、岩石内のク ラックの増大(非弾性体積ひずみの増大)に伴う岩石内のP波伝播速度の変化を考察した。す なわち、(Ⅱ.2.2)式中のK及びGをダイラタンシー開始時点での供試体の体積弾性率及 び剛性率と考え、dcを非弾性体積ひずみεェであると考えれば、(Ⅱ.2.1)式のCェ及び C⊤は岩石の破壊進展状態における伝播速度を表わすことになる。なお、(Ⅱ.2.2)式で はインクルージョン相互間の力学的干渉の影響が考慮されておらず、また岩石の一軸圧縮の際 に発生するクラックの方向は加圧方向に平行な方向が卓越すること等を考えれば、(Ⅱ・2. 2) 式中のAspect ratio αの値は岩石内に発生するクラックの真のAspect ratioの値とは異 なることになるであろう。すなわち、この場合にはlphaはみかけのAspect ratio、すなわちモデ ル定数としてのAspect ratio相当値として取り扱われることになるが、その値の大小関係をも とにして、岩石内に発生するクラックの真のAspect ratioの値の相対的大小関係を論ずること は充分可能であるものと考えられる。

2.4.2 理論値と実測値の対比

前節で述べた実験に用いた中粒花崗岩(KG1),細粒花崗岩(OG1),砂岩(MS1), 凝灰岩(0T1)の4供試体について、実験結果から推定したそれぞれの物性値(中粒花園岩 ;K=4.45×10¹¹dyn/cm²,G=1.24×10¹¹dyn/cm²,ρ=2.66g/cm³,細粒花崗岩;K=4 $.29 \times 10^{11}$ dyn/cm², G=1.14×10¹¹ dyn/cm², ρ =2.62g/cm³、砂岩;K=2.95×10¹¹ dyn /cm², G=1.06×10¹¹dyn/cm², ρ=2.54g/cm³, 凝灰岩; K=9.62×10¹⁰dyn/cm², G= 4.17×10¹⁰dyn/cm², ρ=1.82g/cm³)を(II.2.1)式及び(II.2.2)式に代入し て非弾性体積ひずみε」とP波伝播速度の関係を求めた。この様にして求められたダイラタン シー開始応力以上でのP波伝播速度と非弾性体積ひずみε₁との関係をFig.Ⅱ.2.5に 示す。ただし、Cuはダイラタンシー開始応力におけるP波伝播速度である。これらの図にお いて、実線は理論値を示し、αの値はAspect ratio相当値を表わす。また、〇印で示した値は 実験結果から求めた実験値である。なお、理論計算に用いた材料の物性値については、載荷状 熊におけるS波伝播速度を測定していないため、Gに関しては無載荷状態におけるS波伝播速 度と密度からその値を求め、Kの値に関しては、Gの値とダイラタンシー現象の起こる直前の 載荷状態でのP波伝播速度及び密度の値とから求めた。しかし、低載荷時のクラックの閉合に よるGの値の変化はKの値の変化に比べて小さいため、上記のような方法で物性値を求めたと しても結果にはほとんど影響はないと考えられる。また、インクルージョン内部の媒質として は、空気(K'=1.45×10⁶dyn/cm²,G'=0.0dyn/cm²,ρ'=8×10⁻⁴g/cm³)の場合と真 空($K'=G'=0.0dyn/cm^2$ 、 $\rho'=0.0g/cm^3$)の場合を考えたが、計算結果にはほとんど差 異が認められなかったため、Fig・Ⅱ・2.5には特にそれらの結果を区別して表わしてい ない。

Fig. II.2.5に示した理論曲線によれば、非弾性体積ひずみの増大に伴ってP波伝播 速度は低下する傾向を示すが、その低下の割合はクラックのAspect ratio相当値に大きく影響 をうけることがわかる。そこでFig. II.2.5に示した実験結果と理論曲線とを対比させ ることにより、それぞれの供試体内に生じたクラックのAspect ratio相当値 α の値を推定する と、中粒花園岩で2×10⁻³~3×10⁻³、砂岩で10⁻²~5×10⁻²、細粒花園岩で5×10⁻³~7×10⁻³、 凝灰岩で10⁻²~1.5×10⁻²となり、花園岩は砂岩や凝灰岩に比べてAspect ratioの小さいクラ ックが卓越して発生していると考えることができる。また、Fig. II.2.5において、細 粒花園岩と中粒花園岩を比べると、細粒花園岩の方が中粒花園岩に比較して α の値が大きいこ とが認められる。斎藤等¹⁴⁾は石灰質岩石の結晶粒径と岩石内に潜在するクラックのAspect ra

Fig. II.2.5 非弾性体積ひずみ ε₁と伝播速度比 C_L/C_{L0}及びAE積算発生数Nの関係 (a)中粒花崗岩(KG1), (b)細粒花崗岩(0G1), (c)砂岩(MS1), (d)凝灰岩(0T1)

tioの間に負の相関が認められることを報告している。著者の研究では岩石内に発生するマイ クロフラクチャーによって生じるクラックのαを問題にしているため、斎藤等の報告例と直接 対応させることはできないが、定性的にみて矛盾はないものと考えられる。従って、中粒花園 岩と細粒花園岩のクラックのAspect ratioの差はその岩石を構成する結晶粒の大きさに関係し ていると考えることができる。また、砂岩及び凝灰岩は花園岩に比べて発生するクラックのAs pect ratioが大きくなっていることを考慮すると、結晶質岩石で結晶粒径が大きい岩石程発生 するクラックのAspect ratioが小さくなると考えることができる。これは、結晶質岩石では結 晶粒内及び結晶粒界等に比較的Aspect ratioの小さなクラックが発生しやすく、結晶粒径が大 きい程この傾向が顕著となることを意味していると考えることもできる。

さて、Fig. II. 2.5には、ダイラタンシー開始応力以上でのAEの積算発生数Nと非 弾性体積ひずみ ε_1 との関係もあわせて示しておいた。Fig. II. 2.5より、非弾性体積 ひずみの増大に伴ってAE積算発生数はほぼ直線的に増大するが、その直線の傾きは発生する クラックのAspect ratioが小さいと考えられる岩石程大きくなっていることがわかる。そこで、 次に、Fig. II. 2.5に示した非弾性体積ひずみ ε_1 とAEの積算発生数Nとの関係につ いて若干の考察を行う。

今、Nがマイクロフラクチャーの積算発生数であり、ε₁がマイクロフラクチャーに起因した体積ひずみであると考え、マイクロフラクチャーによって生じるクラックの平均体積をν_c、供試体体積をν₀とおくと、Nとε₁の間には(Π.2.3)式の関係が成り立つものと考えられる。

 $N = (V_0 / v_c) \epsilon_1$ (II. 2. 3)

Fig. II. 2.5において、ε, とNの間に直線関係が成り立つ領域に注目してその傾きV₀ /v_cを求め、その値を図中に示しておいた。そこで、それぞれの岩石についてV₀/v_cの値 からv_cの値を求めると、中粒花崗岩で0.59×10⁻²mm³、細粒花崗岩で1.4×10⁻²mm³、砂岩で6. 8×10⁻²mm³、凝灰岩で6.4×10⁻²mm³となった。ここでは、クラックの長さに関する検討を行っ ていないため一概に結論づけることはできないが、この結果は、発生するクラックのAspect r atioの値が小さい岩石程、クラックの平均体積v_cが小さくなることを示していると思われる。 すなわち、マイクロフラクチャーによって生じるクラックの形状は、非弾性体積ひずみとP波 伝播速度の関係のみならず非弾性体積ひずみとAE発生数の関係を考える上でも重要な因子で

2.5 弾性波伝播速度を利用した鉱柱監視法に関する考察

岩石内の破壊の進展に伴ってP波伝播速度が低下する傾向を示すことは従来からも知られて おり、また前述したように、著者の行った実験によっても確かめることができた。しかし、従 来はそのような現象の単なる定性的な説明のみに終っており、破壊の進展に伴って岩石内に集 積するクラックの性状と弾性波伝播速度の低下現象を結びつけて究明した研究例は少ない。本 童で行った著者の研究により、初めてこの問題についてある程度解明しえたと考える。すなわ ち、前節までに述べてきたことから、岩石内に破壊が進展するに伴ってP波の伝播速度が低下 する現象は、マイクロフラクチャーによって生ずるクラックの量及び性状と密接な関係をもち、 P波伝播速度が低下していく割合は発生するクラックの形状に大きく影響されることがわかっ た。したがって、岩石の破壊の進展が、Aspect ratioの小さなクラックによる場合には、破壊 の進展に伴うP波伝播速度の低下は顕著に現われるが、逆に、Aspect ratioの大きなクラック による場合には、破壊の進展に伴うP波伝播速度の低下はほとんど認められないことになる。

そこで、前節までに述べてきた事柄をもとにして、岩盤内部の破壊の進展状況を推定する方 法として、岩盤内を伝播する弾性波の伝播速度の 変化を利用する方法について考察を加えることに する。今、変形の生ずる前の岩盤として、K=2. $6 \times 10^{11} \text{dyn/cm}^2$, G = 1.9 × 10¹¹ dyn/cm², ρ = 2.6g/cm³の物性値をもつ岩盤を考え、岩盤のい たみの進行に伴うP波及びS波の伝播速度の変化 を乾燥状態、含水飽和状態のそれぞれについて(**Ⅱ.2.1**)式を用いて計算した結果をFig. Ⅱ.2.6に示す。なお、この計算においては、 水の物性値としては、 $K = 2 \times 10^{10} dvn / cm^2$ 、G =0.0dyn/cm²、 $\rho = 1.0$ g/cm³の値を用いた。 Fig. I. 2.6において、実線は岩盤が乾燥 状態にある場合、点線は岩盤が含水飽和状態にあ る場合を示し、図中の数字は岩盤内に発生したき

Fig. II.2.6 非弾性体積ひずみを、とP波 伝播速度CL及びS波伝播速度CTの関係

裂のAspect ratio相当値αの値である。Fig. II.2.6より、岩盤内に発生するき裂のα が大きな場合や、岩盤が含水飽和状態にある場合は、弾性波伝播速度の変化を計測して岩盤内 の破壊進行状態を検出するためにはかなり高い精度で計測を実施する必要があることがわかる。 しかし、岩盤内で発生し伸長するき裂のAspect ratioの値が大略推定されるのならば、岩盤の 弾性波伝播速度の定期的計測により、鉱柱及び岩盤の破壊特性を解明するための重要な手がか りを与える資料が得られるであろう。その意味では、弾性波伝播速度を計測する方法は鉱柱及 び岩盤の安定性監視法として極めて有用な手法になりうるものと考えられる。

2.6 結言

本章では、岩石の破壊の進展に伴うP波伝播速度の変化に関する実験的検討を行うとともに、 その現象をインクルージョンモデルを用いて理論的に解析した。その成果をまとると以下のと おりである。

(1) 実験に用いた4種の岩石(中粒花崗岩,細粒花崗岩,砂岩,凝灰岩)ともに岩石内部の 破壊の進行に伴ってP波伝播速度は低下するが、その低下率は岩石の種類によって異なる。今 回実験に供した岩石について言えば、中粒花崗岩,細粒花崗岩,砂岩及び凝灰岩の順に破壊の 進行、すなわち非弾性体積ひずみの増大、に伴う伝播速度の低下率が小さくなる。

(2) 上記の実験結果をインクルージョンモデルを用いて解析し、岩石内に発生するクラック のAspect ratio相当値を推定した。推定されたAspect ratio相当値は中粒花崗岩で2×10⁻³~3 ×10⁻³、細粒花崗岩で5×10⁻³~7×10⁻³、砂岩で10⁻²~5×10⁻²、凝灰岩で10⁻²~1.5×10⁻²と なり、マイクロフラクチャーによって生ずるクラックのAspect ratioが岩石の種類によって顕 著に異なることが確かめられた。そして、破壊の進展に伴う伝播速度の低下率は岩石内のマイ クロフラクチャーによって生ずるクラックの形状に関係していることが明らかとなった。すな わち、花崗岩のような比較的結晶粒径の大きな岩石では、内部に発生するクラックは粒界き裂、 粒内き裂ともにAspect ratioが小さいであろうと考えられ、破壊の進行に伴う伝播速度の低下 率が大きくなるが、砂岩及び凝灰岩のような岩石では、内部に発生するクラックのAspect rat ioが比較的大きいと考えられ、破壊の進行に伴う伝播速度の低下率が小さくなることが明らか となった。

(3) 弾性波伝播速度を利用した鉱柱監視法について考察し、岩盤内に発生するき裂の性状や 岩盤の含水状態が伝播速度を利用した岩盤計測の精度に大きな影響を与えることを指摘した。

参考文献

1) 金子 勝比古,井上 博之,佐々 宏一,伊藤 一郎;岩石の破壊の進展に伴う弾性波速度の変化 -岩石の破壊の進展に伴う弾性波伝播特性に関する研究(第1報),日本鉱業会誌,第94巻,第1080 号,pp.9-15(1978)

2) Matsushima, S.; On the deformation and fracture of granite under high confining pressure. Disaster Prevention Res. Inst. Kyoto Univ. Bull., No.32, pp.1-8(1960)

3) Matsushima, S.: Variation of the elastic wave velocities of rocks in the process of deformation and fracture under high pressure, Disaster Prevention Res. Inst. Kyoto Univ .Bull., No.36, pp.11-20(1960)

4) Gupta, I.N.; Seismic velocities in rock subjected to axial loading up to shear fracture, J.Geophys.Res., Vol.78, No.29, pp.6936-6942, (1973)

5) Lockner, D.A., J.B. Walsh and J.D. Byerlee; Changes in seismic velocity and attenuation during deformation of granite, J. Geophys. Res., Vol. 82, pp. 5374-5384 (1977)

6) 例えば、大竹 行雄,勝又 護;地震波速度変化の可能性と検出の限界,地震予知研究シンボジ ウム論文集,pp.106-115,(1977)

7) 例えば、末広 重二;地震予知,地球,No.7,海洋出版(1977)

8) Soga, N., H. Mizutani, H. Spetzler and R. J. Martin III, The effect of Dilatancy on velocity anisotropy in Westerly granite, J. Geophys. Res., Vol. 83, No. B9, pp. 4451-4458(1977)

9) Wawersik W.R.and C.Fairhurst: A study of brittle rock fracture in labolatory compression experiment, Int. J. Rock Mech. Min. Sci, Vol. 7, pp. 561-575(1970)

10) 柳谷 俊一,佐野 修,寺田 孚,伊藤 一郎;一軸圧縮下の花園閃緑岩の破壊挙動,材料,Vol.27,No.293,pp.136-141(1978)

11) 例えば、村外 志夫,森 勉;マイクロメカニックス,培風館,東京(1976)

12) Kuster, G.T. and M.N.Toksöz; Velocity and attenuation of seismic waves in two-phase media, Part1, Geophysics, Vol. 39, No. 5, pp. 587-606(1974)

13) Toksöz, M.N., C.H. Cheng and A.Timur; Velocities of seismic waves in porous rocks, Geophysics, Vol.41, No.4, pp.621-645(1976)

14) 斉藤 徳美,阿部 司,横山 秀吉;結晶質石灰岩の含水による弾性波伝播速度の変化(第2報), 物理探鉱,第30巻,第2号,pp.14-24(1977)

第3章 岩石の破壊の進展に伴う弾性波の振幅の減衰 1), 2)

3.1 緒言

岩石内を伝播する弾性波には、岩石の物理的性質に関する多くの情報が含まれていると考え られるが、従来は、岩石内を伝播する弾性波から得られる情報としては、伝播速度のみが重点 的に取り上げられてきた。

著者は、岩石の破壊の進展に伴う弾性波伝播特性の変化について研究してきたが、それらの うち特に伝播速度に関する研究成果についてはすでに前章で述べた。本章では、岩石内を伝播 する弾性波から得られるもう1つの情報である弾性波の振幅減衰の問題を取り上げることにす る。

さて、伊藤,佐々等³⁾は岩石供試体について剛性試験を実施し、岩石内にクラックが発生し 伸展するに伴って岩石内を伝播する弾性波の振幅がかなり大きく変化することを報告している。 しかし、この実験に用いた岩石供試体は細粒大理石であり、第I部第1章で述べたAE発生頻 度特性から考えると、この細粒大理石の結果をそのまま他の岩石に適用するには問題があるも のと思われる。また、この実験では、弾性波を供試体内に送り込む方法にもやや難点があった。 そこで、著者は、これらの測定法上での問題点を解決した上で、各種の岩石供試体を用いて岩 石の破壊進展状態と弾性波の伝播特性との関連を詳細に検討した。

本章では、各種の岩石供試体を対象として実施した弾性波の伝播特性に関する研究のうちで、 特に、伝播に伴う波動の振幅の減衰に関する各種の研究成果について述べることにする。

3.2 実験

3.2.1 実験装置及び実験方法

弾性波の振幅減衰を測定するために用いた実験装置は、すでに第2章に述べた研究に用いた ものと同一であるため、その詳細はここでは省略する。

Table. Ⅱ.3.1に、実験に用いた岩石供試体及び試験条件を示す。この表において、 KG1,0G1,MS1及び0T1の記号で示した各供試体については、すでに第2章でその 実験結果の一部を述べている。振幅減衰の測定では、第2章第2節において詳述した方法によ

Baal	Spesinnen	Location	Control	Emitter and Receiver				
KOCK			Axial displacement	Transverse displacement	390kHz	310kHz	230kHz	150kHz
Medium grained	KG1	Kitagishima, Okayama pref.	0	0	8			
gramte	ĸĠź		0		ŏ	0	0	0
Fine grained granite	0 G 1	Ohshima. Ehime pref.		0	0			
Medium grained MS1 sandstone MS2 MS3	lzumi,	0		8				
	MSS	oosaka pret.	0	Ŭ	ŏ	0	0	0
Tuff	0 T 1	Ogino, Miyagi pref.		0	0			
Fine grained marble	FM1	Mine, Yama- guchi pref.	0		0	0	0	0
Coarse grained marble	СМ1	Mine, Yama- guchi pref.	0		0	0	0	0

Table.Ⅱ.3.1 岩石供試体及び試験条件

り測定して得られた各荷重段階での受振波形の初動成分に注目し、その初動振幅値を読みとっ た。さらに、任意の応力状態で得られた初動の振幅値Aを無荷重状態で得られた初動の振幅値 Aºで除したA/Aºの値を振幅比と名づけ、これを用いて振幅減衰の変化を表わす指標とした。

また、岩石供試体の弾性波伝播特性を測定する際、従来から用いられてきた方法では、振動 子を岩石供試体の側面に一定圧力で押し付けていたため、岩石を加圧するにつれて振動子と岩 石供試体との接触状態が変化するおそれがあった。そこで、著者の実験では、発振子及び受振 子と岩石供試体との接触状態を一定に保つため、発振子及び受振子を岩石供試体側面に直接接 着剤を用いて接着した。なお、予備実験により、岩石に荷重が加えられた際、どのような応力 状態においても発振子及び受振子と岩石間との接触状態及び波動の伝達状況が一定に保たれる ことを確かめた上で、本実験を行った。

3.2.2 発振子及び受振子

弾性波の振幅減衰を測定する為の発振子としては、単一の周波数成分をもった波動を供試体 内に送りこむことができるものが望ましい。また、発振子及び受振子はいずれも供試体に接着 して用いることから、高価なものは使い難い。Rykunov等⁴⁾は立方体形状の振動子の特 性を調べ、このような振動子を用いれば、ほぼ単一の周波数成分をもった波動を簡単に発生さ せうることを報告している。そこで、著者は、岩石供試体内に既知の単一周波数のP波を送り 込み、その伝播特性を調べる目的で、立方体形状のPZTを発振子及び受振子として用いた。 また、岩石供試体の破壊の進展に伴う振幅減衰が送り込むその波動の周波数にどの程度依存す

るかを調べる実験においては、大きさの異なる(共振 周波数の異なる)いくつかの立方体形状のPZTを用 いた。なお、その際用いたPZTの寸法及び共振周波 数は、それぞれ4×4×4mm(390kH2)、5×5×5m m(310kH2)、7×7×7mm(230kH2)、10×10×1 0mm(150kH2)である。Fig.II.3.1にアル ミニウム板(6×6×12 cm)を供試体としてこれらの PZTの較正実験を行った際に得られた受振波形を示 す。この図より、大きさの異なる立方体形状のPZT を発振子及び受振子として用いることにより、そのP ZTの大きさによって定まるほぼ単一の周波数成分を もったP波が供試体内に送りこまれることがわかる。

Fig.Ⅱ.3.1 測定波形

3.3 実験結果及び振幅減衰についての考察

実験結果の一例として、中粒花崗岩(KG1)及び砂岩(MS1)について得られた振幅比 A/A₀、伝播速度比C_L/C_{L0},非弾性体積ひずみε₁,AE発生頻度dN/dσのそれぞれ と応力σとの関係を、Fig.II.3.2及びFig.II.3.3に示す。ここで、伝播速度 比C_L/C_{L0}とは、振幅比A/A₀と同様に、任意の応力状態で得られたP波の伝播速度C_Lを、 無荷重状態で得られたP波の伝播速度C_{L0}で除した値である。また、AE発生頻度dN/dσ は、最大振幅が50dBで30mV以上のAEについて計数されたものである。Fig.II.3. 2及びFig.II.3.3より、いずれの岩石においても、AE発生頻度及び非弾性体積ひず みの増大に対応して振幅比及び伝播速度比が低下することが認められる。特に振幅比の低下は 伝播速度比の低下にくらべて急激であることがわかる。一方、AEの発生頻度は岩石内に発生 するマイクロフラクチャーの発生頻度を示し、非弾性体積ひずみはマイクロフラクチャーによ って発生したクラックによる供試体の体積増分を表わすと考えられ、さらに、伝播速度比もマ イクロフラクチャーによって発生したクラックによる供試体の有効弾性率の低下に対応すると 考えられる。また、AE発生頻度や非弾性体積ひずみの増大は、岩石中にクラックが集積し、 破壊が進展していることを意味する。したがって、これらのことをあわせ考えると、上記の実 験結果は、岩石中に破壊が進展するにつれてその中を伝播する弾性波の振幅は著しく滅衰し、

その減衰の傾向は伝播速度の低下の傾向に比べて顕著であることがわかる。

次に、Fig. II. 3.4~Fig. II. 3.7に、中粒花崗岩(KG2),細粒花崗岩 (OG1),砂岩(MS2),及び凝灰岩(OT1)について、横変形速度を一定値に制御し て行った一軸圧縮試験の結果を示す。これらの図には、振幅比A/A₀,伝播速度比C_L/C_{L0}, AE発生頻度dN/dt、非弾性体積ひずみ ε_1 , b値及び荷重のそれぞれと横変形量との関 係を示した。また、AE発生頻度としては最大振幅が50dB増幅で246mV以上のAEについ て示してある。b値とは、前章でも示したようにAEの規模別発生頻度分布を論ずる場合に用 いられている1つのパラメータであって、地震学で用いられているGutenberg-Richterの式log N_(M) = a - blogM (ここで、N_(M);マグニチュードM以上の地震の発生数,M;マグニ チュード,a,b;定数)をAE現象に適用し、MをAEの最大振幅,N_(M)を最大振幅M以 上のAEの発生数として求めた定数bである。したがって、b値の大小はAEの規模と発生頻 度との関係を表しており、b値が小さいときは相対的に大きなAE現象が多く起ったことを意 味している。本研究では、各応力区間ごとに発生したAEについて、それぞれAEの最大振幅

Fig. II.3.4 横変形速度一定制御試験による振幅比A/A₀、 伝播速度比 C_L/C_{L0} 、非弾性体積ひずみ ε_1 、AE発生頻度 d N/d t、AE規模別発生頻度分布b値及び載荷荷重と横 変形量との関係(中粒花崗岩KG2)

Fig.Ⅱ.3.5 横変形速度一定制御試験による振幅比A/A₀、 伝播速度比C_L/C_{L0}、非弾性体積ひずみε₁、AE発生頻度 d N/d t、AE規模別発生頻度分布b値及び載荷荷重と横 変形量との関係(細粒花崗岩OG1)

Fig. II.3.6 横変形速度一定制御試験による振幅比A/A₀、 伝播速度比C_L/C_{L0}、非弾性体積ひずみε₁、AE発生頻度 d N/d t、AE規模別発生頻度分布b値及び載荷荷重と横 変形量との関係(砂岩MS1)

Fig.Ⅱ.3.7 横変形速度一定制御試験による振幅比A/A₀、 伝播速度比C_L/C_{L0}、非弾性体積ひずみε₁、AE発生頻度 dN/dt及び載荷荷重と横変形量との関係(凝灰岩OT1)

(パルスハイトアナライザーの設定電圧)とその振幅以上のAEの発生数とを両対数紙上にプ ロットし、その傾きからb値を求めた。しかし、凝灰岩については、AEの発生数が少なかっ たため、このような手法でb値を求めることができなかった。

さて、地震学においては、大規模な地震の前に発生する地震群のそれぞれについて b 値を求 めると、大規模な地震に近づくにつれて b 値が低下することが知られている⁵⁾。また、岩石に おいても、岩石供試体の主破壊の発生に先だって b 値が低下すると報告されている⁶⁾。 F i g.

Ⅱ.3.4~Fig.Ⅱ.3.6においても、供試体の横変形量の増大に伴ってb値が低下する現象が認められる。横変形量の増大は、供試体内にマイクロフラクチャーが集積して供試体が破壊に近付きつつあることを意味するものであるから、この実験結果からも、岩石中に破壊が進展するにつれてb値が低下することを確かめ得たことになる。

以上に述べたことを総合して考えると、Fig. Ⅱ.3.4~Fig.Ⅱ.3.7の縦軸に示した諸 量は岩石中に生ずる破壊と密接な関係をもつパラメ ータであって、これらのパラメータが破壊の進展に 伴ってどのように変化するかがこれらの図には明瞭 に示されている。すなわち、岩石中に生ずる破壊の 進展に伴い、AE発生頻度及び非弾性体積ひずみは 増大し、またAEの規模別発生頻度分布を表わすb 値は低下し、弾性波の伝播速度及び伝播する波動の 振幅値は低下することになる。そして、これらの現 象は岩石内に発生するマイクロフラクチャーに紀因 していると考えられる。また、先にも述べたように 、測定したすべての岩石において破壊の進展に伴う 振幅比の低下は伝播速度の低下にくらべて著しい。 このことをさらに明確にするため、中粒花園岩、細 粒花園岩、砂岩、凝灰岩及び後述する粗粒大理石に ついて求めた伝播速度比及び振幅比と非弾性体積ひ

ずみとの関係をFig. П. 3.8に示した。Fig. П. 3.8に示したA/A_d(●印) 及びC_L/C_{Ld}(〇印)は、ダイラタンシー開始点でのA/A₀及びC_L/C_{L0}の値を基準にと り、他の状態におけるA/A₀及びC_L/C_{L0}をこれらの基準値との比として表したものである。 なお、同様な表現は以下においても用いることにする。Fig. П. 3.8より、非弾性体積 ひずみの増大に伴う振幅比の低下率は伝播速度比のそれの3~10倍であることがわかる。ま た、Fig. П. 3.2~Fig. П. 3.8から明らかなように、砂岩及び凝灰岩と花崗岩 とでは振幅比の低下の傾向が異なっているが、この問題については後に3.5節において考察 することにする。

3.4 振幅比の周波数依存性

前節において、岩石内を伝播する弾性波の振幅減衰が岩石の破壊の進展と密接な関係がある ことを述べた。そこで、次に、振幅が減衰する状態が伝播する波動の周波数によってどのよう に変化するかについて検討した。

中粒花崗岩(KG3),砂岩(MS3),粗粒大理石(CM1)及び細粒大理石(FM1) を供試体として一軸圧縮剛性試験を行い、その際、4種類の発振子を用いて周波数の異なる液 動を供試体内に送り込み、伝播する波動の振幅比の変化と比応力との関係を調べた。なお、前 節までに示した実験では、受振子の出力をトランジェントレコーダに記憶させ、その波形をX -Tレコーダ上に記録しているが、この実験では、トランジェントレコーダの出力をシンクロ スコープに入力し、写真撮影を行っている。したがって、写真上から波形の振幅を読み取って いるため、振幅読み取りの誤差が若干大きくなっている可能性がある。得られた結果をFig. $II.3.9 \sim Fig.II.3.12$ に示す。ただし、Fig.II.3.12に示した細粒大理 石の場合は、あらかじめ設定した試験機の最大荷重まで荷重を加えても供試体が破壊しなかっ たため、一度除荷した後、設定最大荷重を変えて再び載荷して供試体を破壊に至らしめた。 Fig.II.3.12において、比応力90%以上では1回目の載荷の場合得られた振幅比と2 回目の載荷で得られた振幅比とを区別して表わしているが、比応力90%以下ではそれぞれの値 にほとんど差が認められなかったため1回目の載荷の場合のみを示している。

さて、Fig,II,3,9より、中粒花崗岩の場合には、最大応力の50%付近から振幅比が 低下しており、かつ低下の割合は周波数の高い波動ほど急激で、周波数の低い波動ほどゆるや かな傾向を示している。砂岩の場合には、破壊の進展に伴う振幅比の低下率が小さいため、

ω

ω

Fig. II. 3. 10の結果のみから振 幅比の周波数依存性を調べることは難し いが、中粒花園岩について認められた傾 向と矛盾する傾向は認められない。また 、Fig. Ⅱ.3.11に示した粗粒大 理石の場合にも、振幅比は最大応力の50 %付近から低下しており、特に、390kH 2の周波数をもつ波動の振幅比は比応力 が60%を過ぎた付近から急激に低下して いる。このような振幅比の周波数依存性 は、Fig. **II**. 3. 12に示した細粒 大理石の場合にも顕著に認められる。特 に、細粒大理石の場合には、破壊荷重の ほぼ90%以上からpost failure領域にお いて振幅比が急激に低下しているが、こ のような現象は、他の研究者により実施 された実験においても認められている3) 。このことは、第Ⅱ部第1章において述 べたように、細粒大理石は破壊に際して 他の岩石とは異なった特徴的な挙動を示

Fig. II.3.14 周波数の異なる4種の波動 の振幅比A/A_dと非弾性体積ひずみε、 との関係(砂岩MS3)

すことと関係があると思われる。また、粗粒大理石と細粒大理石では、振幅比の変化する傾向 が顕著に異なるが、これも、第Ⅱ部第1章に示したAE発生頻度特性の両者の差異を考えれば 妥当なものである。なお、大理石の変形破壊特性は一般的な珪酸塩岩石とは顕著に異なるため、 大理石に関する考察はここでとどめ、以下では、中粒花崗岩及び砂岩についての実験結果を対 象として考察を行うことにする。

Fig. II. 3.9及びFig. II. 3.10に示した中粒花崗岩と砂岩の結果について非 弾性体積ひずみと振幅比A/Adの関係をもとめたものをFig. II. 3.13及びFig. II. 3.14に示す。Fig. II. 3.13より中粒花崗岩では非弾性体積ひずみの増大に伴 って振幅比は低下しており、かつ、低下の傾向は周波数の高い波動ほど急激であり、周波数の 低い波動ほどゆるやかであることがわかる。Fig. II. 3.14に示した砂岩の場合につい

ても、花園岩の場合程顕著ではないが、ほぼ同様な振幅比の周波数依存性が認められるものと 思われる。

ここで、今回実験の対象とした波動の周波数範囲は150 kH2~390 kH2であり、これは波長に 換算すれば大略 1~3 c mの範囲となる。また、著者は本研究とは別に、マイクロフラクチャ ーによって発生するクラックの大きさをAEの波形解析により推定している⁷⁷。そして、今回 実験に用いたものと同種の中粒花崗岩及び砂岩で比較的大きなAEを対象とした場合に、マイ クロフラクチャーによって発生するクラックの長さはそれぞれ大略1~5mm及び1~3mm程 度であると推定した。この結果をもとにすれば、今回の実験の範囲では、伝播する波動の波長 はマイクロフラクチャーによって発生するクラックの長さの大略2倍以上であることになる。 さらに、測定した振幅比A/A₀は、使用した発振子及び受振子の特性を考慮すれば、ほぼ単 一の周波数成分をもつ波動についての振幅比を表わしているものと考えられる。したがって、 このような条件下では、振幅比A/A₀は波動の伝播定数を用いて近似的に式(Π.3.1) で表わされることが推察される⁸⁹。

$$A/A_0 = \exp\left[-(\pi f d/C_{L0}Q_0) \left\{ (C_L/C_{L0})^{-1} (Q/Q_0)^{-1} - 1 \right\} \right] \qquad (II. 3, 1)$$

ただし、f:伝播する波動の周波数、d:伝播距離、C_L,Q:載荷変形状態にある供試体の P波伝播速度及びQ値、C_{L0}、Q₀:無載荷状態での供試体のP波伝播速度及びQ値である。 すなわち、実験によって得られた岩石の破壊の進展に伴う振幅比の低下は(II.3.1)式に おける(C_L/C_{L0})(Q/Q₀)の値が減少したことを示していると言いかえられる。なお、(II. 3.1)式中のC_{L0}及びQ₀をダイラタンシー開始点におけるP波伝播速度C_{Ld}及びQ値Q_dに 置換えれば(II.3.1)式はA/A_dを与えることになるであろう。したがって、(C_L/C_{L0}) (Q/Q₀)の変化(もしくは、(C_L/C_{Ld})(Q/Q_d)の変化)が周波数に依存しないと考えた 場合には、A/A₀(もしくは、A/A_d)は(II.3.1)式に示されるように片対数グラフ 上で周波数fに依存した傾きをもつと考えられる。Fig.II.3.13及びFig.II.3. 14の図中に示した直線はf=150kHzの波動について得られた1n(A/A_d)の ε_1 に対する傾 きを基準として、その基準値の1倍(150/150),1.53倍(230/150),2.07倍(310/150) 及び2.6倍(390/150)の傾きをもつ直線で、(II.3.1)式から予想される各周波数の波 動についてのA/A_dの変化を示している。図より、中粒花崗岩では、実験結果はこれらの直 線群にほぼ一致することが認められるが、砂岩ではこの関係は明瞭でない。砂岩の場合には、
振幅の変化が小さいため、実験値に振幅の読み取り誤差の影響が現われてきているのかもしれ ない。しかし、砂岩の結果も、中粒花崗岩で得られた傾向と矛盾する傾向は認められないもの と思われる。したがって、A/A』の周波数依存性は(Ⅱ.3.1)式でほぼ近似されると考 えてもよいであろう。

3.5 岩石内に発生するクラックの性状と波動減衰特性の関係 一般に波動の減衰特性を表わすQ値は(Ⅱ.3.2)式で定義される⁸⁾。

 $Q^{-1} = (1/2\pi) (\Delta W/W)$ (II. 3. 2)

ここで、W:1応力周期の間に材料内に貯えられる最大のひずみエネルギー、△W:1応力周 期の間に材料内で消費される波動エネルギーである。したがって、加圧下における岩石のQ値 は(Ⅱ.3.3)式で表わされるであろう。

$$Q^{-1} = (1/2\pi) (\Delta W_0 + \Delta W_1 + \Delta W \varepsilon_1) / W$$

= $Q_0^{-1} + \Delta Q_1^{-1} + \Delta Q \varepsilon_1^{-1}$ (II. 3. 3)

ここで、 ΔW_0 , Q_0^{-1} ; 無載荷状態で1応力周期の間に消費される波動エネルギー及びそれに もとづく Q^{-1} の値, ΔW_1 , ΔQ_1^{-1} ; 載荷に伴うクラックの閉合現象等、破壊以外の現象に関 係した波動エネルギーの消費及びそれにもとづく Q^{-1} の値の増分, $\Delta W \varepsilon_1$, $\Delta Q \varepsilon_2^{-1}$; 非弾 性体積ひずみの増大 (クラックの発生)による波動エネルギーの消費及びそれにもとづく Q^{-1} の値の増分である。また、ダイラタンシー開始点以上の応力では、 ΔQ_1^{-1} の値は応力に無関 係に一定となり、 $Q_0^{-1} + \Delta Q_1^{-1} = Q_d^{-1}$ (Q_d^{-1} ; ダイラタンシー開始点での Q^{-1} の値)と表 されるものと仮定すると、 $\Delta Q \varepsilon_2^{-1}$ は(II.3.4)式で表わされることになる。

$$\Delta Q \varepsilon_{1}^{-1} = Q^{-1} - Q_{d}^{-1} \qquad (II. 3. 4)$$

以上の仮定のもとに、実験により求められた振幅比A/A₀を(Ⅱ.3.1)式に代入して各 応力段階におけるQ⁻¹の値及びダイラタンシー開始点におけるQa⁻¹の値を求め、それらの値

Fig. Π.3.16 非弾性体積ひずみε,と伝播速度比CL/CLd及びΔQε⁻¹の関係 (a)中粒花崗岩KG1,(b)細粒花崗岩OG1,(c)砂岩MS1,(d)凝灰岩OT1

を(Ⅱ,3,4)式に代入して ΔQε,⁻¹を求めた。なお、Q₀⁻¹の値 としては、別に行ったQ値測定実験の 結果をもとにして、それぞれ中粒花崗 岩Q₀⁻¹=0.10,細粒花崗岩Q₀⁻¹=0. 033,砂岩Q₀⁻¹=0.05,凝灰岩Q₀⁻¹ =0.02とした。

 $\Delta Q \varepsilon_1^{-1}$ と伝播する波動の周波数 との関係を調べるため、F i g. II. 3.13に示した中粒花園岩の場合に ついて、異なる周波数をもつ波動につ いて求められた $\Delta Q \varepsilon_1^{-1}$ と非弾性体 積ひずみ ε_1 との関係をF i g. II.

Fig.Ⅱ.3.17 Aspect ratio相当値αとkaの関係

3.15に示す。この図から、非弾性体積ひずみの増大に伴う△Qε₁⁻¹の変化と伝播する波 動の周波数の間には明瞭な関係は認められないことがわかる。したがって、今回測定した周波 数範囲では△Qε₁⁻¹は伝播する波動の周波数には依存しないものと思われる。そこで、以下 では、すべて390kHzの波動の振幅比から求められた△Qε₁⁻¹の値について検討を行った。

実験に用いた4種類の岩石(KG1,0G1,MS1,0T1)について求められた $\Delta Q \varepsilon_1^{-1}$ 及びC_L/C_{Ld}と非弾性体積ひずみとの関係をFig. II. 3.16(a),(b),(c) 及び(d)に示す。Fig. II. 3.16より、ここに示した4種類の岩石のいずれにおいて も、非弾性体積ひずみ ε_1 の増大に伴って $\Delta Q \varepsilon_1^{-1}$ が増大し、C_L/C_{Ld}が低下していること が認められ、特にC_L/C_{Ld}の値の低下が著しい岩石ほど $\Delta Q \varepsilon_1^{-1}$ の増加率が大きいことがわ かる。

前節において岩石の破壊の進展に伴うC_L/C_{Ld}の低下率は岩石内に発生するクラックのAsp ect ratioに大きく依存し、クラックのAspect ratioが小さいほどC_L/C_{Ld}の低下率が大きく なることを示した。したがって、これらの結果から岩石の破壊の進展に伴う $\Delta Q \varepsilon_1^{-1}$ の増加 率は岩石内に発生・伸長するクラックのAspect ratioに関係していると類推することができる。 そこで、この関係を明確にするため、前章で述べた解析法により求められたクラックのAspect ratio相当値αと、 ε_1 の増大に伴う $\Delta Q \varepsilon_1^{-1}$ の増加率k₂との関係をFig. II. 3. 17 に示す。ここで、k₂の値はFig. II. 3. 16において ε_1 と $\Delta Q \varepsilon_1^{-1}$ の関係がほぼ直線 である範囲について求めた直線(図中実線で示してある)の傾きを示している。Fig.I. 3.17より、データのばらつきはあるが、 $\alpha \ge k_0$ の間にはほぼ負の相関が認められる。こ の結果は岩石内に発生するクラックのAspect ratioが小さい程、 ε_1 の増大に伴う $\Delta Q \varepsilon_1^{-1}$ の 増加率が大きいことを示している。また、Aspect ratioの小さなクラックとはその体積に比べ て表面積が大きなクラックであると考えられることから、岩石の破壊の進展に伴う Q^{-1} の値の 変化は、岩石内に発生するクラックの表面積の大小に関係していると考えることもできる。

3.6 鉱柱監視法への応用性

本章第3節において、岩石内の破壊の進展状態と波動の伝播速度及び振幅減衰、非弾性体積 ひずみ、AE発生頻度、AE規模別発生頻度分布(b値)等の諸量との関係を検討し、これら の諸量が岩石内の破壊進展状態と密接な関係をもつことを示した。

これらの諸量のうち弾性波伝播速度やAEについては、すでに岩盤計測への応用がなされて いる。また、非弾性体積ひずみの岩盤計測は例をみないが、岩盤内の応力と変形の同時計測は それに対応した諸量を検出するためのものであると考えることもできる。

波動の振幅減衰を測定する方法は岩盤計測法として未だ例をみないが、岩盤内に一定の振幅 をもった波動を投射することができれば、計測そのものは比較的簡単である。また振幅の変化 は破壊の進展に敏感に対応するパラメータの1つであるから、岩盤内を伝播する波動の振幅減 衰を計測することにより、その変化状態から岩盤の破壊進展状態を高い感度で検出しうるもの と思われる。この考えに基づき、次章では、弾性波の振幅減衰特性を利用して鉱柱及び岩盤内 の破壊の進展状態を検出する方法について検討し、その実用性について考察する。

3.7 結言

本章においては、岩石の破壊の進展に伴う弾性波の振幅減衰について種々の観点から検討を 行った。すなわち、各種の岩石供試体について一軸圧縮剛性試験を実施して、弾性波伝播速度 及びその初動振幅値、非弾性体積ひずみ、AE発生頻度及びAE規模別発生頻度分布等の諸量 を求め、これらの諸量間の関係を検討した。得られた結果をまとめると次のようである。 (1) 岩石内に破壊が進展するに伴い、岩石内を伝播するP波の伝播速度及びその初動振幅は 低下する。特に、初動の振幅の変化は伝播速度の変化に比べて岩石の破壊の進展に敏感に対応

することを確かめた。

(2) 岩石の破壊の進展状態を示唆する種々のパラメータとして岩石内を伝播する弾性波の伝 播速度及び振幅減衰、非弾性体積ひずみ、AE発生頻度、AE規模別発生頻度分布等の諸量を 取りあげ、実験結果をもとにしてこれらの諸量と破壊進展状態との対応性について種々の観点 から検討した結果、これらのパラメータはいずれも岩石中に生ずる破壊の進展状態によく対応 した変化を示すことが確かめられ、鉱柱監視法を検討する上での有用な資料が得られた。

(3) 岩石中を伝播する波動の周波数が高い程、岩石の破壊の進展に伴うP波の振幅減衰の変 化は大きくなることを実験的に明らかにした。また、岩石の破壊の進展に伴うQ値の変化と伝 播する波動の周波数との関係を検討し、測定した周波数範囲内では破壊の進展に伴うQ値の変 化は周波数に依存しないことを確かめた。

(4) 種々の岩石について破壊の進展に伴うQ値の変化を解析し、破壊の進展に伴って波動エ ネルギーの損失率は増大するが、その程度はマイクロフラクチャーによって生ずるクラックの Aspect ratioと関係していることを明らかにした。

(5) 鉱柱及び岩盤内に生じているいたみの進行状態を検出するための一手法として弾性波の 振幅減衰を利用する方法を考え、その可能性を指摘した。

参考文献

1) 井上 博之、金子 勝比古、佐々 宏一、伊藤 一郎;岩石の破壊の進展に伴う弾性波の振幅減衰 ー岩石の破壊の進展に伴う弾性波伝播特性に関する研究(第2報),日本鉱業会誌,第94巻,第1083 号、pp.323-327(1978)

2) 金子 勝比古,井上 博之,佐々 宏一,伊藤 一郎;岩石の破壊の進展が周波数の異なる波動に 及ぼす影響について-岩石の破壊の進展に伴う弾性波伝播特性に関する研究(第3報),日本鉱業 会誌,第94巻,第1089号,pp.791-795(1978)

3) 伊藤 一郎、佐々 宏一,関 順一;き裂の存在および伸展に伴う弾性波伝播特性,第4回岩の力 学国内シンポジウム講演論文集,pp.55-60(1973)

4) Rykunov,L.N.and V.D.Feofilaktov; A piezoelectric emitter of single-stroke ultrasonic pulses for modelling seismic waves,Boll.(lzv.)Acad.Sci.USSR,Geophys.Ser.,No.2, pp.131-136(1961)

5) Nishida,R.;Variation of the parameter m in the Ishimoto-Iida's relation on the Matsushiro earthquake swarm,Zisin(ii),Vol.23(1970)

6) Scholz, C.H.; The frequency-magnitude relation of microfracturing in rock and It's relation to earthquake, Bull.Seism.Soc.Am., Vol.58, No.1, pp.399-415(1968)

7) 金子 勝比古,伊藤一郎;岩石内に発生するマイクロフラクチャーに関する研究,材料, 第26巻,第285号,pp.503-509(1977)

8) Aki,K.and P.G.Richards;Quantitative sesismology-theory and method,W.H.Freeman and Company,SF(1980)

第4章 弾性波伝播特性を利用した鉱柱の安定性監視法 1)

4.1 緒言

鉱柱や空洞周囲の岩盤の安定性監視法としては、光弾性セルや圧力セルを用いて岩盤内の応 力変化を測定する方法²⁾、変位計や傾斜計を用いて岩盤の変形量を測定する方法³⁾が広く用い られている。しかしながら、これらの方法により求められる測定量は、岩盤内に生じた応力変 化や変形量であり、岩盤内の破壊の進展状態、すなわち、岩盤内のき裂の発生及び集積状態を 直接的に表現するものではない。したがって、岩盤内に生じているき裂の集積状態を何らかの 手法で検出することができれば、鉱柱や岩盤の安定性の監視を行う上で極めて有益であると考 えられる。

著者は第2章及び第3章に示したように、岩石供試体を用いて供試体の破壊の進展に伴う弾 性波伝播特性の変化に関する一連の研究を行ってきた。そして、岩石の破壊の進展に伴って岩 石内を伝播する弾性波の伝播特性が変化することを確かめた。特に、振幅の変化は伝播速度の 変化に比べて岩石内の破壊進展状態に敏感に応答することを明らかにし、弾性波の伝播特性を 利用して鉱柱及び岩盤の監視を行う場合には振幅減衰の変化を利用する方法が有利であること を指摘した。

一方、原位置において日常的に波動の振幅減衰特性を計測するためには、その計測システム や計測方法は簡便であることが望まれる。したがって、振幅減衰を利用する方法を岩盤監視法 として用いるためには、現場において簡便な手法で計測できる振幅減衰の指標値を定める必要 があると思われる。

本章では、上記の点を考慮して、弾性波の振幅減衰特性を利用した鉱柱の安定性の評価法に 関する検討を行う。具体的には、まず、岩石供試体実験の結果を岩盤に適用する際の問題点に ついて検討を加え、次に、神岡鉱山で実施した原位置試験の結果について述べる。そして、そ れらの成果をもとにして弾性波伝播特性を利用した簡便な鉱柱監視システムを提案する。

4.2 岩石供試体と岩盤との対応関係

4.2.1 岩盤内のいたみの進行状態

まず、第2章及び第3章において詳述した岩石供試体に対する実験の成果を原位置岩盤に適 用する際の問題点について考察する。

一般に岩石は、マイクロフラクチャーによって発生したクラックの集積により破壊に至ると 説明されている。したがって、岩石供試体における破壊の進展状態は、マイクロフラクチャー によって発生し、伸長したクラックの集積状態によって規定することができる。また、クラッ クの規模は異なるが、地震などに見られる地殻の破壊現象も同様にして説明されている。一方、 岩盤においても、例えば、岩盤内に空洞を開削した場合にしばしば認められる側壁のはらみだ し現象が、たんなる弾性変形では説明できないことや、破壊音 (rock noise) が観測されるこ と等^{4).5)}を考えあわせれば、岩石供試体における場合と同様に、内部に発生し伸長するクラ ックが岩盤のいたみの主因をなしていると考えることができる。したがって、岩盤においても、 そのいたみの進行状態は、内部に発生し伸長したクラックの集積状態として表されると考える ことができる。

なお、第3章では岩石の破壊の進展に伴って岩石内を伝播する弾性波の振幅が低下すること を示したが、この実験で対象としたクラックの長さrと伝播する波動の波長 λ との比r/ λ の 値は大略0.5以下であると推察された。また、測線距離、すなわち、発振子及び受振子間の距 離は6cmであり、測線距離dと波長 λ との比d/ λ の値は大略2~6であった。そして、この様 な条件下で、振幅比は(Π .3.1)式で大略近似されるであろうことを示した。ここで、 (Π .3.1)式はd/ λ を用いて書換えると(Π .4.1)式となる。

 $A/A_0 = \exp[-(\pi/Q_0)(d/\lambda)\{(C_1/C_{10})^{-1}(Q/Q_0)^{-1} - 1\}] \qquad (II. 4. 1)$

ここで、 C_{L0} , Q_0 :無載荷状態における岩石のP波伝播速度及びQ値、 C_L , Q;破壊進行状態における岩石のP波伝播速度及びQ値、であるが、特に、 C_{L0} 及び Q_0 は測定開始時点におけるP波伝播速度及びQ値の初期値であると考えることもできる。なお、(Π .4.1)式中の Q_0 、 Q/Q_0 、 C_L/C_{L0} 及び d/λ と前述した r/λ はすべて無次元量である。また、2.4節及び3.5節に示した考察の結果によれば、岩石の破壊の進展に伴う伝播速度及びQ値の変化は岩石内に発生するクラックの量とその形状に関係するものと考えられる。ここで、発生するクラックの量及びその形状は非弾性体積ひずみ ε_1 及びクラックのAspect ratio α により表されるが、これらの諸量もまた無次元量である。したがって、岩石及び岩盤の破壊進行状態が共に内部に発生し伸長したクラックの集積状態として表され、岩石と岩盤との間に破壊機構の

相似率が成り立つものと仮定すれば、これらの無次元量の関係によって岩石と岩盤のそれぞれ の場合の振幅比の値を比較することが可能となるであろう。ここで、Q₀、Q/Q₀、C_L/C_{L0}、 r/λ、ε₁及びαは岩石及び岩盤の性状と破壊進行状態に密接に関係するパラメータであると 考えられるが、d/λは測定方法に関係するパラメータであるためその値の設定には注意を要 する。

また、岩石供試体に対する実験においては供試体を構成している岩石の種類は1種類である が、原位置岩盤ではその構成は複雑で、数種類の岩石によって構成されている場合も多い。し かし、岩石の種類にかかわらず、破壊の進展に伴う振幅減衰の変化が認められたこと、及び、 本手法は振幅減衰の変化量のみを計測することから、これら岩盤の地質状態にはさほど依存し ないものと考えられる。

4.2.2 含有水の影響

岩石供試体を対象とする実験はすべて乾燥状態の供試体を用いて行ったが、実際の原位置岩 盤は地下水により含水している場合が多い。したがって、岩盤が含水している場合には、岩盤 内に発生し伸長したき裂内にも地下水が流入してくることが予想されるため、岩盤の含水状態 が振幅の値に及ぼす影響についてあらかじめ検討しておく必要がある。 以下では、特に、き 裂の長さに比較して伝播する波動の波長が充分大きな場合についてこの問題を考えることにす る。

岩石内を伝播する弾性波の伝播速度は、岩石内にクラックが発生した場合には低下するが、 その後、発生したクラック内に水が流入すると再び増大し、ほぼ、初期の値に近付くことが知 られている⁶⁾。この傾向は、第2章のFig.II.2.6からも読み取ることができる。また、 前章に示した検討において、破壊の進行に伴う振幅減衰の変化は伝播速度の変化とQ値の変化 の両者に関係することを示した。そこで、岩盤の含水状態によって振幅の値がどの様に変化す るものかを検討するために、Table.II.1.1に示した岩石のうち頁岩を除く11種類 の岩石について15mm ϕ × (8~15) cmの棒状供試体を作成し含有水が弾性波伝播特性に及 ぼす影響を検討した。実験は自由振動法^{7).8)}により行い、平面波速度(bar velocity) Cb及 びそれに対応するQ値を求めた。Table.II.4.1は供試体の乾燥状態と含水状態にお ける平面波速度Cbとそれに対応するQの値を示したものである。なお、Table.II.4. 1には測定対象とした周波数範囲を併記している。ここで、1次元媒質中を伝播する波動の振 幅はexp(-nfd/CbQ)に比例して減衰することから、周波数f及び伝播距離dが一定で

Kind of Rock	Symbol	Dry			Water saturated		
		Frequency (Hz)	Cb (km/s)	Q	Frequency (Hz)	Cb (km/s)	Q
Medium grained granite	КG	12~14 2~3	3.73 	22.3 24.5	13~16 2~8	4.11	10.7 12.1
Fine grained granite	0 G	14~20 3~6	3.42 	39.0 47.6	16~23 3~6	4.00	15.2 17.4
Basalt	В	15~22 2~5	4.84 	330 325	15~22 3~5	4.86 	143 95
Rhyolite	R	14~20 2~5	4.10	71.6 67.3	14~20 2~5	4.12 	38.0 39.9
Medium grained sandstone	MS	10~14 1~3	3.15	32.9 37.0	10~14 1~3	3.37 	7.6 8.0
Coarse grained sandstone	CS	 4~5	 	 38.7	16~19 4~5	3.09 	13.8 14.5
Tuff I	ОТ	7~11 1~3	2.32 	51.5 80.3	6~10 1~3	1.99 	10.7 9.2
Tuff Ⅱ	ΚŢ	9~13 1~4	3.10	61 72	10~16 2~5	2.66	16.6 14.6
Tuff 🎞	ΙT	9~13 1~4	2.92	87 82	8~11 1~3	2.47 	30.5 22.3
Fine grained marble	FM	15~17	5.03	290 — —	15~20 2~4	4.93 	91 22.3
Coarse grained marble	СМ	15~17 3~7	4.41	101 125	16~24 3~8	5.07	82 73

Table.Ⅱ.4.1 各岩石の平面波速度C_b及びQ値

ある場合には振幅減衰の程度はC_bとQとの積の値に関係することになる。そこで、表に示し た測定結果を用いて、各岩石の乾燥状態及び含水飽和状態におけるC_bとQとの積の値を求め、 その結果をTable. II.4.2に示す。Table. II.4.2より、岩石内の空隙が水 で満たされることにより、C_b・Qの値が低下し振幅の減衰が顕著となることがわかる。この 傾向は平面波について得られたものであるが他の弾性波についても同様な傾向が得られるもの と考えることに無理はないものと思われる⁹⁾。したがって、岩盤内に発生し伸長したき裂の長 さに比べて伝播する波動の波長が充分大きな場合を考えると、き裂内に地下水が流入し岩盤が 含水状態となった場合には地下水の流入がない場合以上に弾性波の振幅の低下量が大きくなり、 岩盤内のいたみの進展に振幅減衰の変化がより敏感に対応することが予想される。この関係を 模式的に示したものがFig.II.4.1である。Fig.II.4.1に示すように、含水に

Table.Ⅱ.4.2 含水によるCb・Qの変化

対して、振幅と伝播速度は逆の応答を示すことから、このような場合には、振幅と伝播速度の 両者を計測することによりき裂の発生とともに岩盤の含水状態の変化を検出することが可能で あるものと思われる。

4.3 現場実験

4.3.1 実験現場の概要

現場実験は岐阜県吉城郡神岡町、三井金属鉱業株式会社、神岡鉱業所栃洞坑83乙における 鉱柱を対象として1978年3月から7月にかけて実施した。

実験現場の坑内平面図をFig.II.4.2に示す。実験現場附近の岩盤は飛驒片麻岩で、 附近には2つの断層が存在している。図中にAと印した地点は坑道を開削したところ、天盤の 崩壊が激しく、埋め戻しを行った旧坑道である。また、この附近の天盤上部のかぶり厚さは約 100mである。実験の対象とした岩盤はFig.II.4.2(a)に点線で示した範囲内の 2つの坑道に挟まれた半島状の鉱柱部分であり、岩盤内にき裂が進行しつつあると考えられる 場所である。実際、肉眼でも坑道分岐点附近の坑壁には浮き石が多く認められ、実験期間中に おいても新しい浮き石がかなり発生したので、鉱柱内部の岩盤内にもかなりき裂が進行してい

るものと推察された。また、岩盤の亀裂にそって若干の湧水が見られたが、実験期間中、その 量に変化はなかった。したがって、岩盤の含水状態はほぼ一定であり、測定された弾性波伝播 特性の変化には含水率の変化の影響は含まれていないものと推察された。

4.3.2 実験方法

現場実験における発振点と受振点の位置はFig.II.4.2(b)に示すとおりであり、 E1~E9は発振点、Rは受振点を示している。発振点としては、岩盤表面で浮き石でない場 所を選び、直径約30cmの範囲の岩盤表面をSchmidt Rock Hammer(以下SRHと略す)を 用いて打撃して弾性波を発生させた。とくに、E2とE6及びE3とE5の発振点はそれぞれ 受振点のボアホール軸に対して対称的な位置関係にあるよう留意して設定した。受振点は発振 点E1~E7に対して鉱柱の背面になる壁面に深さ1mのボアホールを掘削し、その孔底に接 着剤を用いて圧電型加速度計を固定した。発振点については、実験期間中、表面が浮き石とな っていないかどうかを常に確かめて実験を繰り返した。

この様な実験方式で岩盤内を伝播する弾性波の振幅の変化を計測するためには、岩盤内に常

に一定の波動を送りこむこと のできる発振装置が必要とな る。本実験ではこの条件を満 たす発振装置としてSRHを 採用し、予備実験によりSR Hで岩盤表面を打撃した場合 に岩盤内に投射される弾性波

の波形には再現性があり、また、打撃時の反発係数(R値)がほぼ一定の場合には投射される 波動の振幅値もほぼ一定であることを確かめた。したがって、Rの値としてある一定の値を設 定し、そのR値に対応して測定された振幅値のデータをその伝播経路における振幅値のデータ として採用した。このようにして得られる振幅値のデータの変動係数は5%以下であり、また 受振波形の卓越周波数は1~10kHzであった。実験に際しては、発振点をSRHで打撃し、 受振点において岩盤内を伝播してきた波動の振幅値(初動振幅値及び最大振幅値)及びP波伝 播速度を計測した。現場実験に用いた測定系統をFig.Ⅱ.4.3に示す。最大振幅値の計 測では、受振子の出力を増幅器,フィルターを通した後、ビークホールド回路を用いて得られ た信号の最大振幅値をホールドし、その値を直流電圧計を用いて読みとった。また、増幅器の 出力信号を並列接続してあるデータレコーダを用いて記録し、その記録から初動及び最大の振 幅値を読みとった。伝播速度については、発振点にトリガー用の受振子を設置しておき、トリ ガー信号と伝播してきた波動とを2要素のデータレコーダに記録し、それらの到着時間差をも とめ、その値と伝播距離とから計算によって求めた。このようにして、岩盤内を伝播する初動 振幅値,最大振幅値及びP波伝播速度を求めた。なお、この実験では測線距離と波長の関係を 表す無次元パラメータdノλの値は4~14であった。また、以下ではそれぞれの発振点に対応す る伝播経路をEi-R(i:発振点番号)として表わすことにする。

4.3.3 減衰指標値

振幅減衰の指標値としては、P波の初動振幅値A₁,波形の最大振幅値A_m及び一定のレベル 以上の振幅をもつ波の数N_wに着目した。また、岩盤内の波動減衰特性を定量的に把握するた めにそれぞれの受振波形のフーリエスペクトルからQ値を求めた。Q値の解析は以下のように して行った。

今、それぞれ伝播条件の異なる二つの受振波形のフーリエスペクトルをR₁(f), R₁(f)と

おくとR₁(f)及びR₁(f)は(Ⅱ.4.2)式で表わされる。¹⁰⁾

$$R_{1}(f) = H_{1}(f) d_{1}^{-1} \exp(-\pi d_{1} f / C_{1} Q_{1}) S_{1}(f)$$
(II. 4. 2)

$$R_{1}(f) = H_{1}(f) d_{1}^{-1} \exp(-\pi d_{1} f / C_{1} Q_{1}) S_{1}(f)$$

ここで、 d_1 , C_1 , Q_1 ; 伝播条件 i の場合の伝播距離, 伝播速度及びQ値、 d_1 , C_1 , Q_1 ; 伝播条件 j の場合の伝播距離, 伝播速度及びQ値、 $S_1(f)$, $S_1(f)$; それぞれの場合に岩盤 内に投射された波動のスペクトル、 $H_1(f)$, $H_1(f)$; それぞれの場合の受振側測定系統の周 波数特性、f; 周波数である。実験条件から $H_1(f)$ = $H_1(f)$ 及び $S_1(f)$ = $S_1(f)$ と考え $R_1(f)$ と $R_1(f)$ の比をとると(Π . 4. 3) 式となる。

 $R_{i}(f) / R_{j}(f) = (d_{j}/d_{i}) \exp \{-\pi f(t_{j}/Q_{j} - t_{j}/Q_{j})\}$ (II. 4. 3)

ここで、 t_1 及び t_1 は伝播条件 i 及び j の伝播時間である。したがって、(II.4.3)式よ り、それぞれの受振波形のスペクトルと伝播時間及び伝播距離からQ₁とQ₂との関係が求まる ことがわかる。ここで、E5-RとE7-Rでは伝播速度が等しいことから、それぞれのQの 値も等しいものと仮定して、(II.4.3)式を用いてQ値を求め、この値をもとにして、他 の伝播経路についても(II.4.3)式を用いて順次Q値を求めた。特に、P波初動成分に関 するスペクトルから求められるQ値をQ_Pとし、波形全体に関するスペクトルから求められる Q値をQ_Tとした。すなわち、Q_P及びQ_Tの値はそれぞれA₁及びA_mに対応する波動の減衰特 性を表わしているものと考えることができる。なお、Q_Pの場合もQ_Tの場合もともに伝播時間 t_1 及び t_1 としては最短伝播時間(P波伝播時間)を用いて計算を行っている。

4.4 実験結果とその考察

4.4.1 岩盤状態と弾性波伝播特性の関係

現場実験により得られた結果をもとにして、岩盤状態、特に岩盤内のき裂状態と弾性波伝播 特性との関連について考察する。

Table・Ⅱ・4・3に1978年3月の実験において各伝播経路ごとに計測したP波伝 播速度CL及び各実測波形について求めた初動振幅値A₁及び最大振幅値A_mのそれぞれの値を

Emitting Point	Distance (m)	0 (•)	P-wave Velocity (km/s)	Maximum Peak Amplitude (mV,40dB)	First Peak Amplitude (mV,40dB)
E1	8.6	+59	4.8	10.2	1.1
E2	6.7	+ 32	4.6	29.0	1.9
E 3	6.5	+21	4.8	143	30.0
E4	6.7	+ 3	5.3	1210	417
E5	7.8	-19	5.2	261	62.9
E6	10.2	- 32	5.8	133	45.8
E7	12.0	- 4 0	5.2	23.2	2.6
E8	7.3		4.5	39.0	
E9	4.5		5.8	1120	_

Table.Ⅱ.4.3 測定結果

示す。Table.Ⅱ.4.3には発振点と受振点の位置関係として各伝播経路の伝播距離d 及び受振子用ボアホールの軸方向、すなわち加速度ピックアップの最大感度の方向、と発振点 と受振点とを結ぶ方向とのなす角θもあわせて示してある。Table.Ⅱ.4.3より、E 1-R,E2-R,E3-R及びE8-Rの場合は、E5-R,E6-R,E7-R及びE9 -Rの場合に比べてその伝播経路のP波伝播速度が低くなっていることがわかる。

次に、E1-R~E7-Rのそれぞれについて得られた受振波形のフーリエスペクトルをそ れぞれのビーク値を1としてFig. Π.4.4に示す。また、受振波形のP波初動成分に関 するフーリエスペクトルをそれぞれのビーク値を1としてFig. Π.4.5に示す。Fig. Π.4.4及びFig. Π.4.5より、E1-R,E2-R及びE3-Rの場合はE4-R, E5-R及びE6-Rの場合に比べて高周波成分の低周波成分に対する割合が小さく、周波数 の高い波動が伝播しにくくなっていることが認められる。これは、それぞれの伝播経路におい て減衰が異なっていることを示している。そこで、Fig. Π.4.4及びFig. Π.4. 5の結果をもとにして、前節で示した方法で各伝播経路のQ値を求めた。得られたQ値、Qp 及びQτをTable. Π.4.4に示す。ちなみに、Kjartansson¹¹⁾の提唱する 変位速度波形の初動パルス幅と伝播時間との関係式をもとにしてE4-R~E7-Rの経路の 平均的なQpの値を求めるとQp≒8となり、Table. Π.4.4に示した結果とほぼ一致 する¹²⁾。また、Qpの値がQτの値の約半分程度となっているが、これは、(Π.4.2)式 中の伝播時間t₁及びt₁としてP波伝播時間を用いたことに関係しているものと思われる。T

Fig.Ⅱ.4.4 受振波形の振幅スペクトル

Fig. II.4.5 受振波形の初動成分の振幅スペクトル

аріе. П. 4. ЗЪУТаріе. П. 4. 4 より、伝播速度の低い岩盤領域は伝播速度の高い岩 盤領域に比べてQ₽及びQ↑の値が低く、岩盤内の波 動エネルギーの損失率が高いことがわかる。以上の 結果や第2章及び第3章に示した岩石供試体実験の 結果を総合して考えると、今回の現場実験により得 られた結果においても、岩盤内のき裂の集積状態に 対応して伝播速度及びQ値の低下が生じたものと解 釈することができる。¹³⁾

Table, II.4.4 各伝播経路のQ値

Emitting Point	Q _p	Q _T
El	7.1	13
E2	5.9	10
<u>E3</u>	6.3	13
<u>E4</u>	12.2	33
<u>E5</u>	7.7	20
E6	10.0	20
E7	7.7	20

R

Âπ

C₍ (*105 ^{cm/s})

Ē8

F١

6.0

次に、測定された振幅の値について検討してみる 。それぞれの伝播経路及び測定値の関係をわかりや

すくするために、Table.Ⅱ.4.3の関係を図示したものがFig.Ⅱ.4.6である。 ここで、受振子の指向性等の問題を考慮して受振子の受感方向との角度のがほぼ等しい位置関 係にある伝播経路(E2-RとE6-R及びE3-RとE5-R)について得られた振幅値を 比較してみると、E2-RはE6-Rに比べて伝播距離が短いにもかかわらずその振幅値が小

ここで、E6-R及びE5-Rのそれぞれの伝播距離がE2-R及びE3-Rのそれぞれの伝 播距離に比べて長いことを考慮すると、E6-R及びE5-Rで得られた振幅の値はE2-R 及びE3-Rで得られた振幅の値に比べて相対的に過小に評価されていることになる。したが って、それぞれの伝播距離が等しい条件のもとで測定がなされた場合には、伝播速度の低い伝 播経路では伝播速度の高い伝播経路に比べて測定される振幅の値が極めて小さくなるであろう ことが予想される。この結果は、岩盤状態の差は伝播速度よりも振幅の値に顕著に現われてく ることを示しているものと思われる。

4.4.2 岩盤内のいたみの進行に伴う弾性波伝播特性の変化

岩盤内を伝播する弾性波の伝播特性が経時的にどのように変化するかを検討するために19 78年3月、5月及び7月のそれぞれの時期に測定した弾性波伝播特性を対象にしてそれらの 変化を調べた。結果の一例としてE4-R及びE3-Rについて測定した結果をFig・Ⅱ・ 4.7に示す。Fig. II.4.7において、 $A_i/A_{10}, A_m/A_{m0}, C_L/C_{L0}$ 及び $N_w/$ Nwoはそれぞれ各時期に測定したAィ、Am、CL及びNwの値を実験開始時(1978年3月3 1日)に測定したA₁,A_m,C₁及びN_Wの値で除したものであり、弾性波伝播特性の変化を表 わす値である。Fig、Ⅱ、4、7よりAィノAィo,Am/Amo,CL/CLo及びNw/Nwoの値 がそれぞれかなりよく対応関係を保って変化していることが認められ、岩盤の弾性波伝播特性 が変化したことが推察される。特に、振幅の変化は伝播速度の変化に比べて顕著であることが 認められる。E4-Rについて、3月,5月及び7月のそれぞれの時期に測定した波形のフー リエスペクトルを3月の測定値の最大値で正規化して表わしたものがFig・Ⅱ・4・8及び Fig.Ⅱ.4.9である。Fig.Ⅱ.4.8は波形全体のスペクトルであり、Fig.Ⅱ. 4.9はP波初動成分に関するスペクトルである。Fig. Π .4.8及びFig. Π .4. 9のいずれの場合についても、スペクトル上の高周波成分が経時的に減少してきていることが 認められ、岩盤の滅衰特性が変化してきていることが確かめられる。この変化はQ値で表わす と、計測を開始してから約120日間の間でQpの値で4.0、Qrの値で18程度低下し、岩盤の波動 エネルギー損失率が増大してきていることがわかる。したがって、前項の結果や岩盤状態等の 観察結果を対応させて考えると、実験期間中においても、何らかの原因で岩盤内にいたみが進 行し、その岩盤中を伝播する弾性波の伝播速度の低下と波動エネルギー損失率の増大が生じた ものと解釈することができる。そして、これらの変化に対応してAィノAィo, Am/Amo 及び Nw/Nwoの値が低下したと考えられる。

次に、これらのまとめとして振幅の 変化と伝播速度の変化の関係をFig .Ⅱ.4.10に示す。図中、黒印は A_{1}/A_{10} 及び A_{m}/A_{m0} と C_{L}/C_{L0} との関係であり、白印はA 12/6及び Am2/6とCL2/6との関係及びA13/5及 びAm3/5とCL3/5との関係から予想さ れる振幅変化と伝播速度変化との関係 を表わしている。特に、図の白印に付 した下向きの矢印は値がそれ以下であ ることを示している。Fi g. II. 4. 10より、振 AMPLITUDE RATIO 幅値の変化が伝播速度の変 化に比べて顕著であること が明瞭に認められる。また 、比較のため第2章及び第 3章の花園岩供試体(KG 1, KG2, KG3) につ いて得られた振幅比A/ Anと伝播速度比CL/CLO との関係をFig. Ⅱ.4

11に示す。
 図中の記号

Fig.Ⅱ.4.11 花崗岩供試体の実験により求められた 伝播速度比及び振幅比の関係

の違いは供試体が異なることを意味している。Fig.Ⅱ.4.10及びFig.Ⅱ.4.1 1より両者の傾向がほぼ一致していることがわかる。これは、両者のd/λ及びQ₀の値が大略 等しいことを考慮すると、今回実験を行った岩盤と花崗岩供試体との間で破壊現象に何等かの 相似性が成り立っていることを意味しているのかも知れない。

4.5 弾性波伝播特性を利用した鉱柱監視システム

前節までの結果により、鉱柱及び岩盤内のき裂の進行状態を検出しようとする場合には岩盤

Fig.Ⅱ.4.12 振幅計測システムの測定系統

内を伝播する弾性波の振幅の変化を計測する方法が有効であることが確認された。そして、最 大振幅値の変化が初動振幅値の変化とほぼ対応することから、最大振幅値の変化を計測するこ とにより鉱柱及び岩盤内のき裂進行状態の検出が可能であることが推察された。特に、最大振 幅値を計測する場合にはFig.Ⅱ.4.12に示すようなセンサー,フィルター,増幅器, ビークホールド回路及び直流電圧計のみの構成で計測が可能であり、計測方法も極めて簡略と なる。また、信号レベルが大きい為、多少のノイズが存在している条件下でも計測が可能とな る利点がある。なお、伝播距離が数10m以上となるような場合には、その振源として発破や エアガンの使用が考えられるが、これらの場合には発振点付近に比較用センサーを設置し、受 振点で得られる振幅値と比較用センサーで得られる振幅値の比をとることにより伝播経路中の 振幅減衰の変化を正確に計測することができる。また、最大振幅を測定の対象とする場合も、 初動振幅の場合と同様に伝播距離dと波長λとの比d/λが振幅変化の測定に影響を与えるパ ラメータとなるものと思われる。このd/λの値の最適範囲は岩盤条件によって異なると思わ れるが、今回の現場実験ではP波についてd/λの値が4~14程度であり、この条件下でほぼ良 好な結果が得られている。したがって、適切なシステムの設定を行えば、極めて簡単な方法に より日常的な鉱柱の監視が可能になるものと思われる。

なお、上記の方法とともに弾性波伝播速度の測定を同時に行うことが望ましいことは言うま でもない。例えば、測定の開始時点には最大振幅値とともに初動振幅値及び伝播速度の測定を 行っておけばその後の日常的監視は簡便な最大振幅の計測のみでまにあうことになる。そして、 最大振幅値に異常な変化が認められた場合には初動振幅値及び伝播速度の測定を追加してその 異常現象の確認を行う。この様な方法により鉱柱の安全性が高い確度で診断されるものと思わ れる。また、振幅計測システムは極めて経済的であるとともに多くの測線についての同時測定 が可能であるため、この点でも広範な利用が期待できるものと思われる。

4.6 結言

本章では、まず、第3章に示した岩石実験の結果を岩盤に適用する際の問題点を整理し、その上で現場実験を行い、弾性波の振幅減衰を利用した鉱柱の安定性監視法の有効性とその実用 化の見通しについて述べた。得られた成果を以下に示す。

(1) 岩石と岩盤との破壊機構の相似率について考察するとともに、それぞれの場合に測定される振幅比の関係について考察した。そして、両者の振幅比を関係付ける無次元パラメータを明らかにした。また、岩盤の含水状態が弾性波の振幅減衰特性に及ぼす影響について考察した。そして、岩盤内に発生するき裂の長さに比較して伝播する波動の波長が充分大きいという条件下では、岩盤が含水状態にある場合は乾燥状態にある場合に比べて破壊の進展に伴う振幅の変化がより顕著に現われるであろうことを指摘した。

(2) 現場実験により、岩盤状態によって弾性波伝播特性が異なり、特に、伝播速度の高い岩 盤領域ではQ値も高くなることが確かめられた。これは、岩盤においても、岩石供試体の場合 と同様に、内部のき裂の集積に対応して伝播速度及びQ値が低下することを意味しているもの と思われる。

(3) 計測の対象とした岩盤では伝播特性の経時的変化が認められたが、これは実験期間中に 岩盤内のいたみが進行した結果であると思われる。特に、振幅の経時的変化は伝播速度の経時 変化に比べて顕著であり、振幅計測により岩盤内のいたみの進行状態を高感度で検出できるこ とが確かめられた。

(4) 上記の現場実験の結果をもとにして、弾性波の振幅減衰を利用した簡便な鉱柱監視法を 提案した。本手法は適切な設定を行えば、岩盤内のいたみの進行状態を極めて敏感に検出でき るものであり、さらに、計測装置及び計測方法は極めて簡単なものであるため、今後、広い利 用が期待できる。

なお、神岡鉱山においては1980年より、鉱柱及び採掘空洞周囲の岩盤の安定性の監視法として本手法が採用¹⁴⁾ されていることを付記しておく。

参考文献

1) Kaneko, K., H. Inoue, K. Sassa and I. Ito; Monitoring the stability of rock structure by means of acoustic wave attenuetion, Proc. 4th Int. Cong. ISRM, Vol. 2, pp. 287-292(1979)

2) 例えば、平松 良雄,岡 行俊;岩盤内の応力変化の測定,日本鉱業会誌,第80巻,第910号,pp. 356-361(1964)

3) 例えば、日比野 敏,本島 睦;実測結果による大規模地下空洞掘削時の岩盤挙動の検討,第15 回岩盤力学に関するシンポジウム講演論文集,pp.66-70(1983)

4) McGarr, A. and R.W.E. Green; Measurement of tilt in a deep-level gold mine and its relationship to mining and seismicity, Geophys. J.R. astr. Soc., Vol. 43, pp. 327-345(1975)

5) Hayashi,M.,T.Kanagawa,S.Hibino,M.motozima and Y.Kitahara;Detection of anisotropic geo-stress trying by acoustic emission, and non-linear rock mechanics on large excavating caverns,Proc.4th Cong.ISRM.Vol.1,pp.211-218(1979)

6) Scholz.C.H.,L.R.Sykes and Y.P.Aggarwal; The Physical basis of earthquake prediction.Science.Vol.181,pp.803-810(1973)

7)山口 梅太郎, 奥村 誠;岩石中を伝播する音波の減衰定数の測定(自由振動法による減衰定 数の測定),材料,第21巻,第,228号,pp.869-875(1972)

8) 金子 勝比古,伊藤 一郎;岩石内の波動の伝播特性(Q値について),昭和52年度日本鉱業 会春期大会講演要旨集,pp.13-14(1977)

9)兼間強;花崗岩の縦波の減衰に及ぼすクラック及び水の効果,北海道大学地球物理学研究報告,Vol.36,pp.59-67(1977)

10) Kudo,K.and E.Shima;Attenuation of Shear wave in soil,Bull.Earthq.Res.Inst.,Vol. 48,pp.145-158(1970)

11) Kjartansson.E:Constant Q-wave propagation and attenuation, J.Geophys.Res., Vol.84, No.B9, pp.4737-4748(1979)

12) 金子 勝比古,大見 美智人,井上 正康;岩盤の波動減衰定数の評価法に関する基礎的研究, 昭和56年度日本鉱業会春季大会講演要旨集,pp.193-194(1981)

13) Meister, D; A new ultra-sonic borehole-meter for measuring the geotechnical proper ties of intact rock.Proc.3rd Int.Cong.ISRM, Vol.2, pp.410-417(1974)

14) 佐々 宏一,南光 宣和,渋江 隆雄:弾性波を利用する岩盤監視,日本鉱業会誌,第98巻,第113 5号,pp.927-932(1982) 結論

サプレベル採鉱法等の残柱式採鉱法においては、鉱柱及び採掘大空洞の合理的設計とともに その日常的管理が必要不可欠である。また、これらの問題は、近年のロックストアのための地 下大空洞の設計及び管理の問題とも直接対応する岩盤力学の重要な課題であり、その為の基礎 研究の必要性が高まってきている。著者は、この観点のもとに、次の2つの課題について基礎 研究を実施した。すなわち、鉱柱及び地下大空洞の設計上の問題として岩盤の基本的力学特性 である変形性の評価法に関する基礎研究を、鉱柱及び地下大空洞の管理上の問題として鉱柱の 安定性の評価法に関する基礎研究を実施した。以下に本研究で得られた結果を総括する。

鉱柱及び地下大空洞の合理的設計のためには、対象とする岩盤の初期地圧状態と岩盤の力学 的性質を把握した上で数値解析的手法を用いて鉱柱及び地下大空洞周囲の岩盤の応力状態及び 変形状態を適確に予測する必要がある。この為の岩盤の初期地圧状態の計測法及び岩盤内の応 力及び変形状態の数値解析手法としては、すでに実用的な方法が開発されてきているが、岩盤 の力学的性質、特にその基本因子である岩盤の変形性を定量的にかつ合理的に評価する方法が 欠落していた。そこで、本論文第I部では鉱柱及び地下大空洞周囲の岩盤の変形性の評価法に ついて主として理論面からの基礎研究を実施した。特に、著者は、クラック理論を岩盤力学に 適用し、岩盤の変形性評価のための基礎理論を構築しようと試みた。

第1章では不連続岩盤をクラックモデルを用いて理想化し、岩盤の変形性に及ぼす不連続面 の影響を理論的に明らかにした。特に、岩盤内の不連続面の形状を楕円板状もしくは円板状と 仮定し、また、不連続面をその閉合状態により開口型と閉合型とに分類して解析を行った。ま ず、ジョイント等の不連続面を有する鉱柱及び岩盤の変形性の問題を単一クラックを有する弾 性体モデルで取り扱い、不連続面が開口型である場合及び閉合型である場合のそれぞれについ て変形性の評価式(本文、(I.1.1.2)式及び(I.1.32)式)を誘導した。次に、 数多くの不連続面を有する岩盤の巨視的変形性の問題を分布クラックを有する弾性体モデルで 取り扱い、不連続面が開口型である場合及び閉合型である場合のそれぞれについて変形性の評 価式(本文、(I.1.4.5)式及び(I.1.60)式)を誘導した。さらに、一般化した 問題として、開口型不連続面と閉合型不連続面が混在する場合の変形性評価式(本文、(I. 1.62)式)を誘導した。これらの理論解をもとに数値計算を行った結果、分布クラックを

有する弾性体モデルの場合には、不連続面の量及び形状が変形性に及ぼす影響はただ一つのパ ラメータ、すなわちクラック密度、により大略表現されることが確かめられた。そこで、不連 続面形状を円板状と仮定して問題を単純化すると、不連続岩盤の一般化した変形性評価式(本 文、(I.1.64)式)のパラメータは次の4つとなる。すなわち、構成岩石の弾性率、岩 盤のクラック密度、不連続面の摩擦係数及び開口型不連続面と閉合型不連続面との比率を定め る状態係数である。したがって、これら4つの諸量が定量化されれば不連続岩盤の変形性を理 論的に予測することが可能となるものと思われる。

そこで、第2章では、岩盤の変形性を評価する上で重要なパラメータである岩盤のクラック 密度の評価法について理論的検討を行った。特に、岩盤は不透明材料であるため、その内部に 存在する不連続面の分布状態を岩盤表面の観察により直接的に知ることができない。そこで著 老は、クラック分布の幾何学性に関する確率統計論を展開してこの問題の解決を計り、測定ク ラックと有効クラックの概念を用いて岩盤表面に現われる不連続面の簡易計測によりクラック 密度を推定する方法を提案した。ここで、測定クラックとは岩盤表面で観察可能な不連続面で あり、有効クラックとは岩盤の変形性を評価する上で問題となる不連続面であり、ともに、岩 盤中に存在する不連続面の母集団からある条件付確率のもとで抽出されたサンプル集団をなす あのである。特に、これらの概念は従来かなり混同して使用されている傾向があるが、著者は これら両者の相違を明確にし、かつ両者の関連を理論的に明らかにした。そして、岩盤表面に おいて不連続面の観察を行い、表面で観察される所定の長さ以上の不連続面(測定クラック) の単位面積当りの数と単位測線長当りの数を計数することにより、問題とする岩盤のクラック 密度(有効クラックのクラック密度)の推定が可能となることを明らかにした。また、通常広 く用いられている岩盤指標値であるRQDに関してその理論的背景を明らかにするとともに、 第1章に示した理論式をもとにしてRQDと岩盤の変形係数との関連を検討し、岩盤の変形性 を評価するためには不連続面の状態を適確に把握することが必要であることを指摘した。

第3章では、第1章で示した変形性評価理論の検証を目的として実施した、花崗岩供試体を 用いた実験の結果について論じた。すなわち、クラック分布性状の異なる4種の花崗岩供試体 を鉱柱のモデルとして考え、供試体表面のクラック観察、静水圧試験及び一軸圧縮試験を実施 した。そして、供試体表面の観察により求められたクラック密度の値をもとにして各供試体の 有効弾性率の理論推定値を求め、これらの値と一軸圧縮試験により実験的に求められた接戦弾 性率の値とを対比して検討し、両者がほぼ一致することを確かめた。この結果により、上記理 論の妥当性が検証されたものと考えられる。また、本理論を用いて、岩盤の変形性を評価する 場合に問題となる、不連続面の摩擦係数及び状態係数の定量的評価法についての若干の考察を 加え、従来の岩盤計測法を応用することによりこれらの諸量を推定しうる可能性があることを 指摘した。本研究は岩盤の変形性評価のための基礎理論の構築を目的としているため、その実 用性等、今後の課題とすべき問題点が残されているが、本研究の成果は、岩盤の変形性の理論 的解釈に関しての重要な糸口となりうるものと考えている。

第Ⅱ部では、鉱柱及び地下大空洞の管理を目的とした鉱柱監視法に関する研究を実施した。 鉱柱及び地下大空洞は自然を対象とした構造物であるため、合理的設計がなされた上でも、そ の安定性を科学的手法で日常的に監視することが望ましい。この目的のために、応力計測法、 変形計測法、AE計測法及び弾性波伝播速度の計測法等種々の岩盤計測法が開発されてきてい る。著者はこれらの研究成果をふまえて、岩石の破壊の進展に伴う弾性波伝播特性に関する基 礎研究を実施し、新たな観点からの鉱柱監視法を開発しようと試みた。

第1章では、岩石の破壊特性に関する基礎資料を得ることを目的として実施した、岩石のA E発生頻度特性に関する実験の結果について述べた。そして、岩石のAE発生頻度特性は岩石 の成因もしくは組織構造に起因した固有の特徴を有していることを示した。

第2章及び第3章では岩石の破壊の進展に伴う弾性波伝播特性の変化に関する一連の研究の 成果について論じた。特に、第2章では、岩石の破壊の進展に伴う弾性波伝播速度の変化に着 目し、岩石内の破壊の進展、すなわち、マイクロフラクチャーの集積に伴って岩石内を伝播す るP波の伝播速度が低下することを確かめるとともに、その低下率がマイクロフラクチャーに よって発生し、伸長するクラックの性状と密接に関係していることを明らかにした。すなわち、 花崗岩等の比較的結晶の発達した完晶質岩石ではマイクロフラクチャーによって発生するクラ ックの Aspect ratio (クラックの開口幅/クラック長)が小さいため、破壊の進展に伴うP 波伝播速度の低下が顕著であるが、砂岩,凝灰岩等の岩石では、マイクロフラクチャーによっ て発生するクラックの Aspect ratio が相対的に大きく、そのため、破壊の進展に伴うP波伝播速度の低下率が小さくなることを明らかにした。

第3章では、伝播速度とともに弾性波伝播特性を表す重要な指標値である振幅減衰特性に注 目し、岩石の破壊の進展に伴ってその内部を伝播する弾性波の振幅がどの様に変化するかを実 験的に検討した。そして、岩石の破壊の進展に伴って、岩石内を伝播するP波の初動振幅の値 が低下することを確かめるとともに、振幅の値は伝播速度の値に比べて岩石内の破壊進展状態 に敏感に対応することを明らかにした。また、岩石の破壊進展状態を表す諸量として、上記の 弾性波伝播特性とともに、非弾性体積ひずみ、AE発生頻度特性及びAE規模別発生頻度特性

等についての測定も行い、これらの諸量が互いに良く対応することを確かめた。また、それら の現象が、すべて岩石内に発生するマイクロフラクチャーの観点から良く説明されることを明 らかにした。

第4章では上記の基礎研究の成果をふまえ、岩盤内を伝播する弾性波の振幅の変化を利用し て岩盤内のいたみの進行状態を検出する方法について検討を行った。特に、現場実験を実施し、 岩盤においても、岩石供試体を用いた実験の場合と同様に、内部のいたみの進行に伴って弾性 波伝播特性が変化し、特に、振幅の変化は伝播速度の変化に比べて顕著となることを確かめた。 そして、これらの結果を総合して、弾性波の振幅減衰特性を利用した簡便な鉱柱監視法を提案 した。この方法は、岩盤に一定の打撃を与えて弾性波を発生させ、その伝播波形の振幅の値を 計測し、計測された振幅の値の変化から岩盤内部のいたみの進行状態を検出しようとするもの である。したがって、計測システム及びその操作も簡便なものであり、日常的鉱柱監視法とし て幅広い利用が期待できるものと思われる。

辂 儶

本研究を行うにあたり、終始御指導を賜った京都大学工学部教授佐々宏一博士に深く感謝の意 を表します。また、この間、公私にわたる御指導を賜った京都大学工学部名誉教授(現福井工業 大学副学長)伊藤一郎博士、熊本大学工学部名誉教授(現八代工業高等専門学校校長)井上正康 博士ならびに京都大学工学部教授寺田 孚博士に深く感謝いたします。

本論文第 I 部の研究において、常に有益な御討議を戴いた熊本大学工学部助教授菅原勝彦博士、 同学部助教授大見美智人先生、同学部助手尾原祐三氏に感謝の意を表するとともに、実験に協力 して戴いた同学部資源開発工学科探査工学研究室の大学院生ならびに学生諸氏に謝意を表します。

本論文第Ⅱ部の研究において、常に有益な御討議を戴いた山口大学工学部助手佐野修博士、京 都大学工学部助手柳谷俊先生、同学部助教授花崎紘一博士ならびに同大学院博士課程学生(現(株)丸尾カルシウム)江原昭二氏に感謝の意を表するとともに、実験に協力して戴いた京都大学 大学院修士課程学生井上博之氏(現(株)前田建設)ならびに京都大学工学部資源工学科開発工 学研究室の学友諸氏に謝意を表します。また、現場実験に御協力戴いた三井金属鉱業(株)神岡鉱 業所副所長(現同社部長)南光宣和氏ならびに同鉱業所栃洞鉱技術係の皆様に謝意を表します。 そして最後に、我が妻、両親にありがとうと書き添えさしていただく。

付 録

第I部の記号説明

本論文第 I 部では種々の記号が用いられているが、できるだけ慣用的な記号表現を行うこと を心がげたためかなり重複した繁雑な表現が多くなっている。そこで、第 I 部で使用されてい る主要な記号をまとめて以下に示す。

A:クラックの表面積の1/2 A_n:クラックnの表面積の1/2 a:楕円板状クラックの長半径もしくは円板状クラックの半径 a_n:クラックnの長半径もしくは半径 B1: Nº1/Nºb Bs: N§¹/N8^b b:楕円板状クラックの短半径 c:クラックの開口幅の1/2 d (^{mn}): x ^(m)と x ⁽ⁿ⁾の方向余弦 E:材料実質部のヤング率 E*: クラックを有する材料の有効ヤング率 E(k):第2種完全楕円積分 E: 基底ベクトル G:絶対座標系 G⁽ⁿ⁾:相対座標系(n=1,2,3,4) g:エネルギー解放率 h:(r, D)クラックの中心と平面S⁽¹⁾の距離 K1, K11, K111:モードⅠ, Ⅲの応力拡大係数 K(k):第1種完全楕円積分 $k: k^2 = 1 - k'^2 \le 1$ $k': b/a \leq 1$ k。': クラック n について定義された k' ka:閉合型クラックの内で動的応力によってはすべりを生じえないものの比率 k^f ξ : (N^fI/L)/(N^fI/S) kis:(Nip/L)/(Nsp/S) L⁽¹⁾:基底ベクトルBに平行な測線(クラック方位分布が一様な場合は⁽¹⁾は省略) L (1):L (1)の長さ(クラック方位分布が一様な場合は (1)は省略) L」: 係数テンソル、(I.1.14)式 L'1: : 係数テンソル, (I.1.33) 式 M(µ):摩擦係数µの関数, (I.1.57)式

N:体積V中にその中心をもつクラックの数

Nc:測線もしくはボーリングコアを切断するクラックの数

№゚・・・:測線L ・・・と交差するクラックの数(クラック方位分布が一様な場合は ・・・ は省略)

№ ;・・・: 平面S (・・) と交差するクラックの数(クラック方位分布が一様な場合は (・) は省略)

- NE¹: 測線Lと交差する有効クラックの数
- N2^b:測線Lと交差する測定クラックの数
- N^{§1}:平面Sと交差する有効クラックの数
- N&^b:平面Sと交差する測定クラックの数
- N::::係数テンソル, (I.1.13)式
- D:クラック面の単位法線ベクトル
- n::基底ベクトルይ,に対する(r, D)クラックの方向余弦
- P_N(D):クラック方位分布を表す確率密度関数
- P_R(r):クラック直径の分布を表す確率密度関数
- P_{RN}(r, D):クラック分布を表す確率密度関数
- $P_{\tau}(t)$:平面と交差するクラックの交線長の分布を表す確率密度関数, $P_{\tau}^{(t)}(t) = P_{\tau}(t)$
- Pf'(t):有効クラックについて定義された $P_{T}(t)$
- Pw(w):クラックにより切断される線分長の分布を表す確率密度関数
- q:開口型クラックと閉合型クラックが混在する場合の総クラック数に対する開口型クラック の比率
- q*:状態係数,開口型クラックと閉合型クラックが混在する場合の総クラック密度に対する 開口型クラックのクラック密度の比率
- r:円板状クラックの直径
- r_{min}:有効クラックの直径の下限値
- S⁽¹⁾:基底ベクトルይに直交する平面(クラック方位分布が一様な場合は⁽¹⁾は省略)
- S⁽¹⁾:平面S⁽¹⁾の面積(クラック方位分布が一様な場合は⁽¹⁾は省略)
- T₁₁:係数テンソル、(I.1.15)式
- T'ぃ:係数テンソル、(I.1.34)式
- t:クラックが平面となす交線の長さ
- tmin: 測定クラックのクラック交線長の下限値
- V:内部にN個のクラックを有する材料(岩盤)の体積
- v:内部に単一のクラックを有する材料(岩盤)の体積
- △Wc:クラックの存在に起因したコンプリメンタリエネルギーの増分
- ΔW_{c_n} : クラック n について定義される ΔW_c
- w:クラックにより切断される線分の長さ
- x⁽ⁿ⁾:G⁽ⁿ⁾座標系の座標軸
- z: 測線上の切断面の位置を表す1次元座標
- β : 楕円板状クラックの楕円長軸方向がクラック面と $(x_1^{(0)}, x_2^{(0)})$ の交線となす角 β_c : 岩石の圧縮率
- γ:G⁽¹⁾座標系とG⁽³⁾座標系の回転角
- δ_{11} : $D \Box \hat{x}$ $\gamma D \neg D = D = D = D = D$
- ε 💬:相対座標系G 🖤 上のひずみテンソル

Δε⁽¹⁾:相対座標系G⁽¹⁾におけるクラックの存在に起因したひずみ増分を表すテンソル

θ:クラック面の単位法線ベクトルの経角

λ ιικι:材料実質部のコンプライアンステンソル

λ*コュk1:クラックを有する材料の有効コンプライアンステンソル

Δλιικι: クラックの存在に起因したコンプライアンスの増分を表すテンソル

μ:クラック面の摩擦係数

ν:材料実質部のボアソン比

v*:クラックを有する材料の有効ボアソン比

ξ: 楕円の離心角

σ₁₁:絶対座標系G上の応力テンソル

σ(?):相対座標系G()上の応力テンソル

σ^[3]*:相対座標系G⁽³⁾上の応力成分を表すテンソル,(I.1.20)式

σ⁽³⁾^c:相対座標系G⁽³⁾上の応力成分を表すテンソル, (I.1.20)式 Φ:クラック密度

 Φ_1, Φ_2 :単一クラックモデルの場合の係数, (1.1.11)式

Φ^{*}1, Φ^{*}2:分布クラックモデルの場合の係数, (Ⅰ.1.44)式

Φ^{€1}:有効クラック密度

φ:クラック面の単位法線ベクトルの緯角

øn:クラックnについて定義されたø