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ON THE EQUATIONS OF STATIONARY PROCESSES
WITH DIVERGENT DIFFUSION COEFFICIENTS

AKIHIKO INOUE

ABSTRACT. We investigate a class of Langevin equations with delay. The ran-
dom noises in the equations are adopted so that they are in accordance with
linear response theory in statistical physics. We prove that every purely non-
determistic, stationary Gaussian process with divergent diffusion coefficients as
well as reflection positivity is characterized as the unique solution of one of such
equations. This extends the results of Okabe to processes with divergent diffu-
sion coefficients. A correspondence between the decays of the delay coefficient
of the equation and the correlation function of the solution is obtained. We see
that it is of different type from the case of finite diffusion coefficients.

1. INTRODUCTION

This paper aims to generalize Okabe’s theory on KMO-Langevin equations to
processes with divergent diffusion coefficients. KMO-Langevin equations are sto-
chastic differential equations with delay which describe the time evolution of purely
nondeterministic, stationary Gaussian processes with reflection positivity. A purely
nondeterministic, weakly stationary process is called reflection positive if the cor-
relation function R(t) := E(X(0)X (¢)) of X is in the form

(1.1) R(t) :/OOO e Ma(d))  (t€R)

with some bounded Borel measure o on (0,00). We note that in this paper all
stationary processes and stationary random distributions are assumed to have ex-
pectation zero. The diffusion coefficient D of X is a finite or infinite positive
number defined by

(1.2) D= /00 R(t)dt.

Let a > 0, and p be a Borel measure on (0, 00) such that

(1.3) /Ooo H%p(d)\) < oo, /Ooo %,)(dx) ~ .
We put

(1.4) A0 =xam(®) [ e By (e R),
and

(1.5) Aw (€) = 2V21aRe {—ig — % /0 . eigty(t)dt} (€ € R\ {0}).

This paper, which introduces Langevin equations describing long-memory processes, was pub-
lished in J. Fac. Sci. Univ. Tokyo Sect. IA 40 (1993), 307-336.
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Let W be a stationary Gaussian random distribution, defined on a probability
space (€2, F, P), with spectral density Ay,. We are concerned with a stationary
solution of the following stochastic differential equation

(1.6) X=—yxX4+W
with the causality condition
(1.7) My(X) = M,(W) for any ¢t € R,

where, for any stationary random distribution Y, M;(Y") denotes the closed linear
hull of {Y(¢) : ¢ € S(R), supp ¢ C (—oo,t]} in L*(2). We call (1.6) the second
KMO-Langevin equation. The first KMO-Langevin equation is an equation with
white noise as random force, and will be treated in our forthcoming paper.

We state our main results.

Theorem 1.1. There exists a unique stationary random distribution X which sat-
isfies (1.6)—(1.7). The solution X is a purely nondeterministic, stationary Gaussian
process with reflection positivity.

Theorem 1.2. Let X be the stationary Gaussian process which satisfies (1.6)—
(1.7), and let R be the correlation function of X. Then

(i) R(0) =270 B
) g [ R = |ic—ic ["etwa] e,
(i) /0 " Ryt = .

1

(iv) X = ]Vlllinoo R0) (x,m)R) * W as random distributions.

Theorem 1.3. Let R be the correlation function of the stationary process X which
satisfies (1.6)—(1.7). Let 0 < p < 1, and let | be a slowly varying function. Then
the following are equivalent:

(1.8) Y(t) ~TPUE)  (t = 00),
sin(pr) t~(-P)
(1.9) Rty ~ B0 ! (pr) 'tz(t) (t — o0).

We explain a physical background following Kubo—Toda—Hashitsume [9], pp.35-
36. Suppose that the z-component X (¢) of velocity of a particle with mass m obeys
the equation:

dX(t t .

(1.10) m% =—pX(t) — / v(t — )X (s)ds + W(t).

Here W (t) is the thermal noise. The positive constants & and T denote the Boltz-
mann constant and the absolute temperature of the fluid, respectively. Then, the
following two formulas must hold:

—00

1
m(— zw—i-fyw]) kT
_kT 0

(1.11) / T B(X(0)X ()¢,

(1.12) E(W(0)W (t))e™"dt,



where y[w] := [B—iw [;° v(t)e™'dt]/m . The equality (1.11) is called the fluctuation-
dissipation theorem of the first kind, and (1.12) the fluctuation-dissipation theorem
of the second kind. The second is a corollary of the first, and the first can be de-
rived from the linear response theory. The first is a generalization of the Einstein
relation, while the second is a generalization of the Nyquist theorem. We note that
the equation (1.6) can be formally rewritten as (1.10) with m = 1 and § = 0. If put
m =1, and R(0) = kT, according to the equipartition law in statistical physics, in
(1.10), then we see that (ii) corresponds to (1.11); in view of (i), (1.5) corresponds
to (1.12); since the equality (iii) can be seen as D = R(0)/0+, it corresponds to
the Einstein relation.

The case f > 0 in (1.10) was first studied mathematically by Okabe [11], and

subsequently by Okabe [12], [15], Inoue [5], and Okabe-Inoue [16]. Discrete param-
eter versions of (1.10) were studied by Okabe [13], [14], Inoue [6] and Okabe-Inoue
[16]. Especially in Okabe [15] and Inoue [5], it was shown that if y(¢) ~ ¢7PI(t) as
t — oo with 0 < p < oo and [ slowly varying, then
(1.13) R(t) ~ %t“p“ﬂ(t) (t — o0).
This slowly decaying tail corresponds to the Alder—-Wainwright effects discovered
by Alder and Wainwright [1] through molecular dynamic computations. See also
Oobayashi-Kohno-Utiyama [17]. We see from Theorem 1.3 that long-time behav-
iors of different type occur if g = 0.

Since our case is more singular than the previous case § > 0, we need some
different techniques from the previous works. Among them, the awareness that
the random noise W in (1.6) is purely nondeterministic is most important. From
this we are naturally led to the idea that general theory of purely nondeterministic,
stationary random distributions can be applied. This is shown in sections 4 and 5.

The author wishes to thank Professor Y. Okabe for helpful discussions.

2. REFLECTION POSITIVITY

In this paper when we say stationary process, it always means a real, mean con-
tinuous, weakly stationary process with expectation zero, defined on a probability
space (2, F, P). Let X = (X(t) : t € R) be a purely nondeterministic stationary
process. Let R be the correlation function of X: R(t) = E(X ()X (0)) (¢t € R).
Let A be the spectral density of X:

(2.1) R(t) = /_OO e "EA(6)dE  (t € R).

The spectral density A is a positive, even, and integrable function on R which
satisfies (1 + A?)"'log A(A) € L' (R). The outer function h of X is an outer
function in the Hardy class H? defined by

% 1+ AClog A\
(2.2) h(C) = exp [% / 1;_ f e >(\2)d)\ (Im ¢ > 0).

Since h belongs to H?, there exists a Lim.,oh(§ + in) in L?(R), which we also
denote by h(£). It holds that

(2.3) MEOP=AE)  (ae ECR).
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The canonical representation kernel E of X is defined by E(t) = h(t), where h
denotes the Fourier transform of h:

(2.4) ) = Lim. / e~HEp (¢ (t € R).

It holds that E(t) =0 in (—o00,0). Furthermore we have the following equalities:

(2.5) h(¢) = %/0 e“'Et)dt  (Im ¢ > 0),
(2.6) R() = o /Ooo E(t|+9)E(s)ds (L€ R).

For the details, we refer to Dym—McKean [3].
We introduce three classes of measures:

(2.7) Yo = {o: o is a non-zero bounded Borel measure on (0,00)},

Ny = {v : v is a non-zero Borel measure on (0,00) such that

(2.8) /OOO /000 . i Sv(ANV(dX) < oo,

My = {p: 1 is a non-zero Borel measure on (0, 00) such that

/000 H%u(dA) < oo}

Note that ¥y C My and Ny C M,. For o € ¥,, we define a positive definite
function R, by

(2.10) R, () :/OO e Ma(d))  (t€R).

Example 2.1. Let 0 < p < oo. If we define a Borel measure o on (0,00) by
o(d\) = W»~te Ad)\/T(p), then we see that o is in ¥ and that R, (t) = (1+ |t]) P

(2.9)

For pi € My, we define a function K,(¢) in R by

211) Ku) = xom® [ uldy) (e R)

Note that if v is in Ny, then K, is square integrable on R.

A purely non-deterministic, stationary process X is called reflection positive if
the correlation function R of X is in the form R = R, with some o € ¥,. The
diffusion coefficient D of X is a finite or infinite positive number defined by

(2.12) D= /oo R(t)dt

The class D < oo was studied in Okabe [11], and it was shown that the canonical
representation kernel £ must be in the form E = K,, where v is an element of
Ny with some regularity conditions. In this section we generalize this fact so as to
contain the class D = oo.

For o € ¥, we define a non-negative function A, by

(2.13) AE) =+ / ) Az%g?aw» (€ R\ {0)).
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Then A, (€) and (14+&2)'log A, (€) are both integrable on R because A, coincides
with the spectral density of a purely nondeterministic stationary process with cor-
relation function R, (Theorem 2.1 and Corollary 2.1 in Okabe [10]). For o € 3,
define an outer function h, in H? by
I [ 1+&ClogAs(§)

2.14 he(C) = — d I > 0).
211 (@ =ew |5 [T s o
Then h, coincides with the outer function of a stationary process with correlation
function R,.

For u € My we define a function F}, by

(2.15) RO =5 | 5cudy (m ¢z 0. £0)

Note that

(2.16) F(0) = =

"o

/ h e“'K,(t)dt  (Im ¢ > 0).
0

The following generalization of Theorem A in Okabe [14] plays an important role
in our argument.

Theorem 2.2. For any p € My, (1 + A*)"'log|F,,(\)] is integrable on R, and it
holds that

1 [ 1+ X log |F,(A
(2.17) F,(¢) = exp [_/_ A+_ CC 0g1|+u)52)|

™

d)\] (Im ¢ > 0).

Proof. The proof of this theorem is similar to the proof of Theorem A in Okabe
[14] except for its inequality (v). We substitute for (v) the following inequality:
forany R >3 and 0 <6 <,

L= 1 ep(fe, M])
log%/o H—)\M(d)\)‘+ 27 (M + R)?

Here Log denotes the principal branch, and positive numbers € and M are chosen
so that p([e, M]) > 0. The inequality (2.18) follows easily from the following two
estimates : for any R > 3 and 0 < 0 <,

(2.18) |Log Fl(Re”)| <+ log

- 1 1 1 1
F,(Re")| < — ———p(d\) + — —p(dA
R < o [ e+ g [ Suan

1 [ 1

— —p(dA

7r/0 T ),

i/"o (A+ Rsinf) + iR cosf
o A2+ 2R\sinf + R?

LM ep(fe, M])
o Nz sarr e

IN

p(dA)|

O

The following proposition can be proved in the same as the proof of Theorem A
in Okabe [14].
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Proposition 2.3. Let i be a Borel measure in My. Then
1/ A
F, (P == ———T7(d\ R\ {0
ROF=2 [ 5@ eR\{0),

where T is a Borel measure on (0,00) defined by

a0 = 5 ([ @) wlav.

Now we establish a one-to-one correspondence between ¥, and Ny in the follow-
ing two theorems. Define a map S: Ny > v +— o = S(v) € 3, by

(2.19) o(d)) = % </0°O . i Xz/(d)\’)> V(d)).

Theorem 2.4. Let v € Ny and 0 € Xy. Then o = S(v) if and only if h,(¢) =
F,(¢) for any Im ¢ > 0.

Proof. Let v € Ny. We put 0 = f(v). It follows from Proposition 2.3 that
|F, (&) = Ay (€) for any € € R\ {0}. Then by Theorem 2.2 we see that F,(¢) =
hy(¢) for any Im ¢ > 0.

Conversely, let v € Ny and 0 € Xy, and assume that F,({) = h,(¢) for any
Im ¢ > 0. Letting n | in ¢ = & +in, we have F,(§) = hy,(§) for any £ € R\ {0}.
We put o' = S(v). Then, for almost every £ € R,

Az (&) = [ha (O = [F (O] = Axr (6),
so that the Laplace transforms of o and o' coincide with each other because they

are the Fourier transforms of A, and A,., respectively. By the uniqueness of the
Laplace transform we see that o = o' = S(v). O

Theorem 2.5. The map S is a bijection from Ny onto Xg.

Proof. In view of Theorem 2.4, the injectivity of S follows from the uniqueness of
Stieltjes transform.

Conversely, let o be a Borel measure in ¥,. Then the same argument as the
proof of Theorem 5.1 in Okabe [11] shows the existence of a Borel measure v on
[0, 00) such that f[o,oo)(l + M) ty(d)\) < oo and

1 1
2T [0,00) )\ — ZC

In view of Theorem 2.4, to obtain the result, it is enough to show that v({0}) =0
and

(2.20) /000 /000 Ai)\lu(d)\)z/(d)\) < .

Letting n | in ( = n + £, we obtain

1 1
_ )\
o /[O,OO) A—ig”( )

| € V({0))
‘AWM—%”Mﬂ?@@V+8WWZ &

6

v(dA) = he(¢)  (Im¢ > 0).

2

—A,6)  (EER\{0)

(2.21)

Since




it follows from the integrability of A, that v({0}) = 0. Now if we define a Borel
measure ¢’ on (0,00) by the right hand side of (2.19), then it follows from Propo-
sition 2.3 and (2.21) that

A =L / A @y (€eRr\ {0},

7r A2 4 &2
and so
o= [ (3] ) = [ a6 <o
0 \TJ A2 +& —o
Thus we obtain (2.20). This completes the proof. O

Theorem 2.6. A purely nondeterministic stationary process X is reflection posi-
tive if and only if its canonical representation kernel E of X s in the form E = K,
with some v € Ny. Furthermore if the correlation function of X is equal to R, with
o € Xy, then the canonical representation kernel E is equal to K, withv = S~(0).

Proof. Let X be a purely non-deterministic stationary process.

Let v € Ny, and assume that E, is the canonical representation kernel of X. Let
R be the correlation function of X. Then by (2.6) we have R = R, with o = f(v);
thus X is reflection positive.

Conversely, assume that the correlation function R of X is in the form R = R,
with 0 € ¢. If we put v = f~'(0), then by Theorem 2.4 we have

Q) = O = o [ R (m ¢ > o)

This, together with the uniqueness of the Laplace transform, shows that F,(t) is
the canonical representation kernel of X. This completes the proof. 0

3. KMO-LANGEVIN DATA
We define a subset ¥, of ¥ by

1
(3.1) Yoo ={0 €% / Xa(d)\) = 00}.

0
Since the condition [[° A 'o(d\) = oo implies [;° R,(t)dt = oo, this subset Y
corresponds to reflection positive, purely nondeterministic stationary processes
with divergent diffusion coefficients. We introduce a set L., consisting of pairs
(a, p) with a positive number « and a Borel measure p on (0,00) such that

[° K, (t)dt = oo:

1
(3.2) Lo = {(a,p) e R x My : / Xp(d)\) = oo}.
0
Theorem 3.1. The relation

1 Y | -
(3.3) /0 o = Vara {—ZC—ZC /0 mp(d)\)} (Im ¢ > 0)
determines a bijection o — L(0) = («, p) from Yoo onto L.
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Proof. 1f we assume that a bounded Borel measure o on [0, 00) satisfies (3.3) to-
gether with a positive number a and a Borel measure p on [0, 00), then we easily
get the following two correspondences between o and p:

1 1
(3.4) Lm) o) =00 e pl{0) =0, o({0}) =0 /[O,oo) oldA) = oo

Here the integrand A ! is assumed to be +oo at A = 0.

Let 0 be a Borel measure in X. If we put 0,(d\) = X/ne0)(A)o(dA) for
n=1,2,---, then, by Theorem 8.5 in Okabe [11], there exists for each n a triplet
(Qtny By pn) of two positive numbers «y,, 3, and a Borel measure p,, € M, such that

(3.5) F,.(C) - (Ba — i¢ — 2miCF,, (C)) = an/V 2.

In view of Theorem 8.2 in Okabe [11], a,, tends to the limit a := o([0,00))/
as n — oo and f3, tends to zero as n — oo, so that, by taking ¢ =i in (3.5), w
get the estimate

3

@

(3.6) Sup/ 1/(14 N)p,(dA) < oc.
n Jo
By (3.6), there exist a subsequence n; < ny < --- and a bounded Borel measure p
on [0, 00] such that (1 + X)7'p,, (d\) weakly converges to p on [0,00] as k — oo.
Transition to the limit £ — oo yields

F,(C) - (e — ieaC — 2miCF,(C)) = a/V2r,

where ¢; = p({0}), c2 = 1 + p({oc}) and p(dA) = x(0,00)(1 + A)p(dA). Since we
have by definition,

A

it follows that ¢; = 0, ¢; = 1. Thus we obtain (3.3) . Combining this with (3.4), we
see that there exists a pair («, p) in L, which satisfies (3.3) with 0. Furthermore,
it follows from the uniqueness of the Stieltjes transform that such a pair (a, p) is
uniquely determined by o; the map L in the theorem is thus well-defined. The
uniqueness of Stieltjes transform proves also that L is one-to-one.

Finally we prove the onto property of L. Let («, p) be a pair in L, and choose
fn > 0 so that 3, decreases to 0 as n — oco. By Theorem 8.5 in Okabe [11], there
exists for each n a bounded Borel measure o,, on [0, 00) which satisfies (3.5) with
a, = «, p, = p. Theorem 8.2 in Okabe [11] implies the equality 0,([0,00)) =
V2ra, so that there exist a subsequence n; < nmy < --- and a bounded Borel
measure o’ on [0, 00| such that o, converges to o' weakly on [0, 00] as k — oo. If
we put 0(A) = o'(AN[0,00)), then the triplet of o, o and p satisfies (3.3), and
so, by (3.4), 0 is in X,. We have thus shown the existence of an element o of ¥,
which satisfies (3.3) with (a, p), and so, the map L is onto. This completes the
proof. O

/00o L@ =00,  a=o([0,0))/Vor,

Theorem 3.2. Let 0 € X, and (o, p) = L(c). Then o((0,00)) = v/ 27a.
8



Proof. Take ¢ = in in (3.3). Then

/Om () = Vama(l + /Om#pw))l (1> 0),

A+1n A+n
so letting 1 1 0o, we obtain the result. 0

According to Definition 8.3 in Okabe [11], we give the following definition.

Definition 3.3. Let o be a Borel measure in ¥,. Then we call the pair («, p) =
L(0) € L the second KMO-Langevin data associated with o.

4. KUBO NOISE

Let D(R) be the space of all functions of class C* on R with compact support.
We introduce the same topology on D(R) as in the theory of distributions. In this
paper when we say stationary random distribution, it always means a real, weakly
stationary random distribution with expectation zero defined on a probability space
(Q, F, P), i.e., a system of random variables {Y(¢) : ¢ € D(R)} such that

(i) the mapping D(R) 3 ¢ — Y (¢) € L*() is linear, and continuous in the
L?-sense;

(ii) Y(¢) =Y (¢) for any ¢ € D(R);

(iii) E(Y(¢)) =0 and E(Y (m,0)Y () = E(Y(9)Y (¢)) for any ¢,¢ € D(R)
and h € R.

Here @ denotes the complex conjugate of a, and 7, denotes the shift transformation:

(4.1) Thp(t) = ¢(t + h).
We refer to 1t6 [7] for the details. For any stationary random distribution ¥ and
t € R, My(Y') denotes the closed linear hull of

{Y(¢): ¢ € D(R), supp ¢ C (—o0, 1]}

in L?(€2). A stationary random distribution Y is called purely nondeterministic if
it holds that

(4.2) M Mi(v) = {0}.

teR

See Rozanov [18].

Let X be a purely nondeterministic, reflection positive, stationary Gaussian pro-
cess with divergent diffusion coefficient. In this section, we introduce for X a purely
nondeterministic, stationary Gaussian random distribution I which corresponds to
the Kubo noise constructed by Okabe [11] when the diffusion coefficient of the pro-
cess is finite. Let R, E' and h be the correlation function, canonical representation
kernel and outer function of X, respectively. We put

(43) hi(C) = %—W%

where R[(] denotes the Fourier—Laplace transform of R:

(4.4) Rl = % /0 TR (Im € > 0).

(Im ¢ > 0),



Let o be a Borel measure in X, such that R = R,. We put v = S™'(0) € Ny,
where S is the map introduced in section 2. Then, by Theorem 2.6, F is equal to
K,. Therefore we have

1 F,(Q)

(45) h’I(C) = EFO'(C)

By (4.5), the boundary value hr(§) = lim, o h(€ + in) exists for any £ # 0 and it
holds that

(Im ¢ > 0).

1 F,
(46 MO == (€ER\(OD.
Set (v, p) = L(0) € L. We define a function A; by
Ve
(47) e =L [T Gl (e R 20)
Proposition 4.1. It holds that
A
0 =8 e nm)
i) 2 e pw),

(iii) [hr (O =Ar(€)  (E€R, £#£0).
Proof. A simple calculation shows that
AN V2
[ rae= T e <

Thus (i) follows. The proof of (iii) is almost identical to the one of Lemma 8.3 in
Okabe [11]. By (iii) and (4.6), we have

_ LIR©P
AI(&)_§|F0(€)|2 (geR\{O})a
so that (ii) follows from Theorem 2.2. O

Theorem 4.2. It holds that

1 14+ A logAr(A
(4.8) hi(C) = exp [27?2/ )\+_ CC 01g+l)\(2 )

Proof. Since both ¢ and v are in My, Theorem 2.2 can be applied to F, and Fj,.
Therefore by (4.5) and (4.6) we have

() =exp | - [~ SERCRERDN] >0

so the theorem follows from Proposition 4.1 (iii). O

d)\] (Im ¢ > 0).

Once we obtain (4.8) with Proposition 4.1 (i), (ii), then we are immediately
led to a purely nondeterministic, stationary Gaussian random distribution / which
has spectral density A;. Though this procedure seems standard, we explain it
for reader’s convenience, following the survey Hida—Maruyama—Nishio [4] from

which the author learned the theory. For any purely nondeterministic, stationary
10



Gaussian process Y with canonical representation kernel Fy-, there exists a unique
Brownian motion (B(t) : t € R) such that B(0) =0 and

(4.9) M,(Y') = My(B) (t € R),
(4.10) Y(t) \/ﬁ/ Ey(t—s)dB(s)  (t€R).

This (B(t)) is called the canonical Brownian motion of Y (cf. Karhunen [8]). Now

we note that
~ exp [L /°° 1+ XClog{1/(1 +A2)}d)\] (Im ¢ > 0);

411
(4.11) omi ) o A—C 1+ A2

1
1—1iC
a simple proof of this equality is to take a Dirac measure J; with unit mass at 1 in
Theorem 2.2. By (4.8) and (4.11), we have

hi(¢) L [ 14 X log{A;(N)/(1+ )}
(4.12) 1—75C_exp{%/—oo)\—€ e d)\}

so that h;(¢)/(1—1C) is an outer function in the Hardy class H? (cf. Dym-McKean
[3]). In particular, the boundary value h;(£)/(1 — i) is square integrable on R.
Therefore if we are given a one-dimensional Brownian motion (B(t) : t € R),
then we can define a stationary Gaussian random distribution / by the following
equality: for any ¢ € D(R),

(4 13)
var [ (2 - 960 ) 0an0 = Va7 [ dras,
It follows from (4.13) and Proposition 4.1 (iii) that

(414 EIIW) = /R HENEA (O (b1 € D(R)),

(Im ¢ > 0),

which implies that A; is the spectral density of I. Of particular importance is the
following causal property:

(4.15) M,(I) = M,(B)  (t€R).

In particular, we see from (4.15) that I is purely nondeterministic. We can prove
(4.15) as follows. Set e(t) = exp(t) (t < 0), =0 (¢t > 0), and set Y (¢) = I(e * ¢)
for any ¢ € D(R). Then we see that {Y(¢)} is equivalent to a stationary process
with h7(¢)/(1 —i¢) as outer function and (B(t) — B(0)) as canonical Brownian
motion. Therefore M;(Y) = M,(B) for any t € R. On the other hand, since
I(¢) = Y (¢ — do/dt) for any ¢ € D(R), it holds that M, (I) = M (Y) (t € R).
Hence we obtain (4.15). We finish quoting from Hida—Maruyama—Nishio [4] with
this.

Definition 4.3. Let o be a Borel measure in ¥, and let X be a stationary
Gaussian process with correlation function R,. If B = (B(t) : t € R) is the canon-
ical Brownian motion of X, then we call the purely nondeterministic, stationary
Gaussian random distribution I defined by (4.13) the Kubo noise of X.

11



Theorem 4.4. Let X be a purely nondeterministic, reflection positive,stationary
Gaussian process with divergent diffusion coefficient, and let I be the Kubo noise
of X. Then for any t € R, My (X) = M(I).

Proof. The theorem follows immediately from (4.15) and (4.9). O

In the following we are concerned with the representation of X in terms of the
Kubo noise I of X. If the diffusion coefficient of X is finite, this is carried out in
Theorem 8.3 in Okabe [11]; this representation reads formally as

(4.16) X(t) = \/LQ_W / R(t — 8)I(s)ds.

We will see below that a similar representation holds even if the diffusion coefficient
is infinite, that is, even if R is not integrable; in so doing we need to interpret the
integral in the right hand side of (4.16) as an improper integral.

Let k£ be an integrable function on R, and let Y be a stationary random distri-
bution. Then we have

(/ Ik(t)Y(Tt¢)|dt)2

Therefore we can define another stationary random distribution k£ % Y by

E < [T -N0l3 <00 (¢ € D(R)).

o0

(4.17) k:V)0) = [ H&Y(rélds  (6<DR)).

—o0

We call k Y the convolution of kK and Y. If YV is in the form
(4.18) V(o) =var [ (g0 aB)
with some ¢ which satisfies

> g(§))?

for some k € N U {0}, then we have a similar representation for k x Y as follows.

Lemma 4.5. Let k € L'(R), and f € L*(R). Then

(4.20) /Zk(s){/if(tJrs)dB(t)}ds:/Z {/Zk(s)f(tJrs)ds}dB(t).

Proof. If we put

Z(s) = /oo Ft+$)dBE),  h(t) = /oo k() F(E + 5)ds,

then we have

EZ(s)T=Iflz, Nl = llkll - 1]
In particular, both sides of (4.20) are well-defined. Now
2

(421) FE = [1 — QRG([Q) + Ig,

‘ /_ : k(s)Z(s)ds — /_ T hdB()

o0

12




where

Since

| EUZ6) [ h@dBlids < 171 Al -1 < .

o0 — 00

Fubini—Tonelli theorem shows that

I = /oo k(s) - ElZ(s) /oo A AB(1)ds

= ///R k(s1)k(s2) f(t 4 51)f(t + s5)dsidsydt.

Similarly we have I} = I3 = I,. Thus it follows from (4.21) that

‘ / s)ds — /_ Z h(t)dB(t)

This completes the proof. 0

2

=0.

For any function f € L*(R), fdenotes the inverse Fourier transform of f:

(4.22) f(t) =1lim. 2i/_M e f(€)dE.

Proposition 4.6. Let k € L'(R), and let Y be a stationary random distribution
of the form (4.18) with some g which satisfies (4.19) for some k € N U{0}. Then

42 @) = e [ FEg B0 (e D®).

Proof. By (4.19), the function g(€)¢(€) is in L?(R). Since
(9-7:0) (1) = (g 0t + ).

it follows from Lemma 4.5 that

(h+Y) (6 \/_/ {/ g+ Ot + 5)d }dB(t).

A simple calculation shows that

/ T k() (g B+ s)ds = 2m)(E - g- 7).

o0

Thus we obtain (4.23). O
13



Theorem 4.7. Let X be a stationary process whose correlation function R is in
the form R = R, with o € Y. Let I be the Kubo noise of X. Then as random
distributions,

) 1
(4.24) X = lm —QW(X(O’M)R) 1.

Proof. The inverse Fourier transform of x(o,r) () R(t) is equal to F,(&)(1 — qar(§)),
where

oiEM 0 ,—AM
w© = 5575 | =@ €#0,

We put v = S7!(0). Then by (4.6), (4.13) and Proposition 4.6, for any ¢ € D(R),

E[IX(¢) — 2m)~*{(xwan R) x TH@)] = (2r) ! / 0 () (€) o(6) .
First we have limp;_,o qas(€) = 0 and |F,(€)(€)[> € L}(R). Since we have for any
£#0,

00 67,\M B 00 )\efAM ) 00 é—ef/\M
4.25 ) N
(4.25) < /0 Trael + 7,/0 ma(d)\)‘
= 21 F, ()],

it holds that |gp(£)| < 1. Therefore Lebesgue’s dominated convergence theorem
yields

Tim B[IX(6) - (21)"2{ (xun ) * 1}(@) 2] = 0,
which implies (4.24). This completes the proof. a

5. KMO-LANGEVIN EQUATIONS

In this section, we are concerned with an equation which describes the time
evolution of a stationary process with correlation function R, for some o € ¥ .
We shall adopt the Kubo noise as random force in the equation; the equation with
white noise as random force will be discussed in our forthcoming paper.

Proposition 5.1. Let u be a Borel measure in My, and let Y be a stationary
random distribution of the form (4.18) with some g which satisfies (4.19) for some
k€ NU{0}. Then for any ¢ € D(R),

(5:1) Limarsoe {(x0anKp) ¥ He) = —(2m)"? / " EEO9(OMOY (B0,
Proof. First we see that (1 + £2)[g(€)$(€)[*> € L'(R). For any & # 0,

€] <l
P d\ dA
|§ u(€)|§/(0’1) |)\_Z.§|N( )+/[1,oo) |)\—i§|u( )

1 <2
< d\) + —d)\<1+21/2/—d)\,
< [ manelel [ Se@n < 0eey [ty

14



so [EF,()]?/(1 + &) is bounded. In particular, the right-hand side of (5.1) is
well-defined. The inverse Fourier transform of x o ) K), is equal to F,(&) — qar(§),
where

piEM o0 =AM
a(®) =G [ @ (€£0),

and hence by Proposition 4.6

El{(xonnK,) * X}(9) + (2m)2 / (EF,(6)9()0(©) ) (1) dB(1) )
—9r / " eau (©)9(©)p(0)Pde.

o0

We see that ¢ (§) — 0 as M — oo. The same estimate as (4.25) yields |ga(€)| <
|F.()] (€ # 0), and so [Eqa(€)*/(1 + £€2) is bounded. Therefore, by virtue of
Lebesgue’s dominated convergence theorem, we obtain (5.1). O

Let pand Y be as in Proposition 5.1. We define a stationary random distribution
K,*Y by

(5.2) Ku xY = ]\/lfi—r>noo(X(0’M)Kﬂ) * Y,
and we call it the convolution of K, and Y.

Remark 5.2. We can show that limus e (X (0,m) ) * Y exists for any stationary
random distribution Y by using the spectral representation of Y (see It6 [7]) instead
of (4.18). The proof is similar to the one of Proposition 5.1.

Let o be a Borel measure in ¥, and let X be a stationary Gaussian process
with correlation function R = R,. Let («, p) = L(o) be the KMO-Langevin data
associated with o, and let I be the Kubo noise of X. We put v(t) = K,(t) (t € R).

Theorem 5.3. As random distributions,

(5.3) X:—V*X—FQI.

Proof. We put v = S~'(0). Then by Proposition 5.1 we have for any ¢ € D(R),
X (9) + Lim. {(xoan7) ¥ X}(¢) — al(9)

N (e

Since (o, p) = L(0) says

+ ) P96 | (aB0)

(5.4) i€+ 2miEF,(€) + \/%F © =0 (€ € R\ {0}),

we obtain (5.3). O
According to Definition 8.2 in Okabe [11], we give the following definition.

Definition 5.4. We call (5.3) the second KMO-Langevin equation.
15



So far we have started from a stationary Gaussian process with correlation func-
tion R, for some o € ¥,. Now we change our starting point; we start from
a pair (a,p) € Lo. We put v(t) = K,(t) (t € R), 0 = L™'(a,p) € T and
v =S8"1(0) € Ny. Define a function Ay, by
(5.5) Aw(€) = 2v2maRe [—zf _ i eiétfy(t)dt} (€ € R\ {0}),

2m Jo

where [~ denotes the improper integral:
prop gral;

M—0

" fdt = 1im / Y.

Since « is non-increasing and in L}, [0, 00), [7~ e“!~(t)dt exists for any £ € R\ {0}

(cf. Titchmarsh [19], Theorem 6). We see that Ay has the following two kinds of
representations: for £ € R\ {0},

(56)  Aw(e) = V204 /0 ) sin gt = V27O /0 RSN

T T A% 4 &2

Proposition 5.5. It holds that

) T e vm),

1+

By Proposition 5.5 we can define a function hy by

0 A
(57)  hw(C) = exp {% / 1;_25 lofi :;g”dx (Im = > 0).

€ L'(R).

Theorem 5.6. It holds that

a F,(C)

(58) hW(C) = \/—Q_WFU(C)

(Im z > 0).

Proof of Proposition 5.5 and Theorem 5.6. Since Ay, coincides with the spectral
density of al, where I is the Kubo noise of a stationary Gaussian process with
correlation function R,, the results follow from Proposition 4.1 and Theorem 4.2.

O

By Theorem 5.6, we see that the boundary value hy (&) := lim, o hw (€ + in)
satisfies

a F,(&)
5.9 h =
( ) W(é‘) /_271' Fa(g)
Let W be one of the stationary Gaussian random distributions with spectral density
Ay. Then Proposition 5.5 (ii) implies that W is purely nondeterministic. Hence

it follows from general theory that there exists a unique one-dimensional Brownian
16
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motion (B(t) : t € R), called the canonical Brownian motion of W, such that
B(0) =0 and

(5.10) W(6) = Var / T (hwdF(dB() (6 € D(R)),

(5.11) My(W) = M(B) for any t € R.
Now we consider the following equation:
(5.12) X=—yxsX+W

We are concerned with a stationary random distribution X which satisfies (5.12)
as well as the causality condition:

(5.13) My(X) = M, (W) for any ¢ € R.

Theorem 5.7. There exists a unique stationary random distribution X which
satisfies (5.12)—~(5.13). The solution X is a purely nondeterministic, stationary
Gaussian process with reflection positivity. The solution X is given by

1 t
5.14 X(t) = — K,(t —s)dB(s teR),
(.14 0=—=[ Kl-9B() @eR)
where v = S™' (L™ (a, p)) and (B(t)) is the canonical Brownian motion of W .

Proof. Let X be a stationary random distribution which satisfies (5.13). Then by
(5.11) it holds that

(5.15) My(X) = M;(B) for any ¢ € R.

Hence, by general theory of purely nondeterministic stationary processes, X has
a representation of the form (4.18) with some ¢ which satisfies (4.19) for some
k € N U{0}. Then by Proposition 5.1, (5.4), (5.9) and (5.10), we have for any

¢ € D(R),

X(6)+ (rx X)(0) - Wig) =a [ {(g - Fy>%}~<t>d3<t>.

Therefore X satisfies (5.12) if and only if g = F,,, so that the stationary Gaussian
process given by (5.14) is the unique solution of (5.12)—(5.13). O

Remark 5.8. If we omit the condition (5.13), then the uniqueness does not hold.
In fact, if (X(¢) : ¢ € R) is a solution of (5.12) and if a is an arbitrary time-
independent random variable in L?(Q) with expectation 0 which is independent of
X, then (X (¢) + a) also satisfies (5.12).

Remark 5.9. The equation (5.12) can be formally rewritten as

(5.16) X@:—/ﬁm—@X@@+W@.

Theorem 5.10. Let X be the stationary Gaussian process which satisfies (5.12)—
(5.13), and let R be the correlation function of X. Then

(i) R = R, witho = L («a, p);

(ii) R(0) = V2ra;

17



1 -1

zgt o z(t .

(iii) —O / R(t)dt = [ i — 2(/ dt] (Im z > 0);
R(t)d

1
(v) X = ]Vlllinoo R(O)( myR) * W as random distributions.
Proof. The assertion (i) follows from Theorem 5.7, and (ii)—(iv) from (i) and The-

orem 3.2. Since (1/a)W coincides with the Kubo noise of X, (v) follows from (ii)
and Theorem 4.7. O

Example 5.11. Let 0 < p < 1. We define a Borel measure p on (0,00) by
p(d\) = X7'd)\/T'(p). Then for any a > 0, the pair (a, p) is in Ly, and we see
that

G170 = xom ) / e (dA):xm,oo><t>ti,,,
27ra§ V2ral(1 — p) cos(&)

(5.18) Ap (€

in&tdt =

€17

6. LONG-TIME BEHAVIORS

In this section, we investigate the relation between the long-time behavior of ~
in the equation (5.12) and that of the correlation function R of the solution X.
We follow the notations of Bingham-Goldie-Teugels [2] on regular variation.

Theorem 6.1. Let R be the correlation function of the stationary process X which
satisfies (5.12)~(5.13). Let 0 < p < 1, and let | be a slowly varying function. Then
the following are equivalent:

(6.1) v(t) ~t7PU(E) (= 00),
sin(pr) ¢ 4P
(6.2) R(t) ~ B0 . () tl(t) (t = o).

Proof. We only prove the assertion (6.1) = (6.2); the part (6.2) = (6.1) can be
proved similarly. By taking ¢ = in in Theorem 5.10 (iii), we have

(6.3) /0 h e ™ R(t)dt = R(0)(n + 7 /0 h e My(t)dt)"t  (np>0).

By Karamata’s Tauberian Theorem (cf. Bingham-Goldie-Teugels [2], Theorem
1.7.6), (6.1) implies

n [ e~ T =PI/ (0> o),
0
and hence by (6.3),

/0 T e R()dE ~ . (}f(f)p) ; (Z/j?) (n = 04).

Again by Karamata’s Tauberian Theorem,

1 t—(1-p)

ra —p)F(Z;z5 ()

R(t) ~




Since I'(1 — p)I'(p) = 7/ sin(pm), we obtain (6.2). O
Next we consider the cases which correspond to p =0 or 1 in (6.1).

Lemma 6.2. Let f be a positive, non-increasing function in Lj,.[0,00). Then

(6.4) /Ooo e F(t)dt = n/oooe—"t (/Ot f(s)ds) it (n>0).

Proof. Since
t 1
/ f(s)d < / F(s)dt+ f(H)E (t>0),
0 0

we obtain the result by integration by parts. ([l
Let [ be a slowly varying function such that f (s)ds/s = 0o, and choose M so
that [ € L},.[M, 00). We put
t
(6.5) [(t) :/ l(s)ds/s (t > M).
M

We note that the asymptotic behavior of [ does not depend on the choice of M.
By Proposition 1.5.9a in Bingham—Goldie-Teugels [2], we see that [ is also slowly
varying.

Theorem 6.3. Let R be the correlation function of the stationary process X which
satisfies (5.12)—(5.13). Let | be a slowly varying function. Then

() v() ~ I(t)  (t = oo) implies /0 R(s)ds ~ % (t = o0);
(i) R(t) ~ R(0)V () (t = o0) implies (1) ~ lN(Lt) (t — o);
(iil) y(t) ~ l(t) (t — o0) implies R(t) ~ % (t — 00);

(i) () ~ ROUE) (1 o0) imples [ (s)ds ~ 1 (¢ = ).
Proof. (i) By Karamata’s Tauberian Theorem, () ~ I(t) (¢ — oo) implies
o[ emde i - 04,
50 by (6.3) and Lemma 6.2,
o [T ([ res)ar~ rOa/ 000,

Then Karamata’s Tauberian Theorem yields fo s)ds ~ R(0)/l(t) (t — oo)
(ii) Since [J° R(t)dt = oo, R(t) ~ R(0)I(t)/t (t — 00) implies fo s)ds ~
R(0)I(t) (t = o0), so Karamata’s Tauberian Theorem yields

o [T ([ ros) it~ ROTOD 04
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Then by Lemma 6.2 and (6.3) we see that

n [ emawd~ 1l o o)
0
Hence again by Karamata’s Tauberian Theorem we obtain ~v(t) ~ 1/1(t) (t — oc).
The assertions (iii) and (iv) can be proved in the same way. O

Example 6.4. We define a Borel measure p on (0,00) by p(d\) = e *d\. Then
for any o > 0, the pair («, p) is in Lo, and we have y(t) = x(0,00)(t)/(1 + ). Since
v(t) ~ 1/t as t — oo, Theorem 6.3 (iii) shows that R(t) ~ R(0)/logt as t — co.

Now we recall the results of Okabe [11], [15] and Inoue [5] to compare with ours.
We state their results in accordance with our formulation. Let o > 0, 5 > 0, and p
be a Borel measure in M,. We put v(t) = K,(t). Let W be a stationary Gaussian
random distribution with spectral density Ay of the form

A=Y 54 [* 5 aoan]  cemy o

We consider the following equation:

(6.6) X=-BX—-vxX+W
with
(6.7) My(X) = M, (W) for any t € R.

Let X be the unique stationary process which satisfies (6.6)—(6.7); the existence
of X is due to Okabe [11], and the uniqueness of X can be proved similarly as
Theorem 5.7. Let R be the correlation function of X. Let 0 < p < oo, and [
be a slowly varying function. Then (cf. Okabe [15], Theorem 3.1 and Inoue [5],
Theorem 2.2)

(6.8) y(t) ~ t7PI(t) (t — o)
if and only if

R(0)p
Ea
From this we see that, as far as § > 0, the exponent of R is equal to p + 1 if the
exponent of v is p. On the other hand in view of Theorem 6.1 if 0 < p < 1 and
B = 0, then the exponent of R is equal to 1 — p. Therefore in the case 5 = 0 the
decay of v influences the decay of R in a different way from the case 5 > 0.

Now according to Theorem 6.3 we supplement the results of Okabe [15] and
Inoue [5]. If { is slowly varying and [;} [(s)ds/s < oo, then we put

(6.10) Z(t):/ool(s)ds/s (t> M).

By Proposition 1.5.9b in Bingham-Goldie-Teugels [2], we see that [ is also slowly
varying.

(6.9) R(t) ~ I (t— 00).

Theorem 6.5. Let R be the correlation function of the stationary process X which

satisfies (6.6)—(6.7). Let | be a slowly varying function. Then
20



E(0)

(i) y(t) ~1(t) (t — oo) implies /too R(s)ds ~ 5 I(t) (t— 0);
(i) R(t) ~ Rﬂ@@ (t — 00) implies 1(t) ~ I(t) (t — o0).

Proof. The following proof is similar to the one of Theorem 4.1 in Okabe [15]. First
by Theorem 8.5 in Okabe [11] we have

o0

(6.11) /000 e "R(t)dt = R(0) [5 +n+ 77/0 e"tfy(t)dt] B (n > 0).

(i) By integration by parts and (6.11), we have
o o R(0)(n+n [;° e My(t)dt
77/ e (/ R(s)ds) dt = (0)(n Ufgooe j( )d) (n >0),
0 ‘ BB+n+n [, e my(t)dt)

where we used the fact [° R(t)dt = R(0)/8. Hence by Karamata’s Tauberian
Theorem, y(t) ~ I(t) (t — oo) implies

/OO R(t)dt ~ Rﬁ(g)za) (t = 00).

(i) Since [;° R(t)dt < oo,

implies
/ " Rsyas ~ B 1 5 00),

From (6.11) we have

. /0 ey ()t = {8 /0 e < /t h R(s)ds) dnH /0 TR —

so by Karamata’s Tauberian Theorem we obtain v(t) ~ I(t) (¢ — o). O
Example 6.6. Let ¢ > 0. We define a Borel measure o on (0, 00) by

X(0,1/2)(A)
(— ]()g )\)(1+l1)
Then since ((0,00)) < 0o and [;° Ao (d\) < oo, it follows from Okabe [11] that
there exists a triplet («, 3, p) such that the correlation function R of the solution
of (6.6)-(6.7) coincides with R,. By Karamata’s Tauberian Theorem (a version of
Theorem 1.7.6 in Bingham—Goldie-Teugels [2] with z — 0+, s — c0) we see that

1
t(logt)t+a

(6.12) o(d\) = d\.

(6.13) R(%) (t = o0).

Since

/Oo L ! (t>1)
s =

. s(logs)tta q(logt)? ’
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Theorem 6.5 (ii) yields

~ BQ . 1
q¢R(0) (logt)?

(6.14) (%) (t — o0).

Finally we return to the equation (5.12), and show the relation between the
long-time behavior of «(¢) and the behavior of Ay, (€) as &€ — 0+.

Theorem 6.7. Let 0 < p < 1, and [ be a slowly varying function. Let R be
the correlation function of the solution of (5.12)—(5.13). Then the following are
equivalent:

(6.15) y(t) ~ t7PI(t) (t — 00),
RO)T(1— p) cos(%)

™

(6.16) Aw (£) ~ guL/e) (€= 04)

Proof. Since v € L}, [0,0), the theorem follows immediately from (5.6), Theorem

loc

5.10 (ii) and the theorem of Pitman (cf. Bingham-Goldie-Teugels [2], Theorem
4.10.3). O
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