“§') HOKKAIDO UNIVERSITY
Y X7
Title Remote sensing of microparticles by laser scattering for medical applications
Author(s) Shimizu, Koichi
Citation University of Washington. Ph.D.
Issue Date 1979
Doc URL http://hdl.handle.net/2115/20123
Type theses (doctoral)
File Information thesis.pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Remote Sensing of Microparticles by Laser Scattering
for Medical Applications:
'Approach with Transport Theory and

Picosecond Optical Range-Gating

by

Koichi Shimizu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

1979

Approved by

Program Authorized
to Offer Degree

Date




Doctoral Dissertation

In presenting the dissertation in partial fulfillment of the require-
ments for the Doctoral degree at the University of Washington, I
agree that the Library shall make its copies: freely available for
inspection. I further agree that extensive copying of this disser-
tation is allowable only for scholarly purposes. Requests for
copying or reproduction of this dissertation may be referred to
University Microfilms, 300 North Zeeb Road, Ann Arbor, Michigan
48106, to whom the author has granted "the right to reproduce and
sell (a) copies of the manuscript in microform and/or (b) printed
copies of the manuscript made from microform."

Signature

Date




University of Washington

Abstract

REMOTE SENSING OF MICROPARTICLES BY LASER SCATTERING
FOR MEDICAL APPLICATIONS: APPROACH WITH TRANSPORT
THEORY AND PICOSECOND OPTICAL RANGE-GATING
By Koichi Shimizu
Chairperson of the SupervisoryCommittee: Professor Akira Ishimaru
B ‘ Electrical Engineering

Threé techniques were developed for the remote sensing of micro-
particles by Taser scattering. They were applied to the non-invasive
probing of biological particles, namely bacteria in urine, cataracts
in the eye, and platelets in blood, respectively.

(1) The Fourier transform inversion technique determines the
size distribution of tenuous scatterers from the forward scattering
pattern. This technique consists of differentiating operations and
Fourier transforms. It does not require matrix-inversion or an a-
priori knowledge of functional forms of the size distribution, and
it can take advantage of other techniques in spectral analysis such
as the Fast Fourier Transform or digital filtering. Susceptibility
to noise was checked by adding the rahdom noise to the scattered
intensity pattern simulated by the Rayleigh-Debye approximation.
Typical error for 10% noise was within a few percent for mean and
standard deviation in the estimation of Gaussian distribution using
1024 points FFT. Size distributions were determined for latex

spheres with known sizes and bacteria in homogeneous and highly




aggregated conditions. A resolution comparable to the wavelength of
the probing Tlight was demonstrated.

(2) The backward scattering pattern analysis technique deter-
mines an average size and variance of tenuous scatterers from the
backward scattering pattern. With an optical range-gating technique,
scattering patterns could be measured in backward angles while eli-
minating the extraneous scattering and corrections for the change of
scattering volumes. Characteristic patterns for different sizes of
scatterers were obtained with latex spheres with diameters less and
more than the wavelength of the probing Tight.

(3) The pulse backscattering technique evaluates the ﬁcattering
and absorption characteristics of scatterers in a dense medium by
means of backscattered pulses. Using the Kerr effect ultrafast shutter,
the shapes of backscattered pulses were observed with a resolution of
picoseconds. The general pulse shape is characterized by a rapid rise
fo]]owéd by a slow asymptotic decay. When the scatterer is absorbing
the decay part suffers noticeable attenuation. The shapes and magni-
tudes of the observed pulses were in excellent agréement with the
theory. The feasibility for this technique to detect the aggregation
of particles in a closed system was examined.

Along with the development of the above'techniques, the following
results were obtained. »

(a) The scattering patterns calculated by the Rayleigh-Debye
approximation are improved considerably, if the approximation is modi-
fied to include the relative refractive index of the scatterers in

the Fourier Transform kernel.




(b) The equation of transfer was solved for the time-dependent
specific intensity under the diffusion approximatijon and a closed
form expression was obtained for the pulse beam wave incidence on a
slab of dense media. This solution includes as its asymptotic cases,
semi-infinite media, plane wave incidence and the point source.

(c) Four phases of scattering were observed in the scattering
patterns, in the graph of scattered intensity as a function of scat-
terer density and in the visual observation of a collimated 1ight beam
in the scattering medium. .They'are single scattering, first order
multiple scattering, multiple scattering and diffusion. According
to this classification, the range of validity was clarified for the
first order multiple scattering and diffusion approximations.

(d) The ratio between the velocities of pulse propagation in
diffuse and non-diffuse media, or the slowing rate of 1ight velocity

due to the diffusing propagation was measured to be V3.
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Chapter I
INTRODUCTION

Remote sensing is generally defined as an acquisition of
information about an object or phenomenon which is not in intimate
contact with the sensing device. Radar and sonar are fami]iaf
examples. During the past decade, the rapid growth of technology
has widened the horizon of applications of this methodology in
various fields such as astronomy, meteorology, oceanography, etc.
Among the remote sensing techniques, lidar (1ight detection and
ranging) has become increasingly important due to its various advan-
tages over the microwave radar.

Following the principle of bioengineering, this technique,
developed in the physical sciences, has been applied as a non-invasive
diagnostic technique in biomedical sciences, only recently. It may
answer the strong need for the efficient detection or quantitative

assessment of biological microparticles in vivo, such as bacteria in

body fluids, blood cells in whole blood, etc. Since these natural
media have microparticles randomly distributed in time and space, they
are called random media and analyzed in their statistical descriptions.
The object of this dissertation is the development of the techniques
which apply the lidar method to the remote sensing 6f biological
microparticles in random media.

The theory is mainly based on two concepts, namely transport

theory and picosecond optical range-gating. Transport theory, also



2

called radiative transfer theory was initiated by Schuster in 1903.
It deals with the transport of energy through the scattering medium
rather than the propagation of the field given by Maxwell's equa-
tions. The basic differential equation is called the equation of
transfer which is equivalent to Boltzman's equation or Maxwell-
Boltzmann collision equation. Generally in random media, it is
assumed that the correlation between fields is negligible and that
the addition of powers holds rather than the addition of fields.
Therefore, the equation of transfer is solved to obtain a mathemati-
cal description of the light scattering from biological random media.

Another concept, picosecond optical range—gating, first reported
by Duguay and Mattick (1971), is an optical ranging technique which
is capable of a distance resolution on the order of a millimeter
(Bruckner, 1976). An ultrashort pulse of light, 5-10 psec in dura-
tion, generated by a mode-locked laser (DeMaria, 1969) is directed
toward the target of interest and the backscattered pulses are recor-
ded by means of an ultrafast shutter (Duguay, 1969) coupled to a
suitable detector. By judicious gating of the shutter, extraneous
backscattering from foreground or background clutter, thch would
otherwise obscure the desired echo pulses, can be blocked from the
detector. Thus, an object imbedded in or obscured by a highly
scattering medium can be made visible. In this thesis, we take
advantage of the two aspects ofvfénge-gating, namely the ultrafast
sampling and the picosecond time-resolution.

With these concepts, the following remote sensing techniques are




proposed, and their applicability is verified theoretically and

experimentally.

(1) Fourier transform inversion technique:' This technique determines
a size distribution of tenuous scatterers from the forward scat-
tering pattern. This is applied to probe the condition of

bacteria in their 1iving environments such as urine, water, etc.

(2) Backward scattering pattern analysis: With the range-gating
technique, backward scattering patterns for tenuous media are
measured and an average size of scatterers is estimated. This
technique is applied to investigate the microstructure of

cataracts.

(3) Pulse backscattering from dense media: This technique probes a
dense media with an ultrashort pulse of a picosecond duration.
From the backscattered pulse, information on the scattering media
can be obtained, such as scatterer density, scattering charac-
teristics of the constituent scatterers, etc. This is applied

to assess the platelet aggregation in blood.

Organization of the Thesis

According to the subject to be discussed, this thesis can be
divided into two parts. Chapters II-IV deal with Tight scattering
from tenuous media and Chapters V-VIII from dense media.

Chapter II discusses the modification of Rayleigh-Debye approxi-

mation to extend its range of validity. It is shown that the
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scattering patterns calculated by the Raleigh-Debye approximation
are considerably improved by the modification. This modification
widens the applicable range of the technique developed in the next
chapter.

Chapter III presents the Fourier transform inversion technique
which determines the size-distribution of scatterers (apertures)
from the scattering pattern (diffraction pattern) of a collection of
scatterers. MWith simulated data from a known size-distribution, the
technique is tested for accuracy, resolution and susceptibility to
error in input data. Then, this technique is applied to latex spheres
of known sizes and bacteria of different shapes. Its sensitivity to
the aggregation of bacteria is investigated.

Chapter IV deals with the measurement and analysis of backward
scattering patterns. The experimental apparatus is described which
enables the ultrafast sampling in a picosecond time-scale by the
optical range-gating technique. The effectiveness of the picosecond
sampling is shown in its noise-1imiting capability and elimination of
the correction for the observation geometry. The characteristic
scattering patterns for different sizes of particles are measured and
the applicability of this technique to the estimation of particle size
is demonstrated.

Chapter V presents a solution of the diffusion equation for beam
wave incidence on a slab of dense random media. It is shown that this
general solution includes the cases of semi-infinite media, plane wave

incidence and the point source, as its asymptotic cases. Using these




solutions, the scattered pulse shape for the impulse incidence is
calculated and analyzed. The fesu]ts of this chapter give a theo-
retical basis for Chapters VI, VII and VIII.

Chapter VI discusses a classification of different types of
scattering into four groups, namely single scattering, first order
multiple scattering, multiple scattering and diffusion. These four
phases are demonstrated in scattering patterns, graphs of scattered
intensity as a function of scatterer density, and visual observations
of a collimated beam in the scattering media. The range of validity
js investigated for the first order multiple scattering approximation
and diffusion approximation.

Chapter VII discusses the measurement of 1ight velocity in diffuse
media. Off-axis backscattered pulse shapes are measured at different
éngles with tenuous and dense media. Pulse shapes from tenuous and
dense media are analyzed. From the difference in the arriving-time
of the pulse peak, the slowing rate of light velocity in dense media
is obtained,and the theoretically predicted slowing rate V3 is
verified.

Chapter VIII pkesents a remote sensing technique for dense media
by picosecond pulse-backscattering. The range-gating technique is
formulated and receiving pulse shapes are calculated using the dif-
fusion solutions obtained in Chapter V. Experimental facility is
described and observed pulse shapes are analyzed. The agreement
between‘theory and measurement is shown both in the shape and the

magnitude of the pulse. Sensitivity for scatterer absorption and



aggregation is discussed. Finally, the feasibility for the remote
sensing of dense media is shown, particularly for the detection of
platelet aggregates in transfusion blood.

Chapter IX summarizes the significant results of this thesis

and indicates the areas to be further studied.

This research falls into the broad field of light scattering
studies and the results presented in this thesis can be applied to
other purposes, which include the optical properties estimation for
particles in a fluid or gaseous surrounding such as microbial par-
ticles, physiological particles, chemical particles, air pollutants,

rain, fog, ice particles, etc.




Chapter II
"ODIFICATION OF RAYLEIGH-DEBYE APPROXIMATION

I1.1. INTRODUCTION

Rayleigh-Debye approximation, also called Rayleigh-Gans or Born
approximation, has been used in many fields with practical advantages
such as mathematical simplicity, app]fcabi]ity to any shape and struc-
ture, etc. However, it is only valid under the following two conditions,
i.e, the relative refractive index of the scatterer is close to 1 and
the phase shift of the waverthrough the scatterer is much less than 1.
See Egs. (2-1) and (2-2). As these conditions are violated, the error
of the approximation increases rapidly. The extensive study on the
range of validity has been reported by Kerker (1969, p. 427)._

As can be seen in the derivation, the scattering pattern,
(Eq. (2-4) also called a form factor) calculated by this approximation
is independent of the refractive index of the scatterer, which is not
true. This chapter discusses the modification of the Rayleigh-Debye
approximation to.include the refractive index in the Fourier kernel
of the form factor. The justification for this is given by two dif-
ferent derivations. The improvement due to this modification is
demonstrated by comparing the scattering patterns calculated by modi-
fied approximation, regh]ar approximation and Mie theory which is
exact for spherical scatterers. This modification extends the valid
range of the Fourier transform inver;ion technique presented in

Chapter III.



II.2  THEORY

In the Rayleigh-Debye approximation, it is assumed that " .
each volume element (of a scatterer) gives Rayleigh scattering, and
does so independently of the other volume elements. The waves scat-
tered in a given direction by all these elements interfere because of
the different positions of the volume elements in space." (van de

Hulst, 1957, p. 86). Therefore, with the conditions

| n. -1 ] << 1 (2-1)
2k,Dln. - 1 | << 1 (2-2)

the scattered intensity for perpendicular polarization is given by,
= (K4y2 2 - 112 -
IS (koV /412R ”"r 12 P(0) (2-3)

P(e) = (1/v2) | s exp (i8) dv |2 (2-4)

where n,. is the relative refractive index of the scatterer, ko is
the propagation constant of the surrounding medium of the scatterer.

D is a typical dimension of the scatterer such as its diameter, V s
the volume of the scatterer, R is the distance from the scatterer to
the observation point, © 1is the scattering angle, and & is the
phase delay of the volume element dV. The detailed discussion can be
found elsewhere (Kerker , 1969, p. 415). P(e) in Eq. (2-4) is called
a form factor and represents the interference effect mentioned above.

Since the scattering pattern or the angular distribution of scattered

intensity is of interest, the following discussion is mainly
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concentrated on this form factor P(0) .

Fig. 2-1 illustrates the phase delay § . Two wavelets are scat-
tered by the volume elements at Q0 and 0'. i and o0 are unit vectors
in the directions of propagation for incident wave and scattered wave,
respectively. As shown in the figure, the difference in their path
length is the distance B-0-C. Thus, the phase delay between the volume

elements is given by

(2-5)

31

s=k(i-o0)-

where |€ - 6[ 2 sin(0/2) (2-6)

If the shape of the scatterer is similar to a sphere, the phase delay

occurs mostly in the scatterer. Therefore, for the propagation

constant k in Eq. (2-5), the k of the scatterer (nrko) is a better
approximation than that of the surrounding medium (k0 = 2n/2). Note
that in the R-D approximation, the latter has been used with the con-
dition [n. - 1] << 1.

This can also be shown in a different method of formulation of
the R-D approximation. First we follow the formulation to make it
clear where to modify it. Starting from Maxwell's equations, the

scattered field Es at an observation point r , is given by

E((F) = wxux [ {e (F') - 1} E(F') G (F,F') dv’ (2-7)

where GO(F,F') = exp (ik|r - r'|)/(4n|r - v']) (2-8)

is the free space Green's function, sr(F‘) is the relative die]ectric

constant at the position r' within the scatterer, and E(r') is the
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Fig. 2-1 Geometry for Rayleigh-Debye scattering:
Phase delay &

Fig. 2-2 Geometry for Rayleigh-Debye scattering:
Incident and scattered field
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total electric field inside the scatterer. Assume that the phase term

in the Green's function is approximated by
klr - r'] = ko(R = ' < 8) for | 7| >>[F'] (2-9)

where r = R0 . Fig. 2-2 shows the geometry. The field inside the

scatterer is approXimated by the incident field, i.e.,

E(F) = E,(F) = 8; exp(ik P - 1) (2-10)
where éi is the unit vector in the direction of polarization of the
incident field. Then, we obtain the formula for the R-D approximation

: 2
- exp(1k0R) k0

E.(r) = -

. — > = X (6xe) vp1/2(0) (2-11)

P(e) = [1/V [ [e (7)) - 1] exp{iko(% -06) - P} dv'2 (2-12)

Note that the propagation constant in Eq. (2-12) is that of the sur-
rounding medium (ko)' In the following derivation, it is modified to
be that of the scatterer (nrko)'

To satisfy the condition [F| >> |F'| in Eq. (2-9), the
reference origin 0 must be located close to a1l the volume elements,
most 1ikely in the center for the sphere-Tike scatterers. Then, most

of the phase difference kr'.. 6 falls inside the scatterer. Thus,

the phase of Green's function is better approximated by
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kjr - r']| = k,R - nk r' -0 (2-13)

In addition, the field inside the scatterer is better approximated with

the propagation constant of the scatterer, i.e.,
E(r) = e, exp(1nrkor - i) (2-14)

Therefore, the modified R-D approximation is given by

- exp(ik R) k2 ) o
E((F) = - —5—2— 42 (-6 x (6 x &)1 vp/%e) (2-11)

P() = [1/V [, [ (F*) = 11 exptink (i - 0) - #'} dv'|2  (2-15)

This modification may be well understood by comparison with other
methods. In the regular R-D approximation, the incident and scattered
wave are assumed to propagate with the constant ko to and from the
scattering volume element, even in the scatterer. In the WKB approxi-
mation, the propagation constant for the incident wave in the scat-
terer is "rko’ and that of the scattered wave is k0 . While, in the

modified R-D approximation, both of them are nrk0 in the scatterer.
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II.3  RESULTS AND DISCUSSION

Fig. 2-3 shows the scattering patterns or the form factors cal-
culated by the modified R-D approximation (a), Mie theory (b), and
the regular R-D approximation (c). Mie theory gives exact solutions
for spherical scatterers. The scatterer in this case is a 1 um
diameter dielectric sphere with the relative refractive index of
1.60/1.33. This corresponds to a latex sphere suspended in water,
and illuminated by He-Ne laser (n = 0.6328 um). This is the case of
our experiment discussed in the next chapter. Although the conditions
of the R-D approximation given in Eqs. (2-1)(2-2) are not satisfied
(nr -1=0.20, ZkoD("r - 1) = 5.3), Fig. 2-3(a) is very similar to
Fig. 2-3(b), especially in the small angle region. Comparison between
Figs. 2-3(a) and 2-3(c) shows the improvement due to the modification
proposed here. Note the closeness of the scattering angles of extrema
(Ist minimum, 2nd maximum, etc.)which are irportant parameters for practi-
cal applications, such as size estimation of scatterers (Kerker, 1969,
p. 175, p. 344).

Figs. 2-4 and 2-5 show scattering patterns calculated by the same
theories as Fig. 2-3 but with different diameters and relative refrac-
tive indices. They are 1 um and 1.60/1.0 for Fig. 2-4, and 2um and
1.60/1.33 for Fig. 2-5, respectively. These parameters are well beyond
the range of validity of the R-D approximation, i.e., for Fig. 2-4,

n. -1 =‘O.60,2kD(nr - 1) = 12. And for Fig. 2-5, n. -1 = 0.20,
2kD(nr - 1) = 11. In these cases, the scattering patterns of (a)'s

are not similar to (b)'s as much as in the case of Fig. 2-3. However,
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the improvement by the modification is still evident, especially in the
small angle region and in the angular positions of extrema. Note the
completely different patterns of (c)'s given by the regular R-D
approximation.

The eror in a large angle region may be attributed to the refrac-
tion and reflection effects at the boundary of the scatterer which
were neglected in the R-D approximations, both regular and modified.
Inclusion of these effects is not as simple as the modification made
here. Up to here, we have not taken into account the size distribution
of the scatterers, which is common in practical applications particu-
larly in the natural world. With the size distribution, the scattering
pattern of the modified R-D approximation becomes very similar to that
of the Mie theory. An example is shown in Fig. 2-6.

In conclusion, the modification proposed in the previous section
was proved to be effective,at least for the scattering pattern of the
latex microspheres in water,in the range of optical scattering. In
order to justify the modification for general cases, further study

is required.
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Chapter III

FOURIER TRANSFORM INVERSION TECHNIQUE:
ESTIMATION OF SIZE DISTRIBUTION OF BACTERIA

IT1.1 INTRODUCTION

According to the terminology of mathematical physics, problems
can be categorized into two groups, namely, direct problems and inverse
problems. The former seeks the consequences of given causes, while
the latter tries to obtain»the unknown causes by means of observable
consequences. In the field of optical scattéring, the direct problem
is to predict the propagation and scattering of 1light on the basis of
a known constitution of sources or scatterers, while the inverse pro-
blem is to deduce features of sources or scatterers from the scattered
light. The process of obtaining the sclution of an inverse problem is
called inversion, and the technique to perform the inversion is called
the inversion technique. This chapter deals with the inversion tech-
nique which determines the size distribution of scatterers from a
scattering pattern.

Various techniques have been developed for the inverse scattering
problems, but every technique has some disadvantages. Some need a
large matrix-inversion, a judicious choice of paraméters, a priori
knowledge of scatterers, initial guess of the distribution, etc.
(Ishimaru, 1978a, p. 508). Some techniques such as Backus-Gilbert

technique do not require these but use involved mathematics.
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Using the Mellin transform, Shifrin has developed an inversion
technique for Rayleigh-Debye scattering, which does not have the
above disadvantages. (Shifrin, 1965, p. 131.) This technique is simi-

lar to the one developed by Schmidt for the small angle X-ray scat-

~ tering (Schmidt, 1965, p. 169). Recently, Fymat has also reported an

inversion technique for Rayleigh-Debye scattering using the Bateman-
Titchmarsh-Fox integral transform (Fymat, 1979). Al1l these techniques
are based on the invertibility of the special mathematical form of the
Rayleigh-Debye approximation. Therefore, their applicability is
restricted by the conditions of the Rayleigh-Debye approximation
(Shifrin, 1966).

In this chapter, an inversion technique is developed with a com-
pletely different derivation from those mentioned above. This technique
is general and applicable to one, two, and three dimensional scatterings,
such as the diffraction of slits and apertures, as well as the scat-
tering of particles. The inversion formula for the three dimensional
case is shown to reduce to the formula obtained by Schmidt (1965). It
is also shown that the integral transform in the inversion formula can
be converted to a Fourier transform, which facilitates the inversion
process rather than using the special transforms mentioned above.

The idea of this technique is as follows. The scattering pattern

of a single scatterer is approximately proportional to the Fourier

‘transform of the auto-correlation of the dielectric constant of the

scatterer. The auto-correlation function has discontinuities at the

boundary of the scatterer. Therefore, transforming and differentiating
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operations on the scattering pattern yield delta-functions at the
boundary. Since the Tinear addition holds for the scattered intensity
of randomly distributed scatterers, the operations turn the addition
into the convolution of the delta-function and the size-distribution
function. This technique is applied to one-, two- and three-dimensional
cases using an appropriate combination of linear operations and trans-
forms, such as Fourier, Hankel and spherical-Bessel transforms. The
spherical-Bessel transform can be converted to Fouriet transform. As
can be seen-in its derivation, this technique does not require matrix-
inversion or a priori knowledge of functional forms of the size distri-
bution, and it can take advantage of other techniques in spectral
analysis such as the Fast Fourier Transform or digital filtering
technique. Since the 3-dimensional case of this technique is based on
the Rayleigh-Debye approximation, its range of validity is limited by
the conditions of the R-D approximation. However, it is shown that

the valid range is extended considerably if the modification discussed

in Chapter II is taken into account.

Bacteria count in urine is now routine for clinical microbiolo-
gists, urologists and obstetricians. The current technique consists
of the processes of dilution, incubation (~24 hours), colony count and
identification by susceptibility to different agents. This technique
is time consuming, expensive, and also likely to introduce errors
through manual processes. Many attempts have been made to improve and
automate the processes. However, none of them seems to have been
widely accepted. Our ultimate goal is the development of a rapid

automated technique which identifies and counts bacteria in urine.
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fhis technique will allow the mass-screening of urine samples and
could also be applied to the general microbiological problems, such
as the detection of micro-organisms in water.

In recent years, the usefulness of differential light scat-
tering technique has been recognized in biological research, parti-
cularly in cytology and microbiology. However, its application to the
clinical practice has been restricted by the problems-ﬁommon1y asso-
ciated with natural particles, namely their size_distribution, aggre-
gation and existence of impurities. In urine,there are many kinds of
particles in addition to the bacteria of interest, i.e., other kinds
of bacteria, cells, cell fragments, crystals and other impurities.

The technique presented in this chapter can count the bacteria

of interest exclusively separated from others by their sizes.
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I11.2 THEORY

I11.2.1 Inversion for Size Distribution Estimation

If the locations and sizes of scatterers are randomly distributed,
the correlation between the scattered fields from individual scat-
terers can be neglected. Therefore, the total scattered intensity
I(o,x) is given by the sum of the intensity rather than the field
(Ishimaru, 1978a, pp. 36, 504), i.e.,

. o0

I(e,n) = [ I(e,A,D) n(D) dD (3-1)
0

where 1(0,x,D) is the scattered intensity from the scatterer with the typi-

cal dimension D, such as the diameter. © 1is the scattering angle
and X is the wavelength of the incident light. n(D) 1is the size
distribution of scatterers,or n(D) dD 1is the number of scatterers
per unit vb]ume having the dimensions between D and D+dD. The
inverse problem is to obtain the size distribution n(D) from the

measurements I(e,x) using the known function I(e,x,D).

111.2.2 _Scattered Field

In some scattering approximations, the scattered field is given
by the Fourier transform of the field at the scatterer, namely
Fraunhofer diffraction (Goodman, 1968, p. 61) and Rayleigh-Debye scat-

tering (Ishimaru, 1978a, p. 22).

(a) 1-dimension, such as slits or rectangular apertures

£(k,) = €y E()e ™ ax' = FLE(x')] (3-2)

X
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(b) 2-dimension, such as holes

® ik x' + k y")
E(kx,ky) = Cz{i E(x',y')e * y dx'dy" (3-3)
for circular symmétry
E(kg) = Cq { E(p') Jo(kpp')p'dpﬂ = BLE(p')] (3-4)
(c) 3-dimension, such as particles
- © iks- r' _
E(ks) = C4fff E(r') e dr' (3-5)
for spherical symmetry
E(kr) = Cg % E(r") jo(krr') r‘2dr' = S[E(r')] (3-6)
where kX = kx/z, ky = ky/z, kp = ko/z, k = 2wn/x
ks = kiS = k(i - o), Iisﬂ = 2 sin(e/2)

i and o are unit vectors in the direction

of incidence and observation, © is the

scattering ang]e, and C] ~ C5 are Fig. 3-1 Geometry of ;;

constants. See Fig. 3-1.
In this chapter, the coordinates at the scatterer and at the

observation point are distinguished by a prime (') such as x' and
X respectively. In the cases of diffraction.from the slits and
apertures, n is the refractive index of the medium in which wave
tkgvg]s such as air or water. However, for the Rayleigh-Debye scat-

ter{ng, n is proved to be the refractive index of the scatterers.
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It is discussed in Section III.5.4 and Chapter II. The operators

in Eqs. (3-2), (3-4), (3-6) are defined below.

I11.2.3 Generalized Fourier Transform

(a) Fourier Transform

FO) = f fx0e™ ax = FLF(0] (3-7)
Fx) = A [ FRe ™ g = FR() (3-8)

- OO

(b) Fourier-Bessel Transform (Hankel Transform)

F(k) = f: (o) Jp(ke) edp = BLF(o)] (3-9)

F(o) = f:‘ F(K) J_(ko) kdk = B7V[F(k)] (3-10)
(c) Spherical Bessel Transform

F(k) = f: #(r) 3 (kr) r2dr = S [F(r)] | (3-11)

f(r) = %f: Fk) 3y (ke) k2dk = STTR(K)T (3-12)

(d) Generally, they can be written

Fk) = [ £(F) ' T 47 = FIF(K)] | (3-13)
n :

R
f(F) = (20)™" [ F(k)e K " Tk = F[F(F)] (3-14)
n

(Kraut, 1967, p. 213)
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111.2.4 Inversion Technique

Using Eq. (3-13), the scattered intensity is given as a Fourier
Transform of an autocorrelation function RE(FO) of the field at

the scatterer; that is

I(kg) = | FIE(F)1]2 = F [R(Fy)] (3-15)
where RE(Fd) = f E(F]) E*(F] - Fd) dF] s
n

The field at the discrete scatterers (e.g., holes, particles)
has discontinuities at the boundary of the scatterers, such as a rec-
tangular function. Thus its autocorrelation function also has discon-
tinuities at the points corresponding to the boundary or the size of
bhe scatterers. By applying a proper linear operation to the autocor-
relation function, we can develop a delta function at the boundary.
The delta function brings the unknown size-distribution-function out

of the integral, thus giving a solution to the inverse problem, i.e.,

o

J I(k,D) n(D) db

I(ES)

=1 _ o
FolI(k)] = % Rg(F45D) n(D) dD

-1 - o
LLF [I(k)1 1= [ 5(D - ry) n(d) &0 = n(ry) (3-16)

where L[RE(Fd,D)] = §(D - rd) .

The detailed procedures are as follows:
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(a) 1-dimension

E(x',a) = rect (x',a) ={ 1 Ix] < a
0 elsewhere
RE(xd,a) = A(xd,Za) = 2a + X, -2a < x<0
2a - X4 0 < x<2a
0 elsewhere

2
g%z-RE(x,a) « §(x - 2a) ,where the region x > 0 is

x>0

considered to eliminate another delta-function at x =0 .
Therefore,

32

2 FTI(Kk,)] « n(3) (3-17)

x>0
(b) 2-dimension (circular symmetry)

E(p',a) = circ (p',a) = i] 0<p'<a

0 p' > a

RE(pd’a) [Zaz(cos_]a -a/T -a0Z) 0x pg S 22

0
- A(pdaza)

where o = pd/(Za)
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1 -1
~ —7 R-(p,a) « [(VaZ - (p/2)2 ) 0<op < 2a
p o] p <
p dp E o >0 \
0 p > 2a
~ §{p - 2a)

Therefore approximately,

1 32 -1 -~
237 B L) () (3-18)

(c) 3-dimension (spherical symmetry)

E(r',a) = sphr (r',a) = ‘ 1 O<r'<a
0 r' > a
gt
RE(rd,a) = (rd - 2a)2 (rd + 4a)/@{/ O<rys 2a
0 rq > 2a
3 1 32
= — == R(r,a) « §(r - 2a)
ar r ar2 'L r >0
Therefore
3 1 32 -1 r
srrare ST KT e n() (3-19)

See Appendix III.A for the derivation. This formula was obtained by
others for the small angle X-ray scattering problems (Schmidt, 1965).
Noting that I(kr) is an even function of k., the spherical-Bessel

transform in Eq. (3-19) can be converted into the regular Fourier
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transform, i.e.,

1 82 28 -1 r
ar v arz v 1 Lkpl(k)] re 0 n(7) (3-20)

In numerical calculation, the Eq. (3-20) is more convenient with the
advantages of the Fast Fourier Transform.technique than Eq. (3-19),

which involves the evaluation of an infinite integral.

I111.2.5 Elimination of Differentiation

By interchanging the linear operation and the transform, we can
eliminate the differential operation which sometimes causes instabi-

1ity problems in numerical calculations:

d2 -1 -1
n(3) « S F7O[I(k,)] = F'[- k21(k.)] (3-21)
2 dx2 X X >0 X X X > 0
2 -
() =2 L2 s
r>0
-1
_ 4k? k% . (2k3 4k
= F [{ Q;mf - prz) + (7:r - +5) 1 I(k)] - (3-22)

where 1 = vCi and kr was replaced by k for simplification.
Again in Eq. (3-22), the spherical-Bessel transform was converted into
the regular Fourier transform.

See Appendix III.B for the proof of Eq. (3-22).

111.2.6  An Example of Inversion

As an example, we can demonstrate the inversion using Eq. (3-21).
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The scattering pattern of a single slit with the width 2a 1is given

by,
93)2 sin(k,a)

I(kx,a) = ()\az) { kxax }2 (Goodman, 1968, p. 63)
and

- k2 » ‘e -

kx I(kx,a) 1 cos(Zan) .
Hence, F—1[— k)z< I(kx,a)] « §(x-2a)
x>0

Substituting this into Eq. (3-1), we obtain the size distribution,
i.e.,

I(kx) = fo I(kx,a) n(a) da
and

r -'I[_ k2 (k)] « j: 8(x - 2a) n(a) da = n(%)

x>0
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ITI.3 METHOD

IIT.3.1 Problems in the Inversion Technique

The Fourier Transform in the inversion technique presented in
the previous section III1.2 requires the scattered intensity I(kr)
to be continuous between kr =0 and « , where kr = 2k sin(e/2).
However, in our experimental system, the scattered intensity was
measured at about 50 discrete angles between 6 = 5° ~ 70°, which
corresponds to kr =1.15 ~ 15.2 for X = 0.6328 ym. The discrete-
ness and the small number of data points causes an "aliasing" problem
of the transformed function, and the finiteness of the range kr
causes the "leakage" problem (Brigham, 1974, pp. 83, 105). 1In
addition, the differential operation tends to exaggerate varibus errors,

such as numerical and measurement noises.

I11.3.2 Countermeasures

To overcome these problems, the following measures were taken.

(a) An FFT was used which provides efficient transforms and avoids
the aljasing (IMSL, 1978).

(b) Applying a cubic spline interpoiation (IMSL, 1978) to the
measured data, the input function I(kr) was sampled at a closer
interval in kr . With the interpolation we can take a specific
number of sample points (2") which makes the FFT more efficient.

(c) A digital filter (Blackman Window) was applied to the input func-
tion to moderate the leakage problem. (Oppenheim, 1975, p. 242).

(d) Since the noises mentioned above tend to have high-frequency
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| components, the Eq. (3-20) was used instead of Eq. (3-22). The
latter exaggerates the noise and makes the following transforma-
tion erroneous. In our méthod based on Eq. (3-20), we know
beforehand if the function to be differentiated is monotonically
increasing or decreasing. Therefore, each time after the first
order derivative was applied, the sign of the differentiated
function was checked and improper parts were set to zero. In
this way, we can discard a part of the leakage as well as the
noises.

The outline of the algorithm is as fd]]ows. An example of

the program is shown in Appendix P.
1. Read in measured data 1(0).

Interpolate I(kr) at M points, where kr = 2k sin(e/2) .

Apply FFT to k.I(k.), i.e., F7[k.I(k)] .

0w N

Calculate a spherical Bessel trahsform, i.e.,

-1 _2i -1
sTkI =& F K (k)]
and take a real part.

5. Differentiate it with respect to r to get

-1
ar ST LIKk)T

6. Take the negative parts and set the positive parts zero,

because

e

2 skl =1 f (2 - 4a%) rect(r,2a) n(a) da < 0 .
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Differentiate it again, divide by r , and take the positive

parts, because

oo

2
9 % rect(r,2a) n(a) da > 0

2 sk

Differentiate it, take the negative parts, and discard the

huge value at the origin, thus getting

e ST K)] « n(3)
r

>0
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IT1.4 EXPERIMENTS

I11.4.1 Scattering Pattern

The scattered intensity I(kr) defined in previous sections was
measured as a function of a scattering angle © , and is called an
"(angular) scattering pattern," where k. = 2k sin(e/2). In our
experiments, thevscattering patterns were obtained by measuring the
angular intensity distribution of a perpendicularly polarized component
of the scattered Tight with respect to the scattering plane. The inci-
dent 1ight was assumed to be a perpendicularly polarized plane wave.

Fig. 3-2 illustrates the scattefing pattern measurement schemati-

cally.

CONE OF

RECEPTION
’\K . \

BACTERIAL
SOLUTION

1(©)

-

DETECTOR

Fig. 3-2 Schematic diagram of light scattering measurement
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I11.4.2  Samples

Expefiments were conducted with latex spheres and bacteria. In
the measurement, the concentration of scatterers was kept low (optical
distance < 0.1) and a detector with a very narrow cone of reception
(0.3°) was used to minimize multiple scattering effects and to attain
high angular resolution.

Sample solutions of spherical particles were prepared by diluting
a concentrated solution of Tatex spheres (10 volume percent) with
0.01% detergent water. The detergent, sodium dodecyl sulfate, was
added to double distilled and deionized water as surfactant to prevent
aggregation of particles.

As sample solutions of bacteria, Staphylococcus aureus (ATCC

25923) and Escherichia coli (ATCC 25922) were suspended separately in

jsotonic saline solutions (0.85%) and were killed by filtered formalin
solution (30%). The concentrations of bacteria in sample solutions
were approximately 10%/cm® . This is one of the clinically significant

ranges of concentrations for the examinations of urine.

111.4.3 Measurement

Light intensities were measured by changing the angular position
of a detector over 5° to 70° from the direction of incident light.
The measurement which covers a wide range of light intensity { ~ 50 db)
was attained by the combination of high intensity 1ight source (laser),
sensitive detector (PMT) and attenuators (neutral density filters).
Measured data were plotted in a scattering pattern after the correction

for the effects of the glass-liquid interface, geometrical factors
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of the experimental system, and the scattering caused by the background
solution of the scatterers.

In these corrections, the theory of radiative transfer was applied
successfuly (Shimizu, 1976), rather than the conventional sine-
correction (V = Vo/sin@), which corrects only the change of the scat-
tering volume V with respect to the scattering angle o .

Experiments were conducted several times and the results showed

excellent reproducibility.

I1T.4.4 Experimental Facility

Fig. 3-3 shows a schematic diagram of our experimental set-up.
The principal optical and electronic system was developed by
Dr. J. Molcho.

Particles suspended in a solution are contained in a cylindrical
scattering cell (S.C.). One end of the cell is flat glass and the
other end is hemispherical glass. A beam of He-Ne laser light (A =
632.8 nm) is mechanically chopped by a chopper (CHOP.) for a phase-lock
technique. The beam is shifted from the center line of the scattering
cell so that the part of the beam which illuminates the particles is
brought within the view range of a detector (D3). The detector which
has a very narrow angle of acceptance (O.3°)vtransmits the scattered
"Tight to a photomultiplier (PMT) through fiber optics (F.0.). The
signal is amplified by the lock-in amplifier (LIA), which is a phase
responsive amplifier with a narrow effective bandwidth, in order to
reduce the noise. An auxiliary beam which is generated at a beam

splitter (BS) is directed by the mirror (M) toward a transmittance
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cuvette (T.C.) and a detector (DZ’ acceptance angle 0.1°) for a tur-
bidity measurement. The scattering signal (I(8)) and the transmittance
signal (T) are sent to a mini-computer (PDP-12). 1In the computer, the
signals are normalized for changes in the incident intensity (N)
sampled through a detector (D]).

The computer samples the signals in time, calculates simple sta-
tistics (mean, median, standard deviation, etc.) and displays the
information in real time. The median is less affected by impulse-type
noise than the mean. The computer stores all the data obtained for
further processes, such as plotting, noise extraction, parameters
estimation, etc. It also monitors automatic measurements and controls
their mechanisms, which involves controlling an integration time for
the lock-in amplifier, sampling frequency, thickness of the scattering

cell, and X-Y plotter.

LASER BS CHOP.

ki

C

|
]--‘

[1D,

L T 1(6)
| MINI-COMPUTER

Fig. 3-3 Schematic diagram of experimental system
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More detailed discussions of the experimental system, method,

and materials are given in (Shimizu, 1976), (Molcho, 1975).
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IT1.5 RESULTS AND DISCUSSION

ITI.5.1 Advantage of the Inversion Technique

The effectiveness of the proposed technique is investicated using
the simu]éted data calculated with a known size distribution. Figs.
3-4 and 3-5 show the advantage of the inversion technique over the
empirical curve-fitting technique.

Figs. 3-4(a) and 3-5(a) are the sampled scattering patterns cal- |
culated by the Rayleigh-Debye approximation with the size distribution

shown in the upper right corners of the figures. The scattering pat-

terns appear to be very similar despite the different size distributions.

Without a priori knowledge, it is difficult or time-consuming to find
such size distributions by the regular curvé—fitting technique.

Figs. 3-4(b) and 3-5(b) show the size distributjons estimated by
the inversion technique proposed here. The noisy outline is due to
the discreteness of the sampled scattering pattern (number of samples
Ng

Ky

i

64) and the finiteness of the scattering angle (0 = 0 ~ 60° or

0 ~k where k = 2mwn/)). Although the shapes of the estimated
size distributions are not as smooth as the given ones, the distinc-
tion of the two different distributions is well recovered. Note that
this technique does not require any a priori knowledge. The accuracy
of this technique can be seen in the re]ativé heights of the two peaks

in Fig. 3-5(b). They agree well with those of the given distribution.
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I11.5.2 Resolution

The accuracy of the proposed techniaue was shown above with the
Gaussian distribution. Another important factor in inversion problems
is resolution—how closely we can recover the detailed shape of the
given distribution. Since the core of this techniqué is the Fast
Fourier Transform, the frequency and thé range in one domain corres-
ponds to the range and the frequency in the transformed domain. 1In
other words, with the fixed range of the scattering angle, the more
frequent sampling in the scattering angle gives the distribution esti-
mated in the wider range of scatterer's size. On the contrary, with
a fixed rate of sampling, if the scattering pattern is sampled in a
wider range of the scattering angle, the estimated size distribution
contains higher frequency components, that is, more resolution is
attained.

In order to examine the resolution of our technique, a rectangu-
lar function was chosen as the given function to be estimated.
Although such a distribution rarely appears in the natural world,
we can check with this function the recovery of the wide range of
frequency components, i.e., flat top, sharp edge, etc. Fig. 3-6(a)
and (b) show the estimated distributions using the calculated scat-
tering pattern sampled in o = 0° ~ 60° (kr =0~k)and 0 =0°~
180° (kr = 0 ~ 2k), respectively. The sampling rate ié the same for
both cases (Akr = k/64).

As expected, the data at larger angles improves the resolution,

giving better recovery for the higher frequency components. The
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distortiqn by ripple which is due to the discrete sampling in the .
finite range, is reduced in the latter case. It shoﬁ]d be ‘noted also
that the location of the estimated curve in the size-axis is not

affected much by the expansion of the sampling range.

I11.5.3 Noise Analysis -~ »owes o Wl e 0 T il

The determination of particle size distribution is an 111-poséd
problem (Franklin, 1970), (Ishimaru, 1978a, p. 504), which means the
small error in the measured data cuases the large error in the esti-
mation resulting in instability or divergence. In this section,.the
effect of the measurement error on the estimation by our technigue
is investigated. To simulate the error or noise in measurements, a
random number weighted by a g{ven facfor ié ad&ed to the calculated
scattering pattern.

Figs. 3-7 ~ 3-11 show the calculated scattering patterns with
~ the noise added and the estimated size distributions. The weighting
factors for the random number are 0% (noise free), 5%, 10%, 30% and
50%, respectively. The given distribution is inlayed in Fig. 3-7. The
mean and the standard deviation of the estimated distribution are shown
in each figure. As can be seen, this technique is fairly stable in
relation to the random additive noise. Note the accuracy in the case
of 10% noise, which is typical in many practical situations. The
estimation errors are within a few % for the mean and the standard
deviation of the estimated distributions.

The cause of the noisy peaks at 0.4 ~ 0.5 ym is not fully under-

stood. Since they appear in the error-free case too, they may be
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attributed to the noise originated in the process of inversion, such
as the discrete periodic sampling, Truncation errors in computation,
etc. The 50% error induces another peak with a pointed top at the

smaller size (~ 0.8 um) than the true peak.

I11.5.4 Llatex Spheres

This technique is applied to the measured data obtained from the
scatterers with known sizes. Fig. 3-12 show the measured scattering
pattern and the estimated size distribution of the latex microspheres
with a radius of 0.5055 pym. Two well-defined peaks are obtained at
~ 0.5 ym and ~ 0.35 uym. The latter with the characteristic pointed
top may be considered as the erroneous estimate discussed in the pre-
vious section. This result shows the resolution or the minimum sizes
to be determined is comparable to the wavelength of the probing light
(A = 0.6328 um).

Fig. 3-13 is the case for the latex spheres with a radius of
1.01 um. Now the true peak at ~ 1 um is separated from the erro-
neous one at ~ 0.6 um. The standard deviation of the true peak
( ~ 4% of the mean) is larger than the manufacturer's claim (~ 0.7%)
which was measured in the electronmicroscopy. This tendency of the
estimation of wide distribution may be attributed to the following.
As can be seen in Fig. 2-3 in the previous chapter, the exact scat-
tering pattern (b) appears as if the size distribution of scatterers
were slightly wider than the scattering pattern (a) which .is calcu-
lated by the Rayleigh-Debye approximation. That is, from the standard

of the Rayleigh-Debye approximation, the size distribution looks wider
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than the true one. Since this inversion technique is based on the
Rayleigh-Debye approximation, the estimated distribution can be
wider than the true distribution. It should be also noted that in
optical scattering measurements, the wider distribution has been
reported by others with various methods of measurements (Kratohvil,
1965), (Cooke, 1973),(Shimizu, 1978).

The Rayleigh-Debye approximation which this inversion technique
is based on is the modified one discussed in Chapter II. Note that
the refractive index of the latex spheres ( ~ 1.6 for A = 0.6328 um)
is beyond the range of validity of the Rayleigh-Debye approximation.
If the technique is based on the regular Rayleigh-Debye approximation,
the estimated size distribution is shifted by the ratio of refractive
indices of the scatterers and the surrounding medium (1.6/1.33). This

is shown in Fig. 3-14.

I111.5.5 Bacteria

Finally, this technique is applied to estimate the size distribu-
tion of bacteria. Fig. 3-15 shows the measured scattering pattern

and estimated size distribution for Staphyloceccus aureus. This is

a spherical bacteria with average radius of 0.4 ~ 0.5 um (Cohen, 1972,
p. 5). Under the microscope, they appear mostly in singlets with
uniform size. Some doublets are observed too, but not many higher
muitiplets. Their photographs are given elsewhere (Shimizu, 1976).
The estimated distribution shows these characteristics well. Note

the small but evident distribution at ~ 0.9 ym which is considered

to be the distribution of the doublets. The left peak with the pointed
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top might be the erroneous peak discussed above. Fig. 3-16 shows

the estimated size distribution for the large radius using the same
data as in the case of Fig. 3-15. No significant distribution appears
except for the predominant peak at 0.4 ~ 0.5 um and the secondary peak
at ~0.9 pm.

Fig. 3-17 shows the results for Escherichia coli. This is rod-

shape or prolate spheroidal bacteria with the minor and major axis of
~ 0.5 ym and 2 ~ 3 um respectively (Wolfgang, 1972, p. 27), (Wyatt,
1972). As shown elsewhere (Shimizu, 1976), the shape of the scattering
pattern of the prolate spheroidal particles is similar to that of
spheres with the radius equal to the minor axis of the spheroids.

See Appendix III.C for more discussion. Thus, the slightly wider

peak at 0.45 ~ 0.6 um shown in Fig. 3-17(b) is reasonable. This is
confirmed in microscopy. See the reference (Shimizu, 1976) for de-

tailed discussion and for their micrographs.

II1.5.6  Aggregated Bacteria

To examine the sensitivity of this technique to the change in the
condition of scatterers, dye chemicals are added to the sample solu-
tion and part of the bacteria were aggregated. See the references
(Shimizu, 1978, 1976) for the procedures and their appearances under
microscope.

Figs. 3-18, 3-19 and 3-20 show the measured scattering patterns

and the estimated size distributions for the Staphylococcus aureus,

with no chemical, with safranine, and with methylene blue added,

respectively. (a)'s of the figures are size distributions in large
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scale with the scattering patterns inlayed and (b)'s are those in
small scale.

The fprmer ones show the major and the secondary peaks for sin-
glets and doublets. As discussed elsewhere (Shimizu, 1978, 1976),
scattering patterns contain the information of the single scatterer,
even if the characteristic pattern of the single scatterer is degraded
considerably by the aggregation of the scatterers. Figs. 3-19(a) and
3-20(a) show the effectiveness of this technique in extracting the
information from the degraded scattering pattern.

Figs. 3-19(b) and 3-20(b) show interesting periodic structures.
Comparing them with Fig. 3-18(b), they are considered to be the distri-
bution of the multiplets, i.e, doublets, triplets, . . . etc. We can
see the degree of aggregation increases in Figs. 3-18(b), 3-19(b) and

3-20(b).
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Fig.3-8 Noise analysis : simulated data with 5 %
random noise added
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CHAPTER IV
BACKWARD SCATTERING PATTERN ANALYSIS WITH RANGE-GATING TECHNIQUE

Iv.1 INTRODUCTION

During the past few decades, the usefulness of scattering pattern
analysis for the size estimation of scatterers has been recognized and
various applications have been devised (Kerker, 1969, p. 311). However,
as was discussion in Section III.1, there are many areas left for fur-
ther progress, which include the facilitation of the backward scattering
pattern analysis.

In Chapter III, we discussed an inversion technique which deter-
mines the size distribution of scatterers from the scattering pattern
in the forward angles. In practice, however, backward scattering
pattern { @ = 90° - 180°) is often preferable to the forward scatter-
ing pattern ( © = 0° - 90°) due to the geometrical restrictions of the
object such as an eye, atmosphere at high altitude, ocean, stars, etc.
Although it is useful, the measurement of backscattering has its own
difficulties. They are, for example, the low-signal level, specular
_reflections, susceptibility to extraneous or spurious scatterings,
etc. The ultrafast sampling capability of the optical range-gating
technique is applied to overcome these diffiCUltfes and utilize the
advantages of the backward scattering pattern analysis.

As discussed in detail in Chapter I, the optical range-gating
technique is a technique whereby the separation between scattering or

reflecting objects can be measured at a distance, with a resolution
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of the order of a millimeter (Duguay, 1971), (Bruckner, 1976). If
the scatterers are cataract particles in an eye, a variety of back-
scattered pulses will be observed. The refractive index changes
characteristic of the various tissue layers give rise to specularly
reflected pulses.

Cataracts and other opacities consist of microscopic random
fluctuations in the index of refraction of the lens tissue, with
dimensions on the order of the wavelength of light. The intensity
of light scattered at a given angle by these fluctuations is a func-
tion of the mean size of the scattering fnhomogeneities and the shape
and width of the size distribution. By application of Mie scattering
theory the size parameters of the scattering particles in the cataract
or other opacity can be determined (Kerker,71969, p. 311). The pico-
second gating technique allows one to observe the scattering from only
the desired depth in the eye while rejecting 1ight scattered by fore-
ground or background tissue.

In this chapter, the application of the range-gating technique
to the backward scattering pattern measurement is discussed with a
view toward the remote sensing of the éataract microstructure. This
technique has been successfully applied to the investigation of

microwave induced cataracts (Bruckner, 1978a, 1978b).
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Iv.2 THECRY

Iv.2.1 Range-Gating for Tenuous Medium

The integral equation formulation for the equation of transfer
has been obtained by (Ishimaru, 1978a, p. 161). For pulse propaga-
tion problems in a tenuous medium, it can be modified so as to include

the time dependence, i.e.,

I(r,5;t) = Iri(r,s;t) + Id(r,s;t) (4-1)

. L .. "PO4S
Iri(r,s;t) = Ii(ro,s)e (4-2)

L s -po (s-s;) | -
Id(r,s;t) = ds]e o [ do'| f(5,8")]?

0 BT
- N S - S-I
x I(F,8"5t - —¢ ) (4-3)

where I, Iri and I, are the total (specific) intensity, the reduced
incident intensity and diffuse intensity, respectively. They are func-
tions of the position r, direction of the unit vector s, and time t .
Ii(FO,§) is the incident intensity at the point of incidence FO, p
is the number density of scatterers, o4 is the total cross section,
s is the distance along the detection line, d' is the elementary solid
angle in the direction s', C is the velocity of 1ight in the medium,
and %(6,?) is the scattering amplitude vector when a wave is incident
and scattered in the direction of unit vectors iand 6 .

Note that the inclusion of the time-dependence here is different

from what is to be discussed in the later chapter (Chapter V) for the

dense medium. Here, since the medium is tenuous, it is assumed that
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the pulse propagates without the significant change in its spectral
composition. In other words, the incident pulse propagates with the
attenuation due to absorption and scattering but not with the change
in the shape such as pulse broadening and tailing. Throughout this
thesis, the equation of transfer for each case is distinguished by
the terms "time-dependent" and "two;frequency," respectively.

Fig. 4-1 shows the geometry of the problem. An incident Tight
propagates in the Zz-direction and the Tight scattered is observed
by the detector in the backward direction at the angle © . Since
the detector is designed to have a very narrow receiving pattern, the
received signal is proportional to the specific intensity Id .

If the incident wave is a plane wave impulse, the reduced inci-
dent intensity is given by

PO Z

Iri(F,§;t) = Fi 8(z - ct)e s(s - z) (4-4)

where Fi is the flux density. According to the first order multiple

scattering approximation, the total intensity in Eq. (4-3) is approxi-

mated by Iri' Then we get the diffuse intensity
A A -po,ct
= 2. = f(s,z) 2 pot _
I4(F.85t) F_iQ-L———L—] eyl - (4-5)

The range-gating shutter is synchonrized so that it samples the
Tight intensity scattered at the crossing point of the propagation path
of the incident pulse and the 1line (actually the cone) of acceptance

of the detector. The signal intensity we receive is given by the
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convolution of the diffuse intensity Id and the function of the
shutter opening time. Assuming that the sampling time of the shutter
is the delta function at to , we get the receiving intensity
S s 5 - t
&y . ) _ e olf(5,2)]2 poCls
Irec(r’s) % I4(r,85t)8(t to)dt = Fs T+ eose~ © (4-6)

If the range-gating is not applied, or the shutter is kept open,

the receiving intensity becomes

t . YR - po,ct

=2y = (91 (7.5 - e 1f(S,2)|2 1 PoCly
Iacrs$) % I4(rs8st)dt = Fil oo o (1 -e ) (4-7)
where ty = d/c , the time when the incident pulse leaves the slab of

scatterers.

vV1.2.2 Scattering Pattern Measurement with Range-Gating

Fig. 4-2 illustrates the geometry of the measurement system. A
beam of an incident pulse impinges on a slab of tenuous scatterers
with the thickness d . The incident pulse is approximated by a rec-
tangular parallelopiped with the beamwidth 2a and the pulse length
2b . Then, the reduced incident intensity is given by

- thZ

I;(F.85t) = F; rect(x,a) rect(z - ct,b) e §(s - 2) (4-8)

where rect (x,a) =1 for |[x] sa and 0 for |x| >a . By the first

order multiple scattering approximation, we get the diffuse intensity
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_ e _IFGE.2)2 7 POt 1
B Fi ct(1 + C0s0) 2e S1nh{pct(] + cose)b} (4-9)

where z, is the sampling position. As can be seen in Fig. 4-2,

Eq. (4-9) holds only when the propagating pulse is in the view of the

detector. That duration is, from the geometry:

t0 - At st sttt (4-10)

1 ) At = al+ coso

%9
= -2 + :
where t0 c (1 c oing

>
-
(o d
N
11
o

Otherwise, Id(F, ;

Therefore, when the range-gating is not used or the shutter is
kept open, the receiving intensity is
to + At
I4(Fss;t)dt (4-11)

I (F.8) = f: 1,(F.858)dt = |

rec
t0 - At

This same equation also applies to the range-gated case, if the time
duration [t0 - At, to + At] 1is considered as the gating time. In the

range-gated case, the shutter is synchornized so that the sampling time
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Z
-0 1
to—C (1 +

) and 2At 1is the shutter open period. Usually,
coso

At << a(l + cose)/c sino. Thus, the received intensity is given by
the same equation for both the range-gated and the non-range-gated
cases, but with the different definitions for the parameter At .
That is,

1
RE

- . a A 2 - po,ct
Lec(Fs8) = F, QL‘E](S;Z (')SG) e b Osinh{oo (1 + )b}
otC

sinh(potcAt) (4-12)

where At = a(l + cos®)/c sin®@ for the non-range-gated case and At

is half the shutter open period for the range gated case. The former
is typically 20 ~ 100 psec for o = 5°~ 30° and the latter is 5~ 10

psec.

1

Since pot(1 =556

——}b << 1 and poLC AL << 1 for the tenuous
medium. Eq. (4-12) can be approximated by

. - po.ct
I (F.8) = to

abo | (5,2)]2 e (4-13)

i COS@

~

where sinh x = x for |x] << 1 . Here, |1—°(§,z)|2 = od(e) is the
differential cross section or the scattering pattern of the scatterers.
Therefore, with the correction for the term At/cose , the scattering
pattern is obtained by measuring the signal intensity varying the angle
of the detector © . It should be noted that for the measurements of

0 = 2° ~ 30°, the effect of the correction factor is large in the
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non-range-gated case (At/cose = a(l + coso)/(c sine cose) = 57.3 a/c

~ 4.31 a/c) but little in the range-gated case (1.00 At ~1.15 At).
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Iv.3 EXPERIMENTS

IV.3.1 Experimental Facility

The experimental apparatus is illustrated schematically in
Fig. 4-3. The principal parts of the system were designed by Dr. A. P.
Bruckner. An outline of its operation is as follows. A mode-locked
Nd:glass laser generates a train of horizontally polarized infrared
pulses (1 = 1.06 um), each of ~10 psec duration and carrying a peak
power density of up to ~500~Mw/cm2. Frequency doubling occurs in a
KDP crystal adjusted to yield ~0.1% conversion efficiency. This
Timits the energy of the resulting green pulse train to ~1 mJ. The
green pulses (0.53 um) are separated from the infrared pulses by a
dichroic beam splitter, DBS. The vertically polarized green pulses
are directed toward the scatterers contained in the scattering
cuvette, SC. Filter GF absorbs residual infrared and neutral density
filter NF] reduces the intensity to the desired level. Lens L]
(f.1. 20 cm) focuses the green beam to a point in front of the SC
such that the beam diverges slightly to a 2 mm spot size at the SC.

An array of fiber-optic light guides FQ, mounted in a goniometer,
collects the light scattered from the scatterers at several selected
angles to the incident illuminating beam. The scattered light is
coupled into the individual fibers and directed to the ultrafast Kerr
shutter, SHUT. A part of the incident beam is sampled by a beam
splitter, BS], and directed by a mirror M] toward one of the light

guides to provide a reference signal of the incident power. Using
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three neutral density filters NF], NF2 and NF3, the intensities of
incident and reference beams can be controlled appropriately. The
lens L2(f.1. 3.9 cm) focuses the reference beam on the translucent
diffuser D placed in front of the reference fiber. They minimize
the error in measuring the reference signal due to a spatial fluctu-
ation of the reference beam. The output of all the fibers are fed to
the ultrafast shutter SHUT.

/ The shutter is driven by the vertically polarized infrared pulses
generated by the laser. These pulses, after passing through KDP, DBS
and A/2 , traverse a variable optica] de}ay line, PR]-PR3 to equalize
the infrared and green pathlengths and thus assure proper gating syn-
chronization. A half-wave retardation plate A/2 rotates the polari-
zation of the infrared pulses into the vertical plane. Lenses L3

(f.1. 20 cm) and L4(f.1.—5.3 cm) collimate the pulses to ~2 mm

diameter in the shutter cell. The filter IRF prevents stray light

from coming in the shutter. The shutter consists of a rectangular

quartz cell containing carbon disulfide (CSZ) placed between two
crossed polarizers. The electric field associated with each infrared
pulse induces a narrow zone of birefringence in the CS, which makes a
narrow transparent zone through the crossed po]ariiers. This trans-
parent zone travels across the lines of sight of the fiber-optics at
the speed of light. Thus, the shutter produces a streak record of the
light pulses incident at right angles to the infrared path.

The shortest fiber is 50 cm long and the lengths of the remaining

fibers are staggered by 5.8 mm, such that the arrival of a scattered
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pulse from a given location in the scattering medium coincides with
the arrival of the infrared gating pulse af the appropriate location
along the shutter. This synchronization is attained by adjusting the
movab]e'priSm PR2 to vary the delay of the infrared gating pulse.

The shutter output is detected and processed by the Tow-1light-
lTevel video system>LLL, which includes relay lens REL.L, image inten-
sifier IMAG.INT., CCTV camera and so on. The output of LLL is recorded
on polaroid film. Fig. 4-4 is an example of the recorded signal. Each
peak is the gated signal from the corresponding optic fiber. The
heights of the peaks represent the incident (~Ref) and scattered

intensities (~—oi) at the corresponding scattering angle.

1V.3.2 Specifications of Apparatus

(a) Optical Bench

A1l the components shown in Fig. 4-3 are mounted on a 2'x4'
stainless steel honeycomb table manufactured by Newport Research Corp.
(b) Laser System

As a source of the infrared pulses, Nd:glass laser system (Apollo
Laser, Inc., Model 42) is used. The water-cooled laser head contains
a 6" long helical flashlamp which pumps a 1/2" dia x 8" long brewster-
cut, Owens-I1linois type ED-2 Nd:Glass rod. Coolant circulation is
accomplished by a Neslab RTE-4 refrigerated circulator. The resonant
cavity consists of a 35%R flat output reflector and a 4.65 m radius
concave 99%R rear reflector, spaced approximately 70 cm apart. Mode-

locking is accomplished by Eastman 9860 dye in contact with the rear



75

RELATIVE INTENSITY

Fig.4-4 Typical data format : Each peak is the gated signal
from the corresponding fiber optic. The target in
this case is a white diffusing reflector which serves
as a calibration standard. Unequal signal amplitudes
result from inequalities in.fiber optic coupling
coefficients. This picture is used to normalize all
other scattering data. ; A =0.53 m, 6; = 178.25°,
A8 = -1.75° .
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reflector. Dye thickness is 1 mm. A temperature controlled dye
pumping system circulates the dye through the dye cell. This flowing
contacted dye configuration produces the most reproducible output and
prolongs the useful life of the dye.

As delivered, the laser had the dye cell at the front (output)
reflector. However, in this configuration the mode-Tlocking was highly
irreproducible. The 1.06 um output of the laser consists of a train
of 50-100 pulses, each of 10-20 psec duration, spaced at 4.6 nsec
intervals. The peak power density per pulse is of the order of 300-500
MW/cm?.

(c) Fiber Optic Light Guides

The fibers are multimode clad quartz, with 100 um core diameter
and 0.14 numerical aperture. They are protected in stainless steel
hypodermic tubing. Input and output couplers are brass cylinders
supporting coupling lenses of 4 mm diameter and 21 mm focal length.
The input couplers are mounted on a goniometer és a detector array and
observe a scattering volume at 15 cm from the array. The angular sepa-
ration of the detectors are 1.83°. The output couplers feed the light
signal to the ultrafast shutter. In later experiments the number of
the light guides was decreased from 9 to 6 by eliminating the guides
with poor performance. The observable scattering angle extends from
178° to 150° by rotating the goniometer in which the detector array
was mounted.

(d) Ultrafast Shutter

The Kerr shutter assembly consists of the CS2 cell between crossed
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polarizers put in a 2.75" x 2.75" x 1" black painted steel box. The
C52 is contained in a 50 mm pathlength quartz spectrophotometric cell
which has been annealed to minimize residual stress birefringence in
the walls. A mask is interposed between the fiber-optic output
couplers and the quartz cell. It has a series of vertical slots, with
2 mm widths and 4 mm heights, through which the signals to be gated
must pass. Its purpose is to improve the temporal gating resolution
of each fiber output by decreasing the horizontal aperture of the
pulses to be gated.

The peak transmission factor is approximately proportional to the
square of the infrared intensity, and has been measured to be~1%, with
an on-off contrast ratio of > 1000 in the present case. The output
couplers of the fiber-optic 1ight guides are arranged on 5.2 mm centers
at the shutter; thus the sampling interval between adjacent fibers is
~ 28 psec.

The sampling time resolution of the ultrafast shutter is governed
by the duration and transverse dimension of the infrared gating pulse
(Bradley, 1974) and by the apertures of the fiber-optic output lenses
in the direction parallel to the IR path. The convolution of the bire-
fringent zone induced by a 2 mm dia, 10 psec gating pulse with the 2 mm
effective aperture of each output coupler results in a sampling time
of ~ 15 psec per signal. This permits a ranging resolution of ~ 1.7 mm
in an aqueous medium, i.e., only light scattered within a volume
element ~ 1.7 mm long is transmitted by the shutter. Pulse broadening

in the fibers is well under 10 psec (Sunak, 1974) and does not
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significantly affect this resolution.
(e) Low-Light-Level Video System

A schematic diagram of the LLL system is showm ia Fig. 4—5.. The
output of the shutter is relayed by a 135 mm f.1. lems to a three-
stage, 18 mm RCA 4550 image intensifier tube. The fintensifier output
is imaged by a Telemation TMC-1100 video camera equripped with an RCA
4532A silicon vidicon tube. The video signal is prmcessed by a con-
trol unit built in-house. An image of the gated sigmals, with a
superimposed rectangular frame of variable heightt andl width, appears
on a CCTV monitor. The intensity profile of each TV line within the
frame is displayed on an oscilloscope. The videm syrstem is operated
1n_the single-shot mode, in which only a single sweejp of the vidicon
and display oscilloscope occurs. A trigger output pwlse from the
control unit fires the Taser at the start of the widicon sweep. The
dynamic range of this detector system is greater tham 800. This is
not high by present standards, but has proved to beadeguate for our
purpose.
(f) Scattering Cell

As scatterers, an aqueous suspension of latex spheres are con-
tained in glass spectrophotometric cells. The cells of two types of
geometry are used. One type is a vertical cylinder with 28.6 mm inter-
nal diameter and 30 mm height, With this cell a collimated beam
jmpinges upon the curved side wall of the cylinder. Its incidence
is normal and the beamwidth (~ 2.5mm) is much smaller than the radius
of curvature of the wall (14.3 mm). Thus the refraction and the

focusing effect of the incident beam is negligible. As for the
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scattering angles, due to the circular circumference, the correction
for the refraction at the air-glass-liquid interfaces 1is not neces-
sary, either. Therefore, this cell is used for the scattering pattern
measurements discussed in Chapters IV and VI.

Another type of the cell is a standard flat window horizontal
cylinder with 20 mm internal diameter and 50 mm pathlength. An inci-
dent wave impinges normally upon the fiat end of the cylinder.

Although it needs the correction for the refraction of the scattering
angles, the simple geometry makes the analysis easier, particularly
for the dense medium. It also enables the plane wave incidence. Thus,

this cell is used for the experiments in Chapters VII and VIII.

1v. 3.3 Tuning of System

The "tuning of the system consists of adjusting the path lengths
of the IR and green beams such that the IR gating pulses arrive in the
shutter at the proper time to sequentially gate the scattered green
pulses emerging from the fibeerptics. A white diffusely reflecting
plane target was placed 15 cm from the detector array and normal to
. the incident light path. The relative signal delays of the 1light
guides were fine-tuned by moving the output couplers toward or away
from the shutter in small increments until the gated signal from each
fiber was maximized. The IR pulse delay was'adjusted by means of the
movable prism, PR2 , shown in Fig. 4-3. To avoid saturation of the
image intensifier, the incident train of green pulses was attenuated

by a factor of 10_3bynmans of neutral density filters.
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1V.3.4 Calibration of System

The system is calibrated with the same plane diffuse target.
Fig. 4-4 shows a typical result from a calibration test. The first
eight peaks from the right are the gated signals from the corres-
ponding fiber-optics. The ninth peak on the extreme left is the sig-
nal from the reference fiber. The unequal amplitudes of the signals
from the collecting fibers are primarily a result of inequalities in
the fiber-optic coupling coefficients. These data, corrected for
Lambert's Taw, are used to normalize the angular scattering data
obtained with other scattering media. The method of the normaliza-

~tion is described quantitatively in a later section (IV.3.7).

IV.3.5 Linearity of System Response

The linearity of the overall detection system, including the
shutter, was tested by varying the intensity of the green pulses inci-
dent on the plane diffuse target by means of neutral density filters.
Both with and without range-gating, the response to the signals from
each fiber-optic was found to be essentially linear over a two order
of magnitude range below the saturation level of the vidicon tube.

Departures from linearity below this range are not severe.

1V. 3.6 Turbidity Measurement

In order to assure the correct dilution of the sample solutions
of the scatterers, the turbidity of each sample was measured. The
procedures and the principle of the measurement are given in Sections

VI.2.3 and VI.3.4.
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1V.3.7 Method of Normalization

As can be seen in the recorded signals shown in Fig. 4-4, the
overall sensitivity of each signal channel is not uniform over the
channels. To correct the nonuniformity, the following normaliza-
tion method was employed. Fig. 4-6 illustrates the parameters neces-
sary for the derivation. The heights of the recorded peaks for the

signal and reference channels are given by

o
]

i = C.| Is(ei) o i=1,2,3...8 (4-14)

Jm d
il

I0 k NF3 @, (4-15)

where C1 is a constant, IS and IO are the scattered and origi-
nal intensity respectively, © is the scattering angle, o 1is the
attenuation coefficient of the light guide system, k 1is the reflec-
tion coefficient of the beam splitter, and NF3 is the attenuation
factor of the neutral density filter in the reference channel. The
subscripts i and r represent the i-th channel and the reference
channel.

The incident intensity 1.

inc
related to the original intensity I0 by,

impinging on the scatterers is

Line = I,(1 - k) NF, » (4-16)

where NF2 is the attenuation factor of the neutral density filter

between the beam splitter and the scatterers.



Fig.4-6 Parameters for normalization method
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Substituting Eq.(4-16) into Eq.(4-15), relative scattered inten-

sity can be written

Is(oi) _ Hi NF2 1 -k o (4-17)
—— =~ n o /(v )
inc r 3 r

Since the direct measurement of k and a's above is not as easy

as that of the H's and NF's, the following two-step-normalization pro-
cess was developed.

First, the denominator of Eq.(4-17) is obtained by measuring the
scattered intensity from a white, diffusely reflecting plate. Assuming
the plate is a uniform diffuser (Keitz, 1971, p. 106), the scattered

intensity is given by Lambert's law,
Is(e) = C, I Cose (4-18)

where C2 is a constant.
Substitution of Eq.(4518) in Eq.(4-17) gives the denominator of Ea.

It is called a channel attenuation ratio, CAR, i.e.,

1 -k o Hi NFZ
Cy —x E;' = ﬁ;- NFE'///COSOi A (CAR)i (4-19)

After determining the CAR, the relative scattered intensity from
the sample scatterers is obtained in terms of the ratio of the recorded
peaks' heights Hi/Hr » ratio of the neutral density filter NFZ/NF3 s
and the (CAR)i :
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. 8

(4-20)
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IvV. 4 RESULTS AND DISCUSSION

IV. 4.1 Background Scattering

Prior to the scattering experiments with the particles
the cell being used was filled with distilled water only, and the sys-
tem was tested with this target to check on possible spurious back-
ground signals.

Fig 4-7(a) and (b) show the signals from the background solution
with and without range-gating, respectively. See Section IV.3.1 for
the interpretation of the recorded signal. They show the effectiveness
of the ultrafast sampling technique to suppress the spurious scatterings.
Note that the sensitivity for the range-gated case is 100 times as high
as the non-range-gated case. The signals of observable intensity are
confined in the angles near to the backward normal (180°). They may
be attributed to the discontinuities of the refractive index at the
air-glass-water interfaces. The specular reflection was eliminated
already by tilting the scattering cell before the measurements.

The measured data presented in the subsequent discussions are
those from which this background scattering has been subtracted. For
most of the cases, the background signal is negligible compared with

the scattered intensity from the particles.

1V.4.2 Backward Scattering Pattern

A representative set of angular scattering results obtained with
particles of diameters 0.481 um, 2.02 um and 3.2 um is shown in Figs.

4-8, 4-9 and 4-10, respectively. The particle concentrations
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investigated in each case extend to considerably higher values than
plotted in the figqures, however only those are shown which retain the
characteristic scattering patterns. The data obtained at higher con-
centrations are presented in Chapter VI. The graphs in the figures
display the relative scattered intensity for vertical polarization
as a function of the scattering angle for the indicated concentrations.
The intensity scale is referenced to the unattenuated signal at the
reference fiber. The scale in each case is relative and arbitrary
and no comparisons between the intensities for different sizes is to
be made. Each set of experimental points is the average of 3 to 5
shots of the laser. The standard deviation in intensity is approxi-
mately 10% for each point, while the uncertainty in scattering angle
is + 0.7°.

The solid curves superimposed on the data in each figure corres-
ponds to the best-fit Mie theory modified for the size distribution
of séatterers (Shimizu, 1978). This fit was obtained by assuming a
Gaussian size distribution with a standard deviation o , in the
diameter d , of 0.37%, 7.0% and 5.9% for the 0.481, 2.02 and 3.20 um
Tatex spheres. - The o/d provided by the manufacturer is 0.37%,
0.67% and 5.9% respectively. The parameter m 1is the ratio of the
refractive index of the particles to that of the water at A = 0.53 um.

In spite of the difficulties of backward scattering measurements
mentioned before, the general agreement between the measurements and
the Mie calculations are good. It should be emphasized that no spe-

cial precautions had to be taken to minimize stray light during the
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above experiments. The combination of ultrafast sampling and the
sharply pointed receiving pattern of the detector block out all
signals not originating in the region of interest. The effective-
ness of this temporal and spatial noise-limiting function is further
demonstrated in the next section.

In conclusion, these results suggest the applicability of this
technique to the estimation of an average size of scatterers from the

backward scattering pattern.

1V.4.3 Suppression of Spurious Scattering

To examine the effect of the range-gating, the scattering pattern
measurements discussed above were repeated with the shutter kept open
continuously by a quarter-wave plate to simulate the conditions of
continuous wave (CW). Since, however, the incident wave is still a
pulse, this non-range-gating case is called "quasi-CW" case. In this
case, considerable difficulty was experienced with stray light, espe-
cially at lower concentrations and at the angles close to the backward
normal.

A set of results for the quasi-CW case with 3.2 um particles is
shown in Fig. 4-11. The geometrical factor discussed in Section IV.2.2
was corrected already. It is seen by comparison with the range-gated
case of Fig. 4-10 that the experimental data for the two different
cases do not correlate with each other and that the non-range-gated
case does not agree with Mie theory. This discrepancy is found to be

attributed to the spurious reflections within the scattering cell.
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In the range-gated case, only light within the desired focal
volume at the selected depth in the scattering medium is sampled.
In the non-range-gated case, since the shutter is open continuously,
the Tight reflected at the far wall of the cell is forward scattered
and this "forward scattered reflection" is picked up by the collection
optics. Thus the observed results are a superposition of direct back-
scattering and indirect forward scattering. Since the reflectivity at
the far wall is ~4% (air-glass interface) the spurious forward scat-
tering is only a few % of what it would be under direct illumination.
However, since forward scattering cross sections are much greater than
backscattering cross-sections, the forward scattering from the reflec-
ted light is sufficient to seriously distort the backscattering data.

In Fig. 4-11, is shown a corrected theoretical Mie scattering
curve which takes this effect into account, i.e., backscattering + 4%
forward scattering. It can be seen that the agreement with the experi-

mental results is much better than if only backscattering is assumed.

IV.4.4 Reduction of Multiple Scatterina Effect

The ultrafast sampling of the scattered pusles also has the
benefit of reducing some of the effects of multiple scattering. At
a given observation angle, light which is scattered more than once
travels a path-length different from that of singly scattered 1ight.
For a low number of scatterings, the multiple scattered 1ight can
have a path-length less than or greater than singly séattered light.
If the number of scatterings is large, the path Tength will in general

tend to be greater than that for single scattering. Thus, multiple



90

scattered 1ight arrives at the shutter either early or Tate for
sampling and is consequently attenuated. The shorter the sampling
time, the more effective is this discrimination against multiple
scattered signals.

A comparison is made with the results of non-range-gated case.
Fig. 4-12, 4-13, and 4-14 show the behavior of relative scattered
intensity at certain selected angles as a function of particle con-
centration for 0.481 um, 2.02 pum, and 3.2 um particles, respectively,
for both the range-gated and non-range-gated cases. For the 0.481 um
particles, 10% solid density corresponds to a pariic]e concentration
of 1.64 x 1012 cm™3 , for the 2.02 um particles to 2.26 x 1010 cm™® ,
and for the 3.2 um particles to 5.605 x 102 cm > . In each case the
solid Tine represents linear behavior corresponding to single scat-
tering theory. Deviations from linearity are caused by multile scat-
tering. It should be noted that significant deviation from linear
behavior occurs at nearly an order of magnitude lower concentration in
the non-range-gated case, attesting to the usefulness of range-gating
in the suppression of multiple scattering. At shorter pulse durations
this effect would be considerably more pronounced. With our present
equipment, however, we are not able to achieve sampling times under
15 psec. |

The decrease in intensity at higher particle concentration is due
to the attenuation of the incident beam and the scattered signal along

their propagation paths. This has been analyzed theoretically in

Section IV.2 as the first order multiple scattering. The results of
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the calculation are shown in Fig. 4-15, compared to experimental
results for 0.481 um particles at an angle of 169°. The open circles
represent the range-gated data while the crosses represent the non-
range-gated (i.e., guasi-CW) data. The solid circles are pseudo-
theoretical points calculated using measured values of tufbidity as
an attenuation factor for the single scattering extrapolation. See
Sections VI.3.1 and VI.3.4 for the detailed discussions on the turbi-
dity measurements.

As can be seen in the figure, the range-gated data fit the theo-
retical curve more closely than the non-range-gated data, showing
that range-gating does suppress some of the higher order effects of
multiple scattering. From another point of view, the valid range of
the first order multiple scatterihg approximation is expanded by the
range-gating technique.

The open and solid circles coincide almost exactly even at the
concentration of 107%% by weight, where the theoretical curve fails
to fit. The difference between the theoretical curve and the solid
circles is due to the assumption of constant turbidity of the former
and decreasing turbidity of the latter caused by multiple scattering.
This result suggests that the first order multiple scattering approxi-
mation is still valid at this concentration-range by simply including
the multiple scattering effect in one of the parameters which is

measured as the turbidity.
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1V.4.5 Simplification of Geometric Correction

The advantage of the range-gating technique in simplifying the
geometrical corrections is demonstrated. The correction factors for
the change of the scattering volume was obtained in Section IV.2.2
as a function of the scattering angle o . They are (1 + cose)/
(sine cose) for the non-range-gated case and 1/cose for range-
gated case. When 6 is small, the former reduceé to the conventional
"sino-correction" and the latter to the correction-free.

This advantage is illustrated in Fig. 4-16 which shows the
scattered intensities measured as a function of the particle concen-
trations at the angles of © = 1.83°, 11.0°, 20.2° and 29.3°.

Fig. 4-16(a), (b) and (c) corresponds to the cases of non-range-
gating without the sino-correction, non-range-gating with sino-
correction and range-gating with no correction. They show that the
correction is not required at these angles if the range-gating is

applied.
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Fig.4-7 Suppression of background scattering :
recorded signals (a) with range-gating ( x100 ),
(b) without range-gating
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d = 3.20 um
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Chapter V

SOLUTION OF DIFFUSION EQUATION FOR BEAM WAVE
INCIDENCE ON DENSE RANDOM MEDIA

V.1. INTRODUCTION

There has been an increasing interest in the propagation and
scattering characteristics of a short optical pulse in a random
medium. The practical application ranges widely in various fields
such as meteorology, astronomy and biology.

Ishimaru (1975), Hong (1976) (1977) and Sreenivasiah (1976)
obtained general formulations for line-of-sight pulse propagation in
randomly distributed scatterers as well as turbulence, and considered
optical pulse propagation in fog and clouds. These and other studies
(Liu, 1975), (Uscinski, 1974), (Erhukumov, 1973), (Bucher, 1973) were
directed to the study of line-of-sight propagation of a pulse under
the forward scattering assumption which is applicable for tenuous
media and large scatterers compared with the wavelength.

Although CW studies in dense media have been reported (Ishimaru,
1978a, p. 174)(Reynolds, 1976), very few attempts have been made to
treat the problem of backscattering of a short optical pulse from a
dense distribution of scatterers. Recently, Ishimaru (1978b) derived
the diffusion equation for pulse propagation by applying thé diffusion
approximation to the two-frequency equation of transfer. He also
obtained the solution of the diffusion equation for the point source

and plane wave cases.
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In the preceding chapters (Chapters II-IV), we dealt with the
remote-sensing technique for a tenuous medium. In general, they are
applicable only when the single scattering or the first order multiple
scattering approximation is valid, which corresponds to scatterer
volume density considerably smaller than 0.1%. If the volume density
is much greater than 1%, a diffusion approximation must be used
(Ishimaru, 1978a, p. 175). The range of these approximations will
be discussed in detail in Chapter VI.

In this chapter we derive the beam wave solution to the diffusion
equation, and analyze the scattered pulse shape from dense media.
Also, the combination of the first order multiple scattering and
diffusion approximations is attempted. A new parameter, diffusion
optical distance is defined and its usefulness is demonstrated. The

range of validity of the diffusion approximation is examined as well.
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V.2 THEORY

V.2.1 Diffusion Equation for Pulse Propagation

The two-frequency equation of transfer (Ishimaru, 1978b) is

given by

ALLS) — 5(k - KEI(F,3) + of £(5,8)F5(3,5)1(7,8)dn’

~
[}

~
4

1=K {zwpf](%,§)}/k1

|
r
+

Ky = {2mofo(1,1) Mk,
where I(F,§,w],w2) and &€ (F,§,w],m2) are two-frequency specific
intensity and source function at the position r 1in the direction of
the unit vector § at frequencies 0y and  w,, f](a,Q) and f2(6,%)
are scattering amplitudes at 1 and Wy respectively when a wave is
incident and scattered in the directions of the unit vectors i and
60 , d2' is the elementary solid angle in the direction 8', o is
the number density, k] = w]/c, k2 = wz/c and c¢ 1is the velocity of
light. The scalar variable s represents a distance in space;

The specific intensity I can be expressed as a sum of the reduced

incident intensity I.; and the diffuse intensity Id .

I(F,ggw],wz) = Iri(r-‘,g,w] ,wz) + Id(?‘,ggw] Swz)
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dI .
r1 _ . *
AL A (5-3)
S—19—'(K-K*)I+fff*1dsz'+ + (5-4)
ds = '\ 2dp4n12d €pi T € y
_ = a - X '

where € . = eri(r,s,w],wz) = p{hrf]fz I d0 (5-5)

The diffusion approximation is given by the first two terms of

the series expansion of Id in terms of the scattering angle, i.e.,
I4(F.8) = U,(F) + (3/47) Fy(F) - 8 (5-6)

where the average intensity Ud and the flux vector ?d are defined

by
- ] - 4
?d(?«,w],wz) = f4n Id(F,é,w] ) $ dg (5-8)

-—

Fd can be related to Ud as

C o A - -l - AN A
F.(r) = -2 grad U,(F) + — [ e _.(F,5)s dn
d 3atr d %%y 4 !
f 1 e(F.3)8 de (5-8')
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Applying the diffusion approximation to the equation of transfer

given in Eq. (5-4), we obtain the diffusion equation for the average

intensity.

3 - A . s~
(v2 - q?)Uy = 7= { - pooy &_ I.;(r,s)da + div [ ep5(r,s)s do
T 4
- ay. [ e(r,8)de + div [ e(r,5)5 da } (5-9)
47 4r
2 = = -1 = -
where q 3aaatr s Gy Doa ]Kd > Gy T PO 1Kd
_ * _ _ -
Kg Re[Kl - K2]’ %a = % T 9> Ogpr -~ (1 - w)og+o,
_ - * = A oAy kra Ay '
op = Im[K1 KZ]/p s O &m-f](s,s )fz(s,s ) do' .

and

Oas Ogs 6t and Otpe shown above are two-frequency-absorption,

=scattering, -total and -transport cross sections of the scatterer.

They are functions of 0 and Wo - If wy = Wy, they become the

usual cross sections of the particle at the frequency o = wy = wy -
7 is a mean cosine of the scattering angle © = cos™*(§ - §') and

is given by

i= ([ ff,5 -8 de')/(f ff, da')
4n 4n
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The boundary condition for the diffusion equation is given by

A - Qq(F)

- 2 3 = -
UalTs) =3 am Yalrd == = 0 (5-10)
where Q](FS) = &m,eri S dQ)/atr s FS is a position on the

surface of boundary and f 1is a unit vector normally directed into
the region containing scatterers. Note this boundary condition is
approximate (Ishimaru, 1978a, p. 179).

In the following sections, solutions of the diffusion equation
are given in terms of the average intensity Ud(F). Once Ud(F) is
found, the flux Fd(F) can be calculated from Eq. (5-8') and the
specific intensity Id(F,§) can be approximated by Eq. (5-6).
Another type of approximation for Id(?,§) is given in a later

section (V.2.8).

v.2.2 Solution for Beam Wave Incidence

Fig. 5-1 shows the geometry of the problem. A collimated beam
wave is normally incident upon a slab of dense random medium. Con-.
sidering the axial symmetry of the geometry, a cylindrical coordinate
system (r,¢,z) is employed.

From Eq. (5-3), we get the two-frequency reduced incident
intensity.

Iri(?,§,w], wy) = F (r) exp (- atz)6(§ - 7) (5-11)

where Fo(r) is the function of intensity variation in the trans-

verse plane, a; = po, - iKy > ¥ =rr+ 2z, rand z are unit vectors
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in the radial and z directions. In the following discussion, Fo(r)

is assumed to be Gaussian, i.e.,

Fo(r) = exp (- r2/w?) (5-12)

! half beam width.

where w is an e~
Substituting Eqs. (5-11) and (5-12) in Egs. (5-5) and (5-9), the

problem is formulated in the following boundary value problem.

(v2 - q2) Uy(r) = - Q,(F) (5-13)
- 5 _. Q)

Ud(r) - h EE'Ud(r) + =0 atz =0 (5-14)
- 3 _o o(n)

Ud(r) + h SE-Ud(r) - =0 atz=4d (5-15)

where @2 = 3aaatr » h= 2/3“tr » d is the thickness of the slab of

scatterers,

QO(F) = é%—pcs(atr + ﬁat) exp(- r2/w2)exp(—atz)

In>

C0 exp(- r2/w2)exp(- atz) (5-16),
and

Qy = (wpog/ay.) exp(- r?/w?)exp(- a.z)

i\ ¢, exp(- rZ/w?)exp(- atz) (5-17).



m
This can be solved by the Green's function method, i.e.,

1

Uy(r) =jv G(r,r') Q(r')dv' - 5 fs G(r,r')Q(r*)ds’ (5-18)
where (v2 - g2)G(r,r') = - 8(r - r'") (5-19)
G(F,F') - h 5"’7 G(F,7') = 0 at z = 0 (5-20)

"
o

G(F,7') + h % (7, ') at z = d (5-21)

The solution G(r,r') can be written as a sum of the particular solution

Gp(F,F') and the homogeneous solution Gh(F,F'). They correspond to

the primary wave or the "incident wave" and the secondary wave or "the

scattered wave," respectively (Ishimaru, 1974, p. 505).

6(FF) = 6,(F7) + 6, (F,F) (5-22)
6, (rar) = & [ay() 3 ety &7YI2 - 2 A (5-23)
Gp(rar') = g [ 3,00) 3,0r1) 19y (e

+g,(n)e’? } 292 (5-24)

where vy = (A2 + q2)]/2 . Egs. (5-23) and (5-24) are obtained from
the Green's function for the Helmholtz equation, simplified for the
axial symmetry (Kraut, 1967, p. 386). The coefficient functions

g](x) and gz(x) are determined by applying the boundary conditions
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Egs. (5-20) and (5-21). They are

g, (1) = {(h2y2 - 1eYl8Z) 4y qy2e7¥(d-21)y ),
go(1) = €(h2y2 - e &2 4y qyzeY(d2)y
where A = (hy + 1)2eYd - (hy - 1)2e-Yd . (5-25)

Rearranging them for future convenience, the Green's function is

given by

G(r,z;r',z") =-£; % -A%A JO(Ar) Jo(kr') {e—YlZ'Z i

+ g]]e-Y(Z+z ) . 912e-Y(Z-Zl) + gz1ey(2+z )
+ ggoe’(z2") (5-26)
where
gy = (W22 - 1Ne'a g, = (hy - 1)2e7Ya
9op = (h2y% - e "9/ oo = (hY - 1)2779/s

Finally, substitution of Eq. (5-26) into Eq. (5-18) yields the solu-

tion for the original boundary value problem (Egs. (5-13) ~ (5-15)),

2 Who C C
Uyglr,z) = % -A%l J, (ar) %—e i 7§-A(z) + z#%—B(z)} (5-27)
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1 -az _oaTYZy 1 Yz-Yd-ad -az
A(z) — (e e ') v (e -e )

11 ~Yz-Yd-ad _-YZ 912, -yz4¥d-ad _-Yz
vva (e me ) ko (e -e %)

921 +yd-od 922 ~vd-
yz+vd-od _ _YZy _ Yz-vyd-od _ |YZ -
Al (e e’ ") — (e e “) (5-28)
B(z) = pYz-vd-ad _ =Yz | g]](e-vz—vd-ad _eEy 4 g]z(e-vz+Yd—ad
. e'YZ) + 92] (eYZ'l"Yd-ad _ eYZ) + gzz(eYZ‘Yd-Ctd - eYZ) (5_29)

where o = a, = POy - 1Kd s Co and C] are defined in Egs. (5-16)
and (5-17).

v.2.3 Beam Wave Incidence on Semi-Infinite Medium

If we take the infinite 1imit of the slab thickness (d + «)
in Egs. (5-28) and (5-29), we get the solution for a semi-infinite

medium, i.e.,

- EEAZ Co ¢4
Uy(r.z) = % Mg n e BT (2A(2) + 4B (2) ) (5-30)
-0z Yz -0z . -yz
- _¢© - e e hy-1 e -
A.(2) Yy -o +y+a+hY+f] y +a (5-31)
B (z) = —2MY_¢™VZ (5-32)
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Note that the solution is simplified considerably when the effect from
the backwall is eliminated.

If we replace the boundary condition, Eq. (5-15), by
Ud(F) =0 at z = (5-33)

and solve the boundary value problem (Egs. (5-13), (5-14) and (5-33)),
we get the same solution as above. The agreement was confirmed. See

Fig. 5-2.

V.2.4 Plane Wave Incidence on Slab of Medium

A plane wave can be considered to be a beam wave with an infinite
beam width. Therefore, the solution for plane wave incidence is ob-
tained by taking an infinite 1limit of the beam width (w » «) in

Eq. (5-27). Since

w2,
® w2 T A
Tim [ f(d) 5 e adr = f(0) (5-34)
Wo 0
Eq. (5-27) becomes
1, % 4
Ud(Z) = T { va AP(Z) + iy Bp(Z) } (5-35)

where Ap(z) and Bp(z) are given by rep]a;ing all the v's by gq's
in Eqs. (5-28) and (5-29) respectively. This solution agrees with the
one obtained by Ishimaru (1978b), who set up the diffusion equation

and boundary conditions for the plane wave and solved it. It is out-

lined in Section VIII.2.2.
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Note that in Eq. (5-35), the r-dependence, and the integral

appearing in Eq. (5-27) were removed.

V.2.5 ~ Plane Have Incidence on Semi-Infinite Medium

In the same way as the previous section (w + =), the solution
for beam wave incidence on a semi-infinite medium (Egs. (5-30) ~

(5-32))‘reduce to the solution for the plane wave incidence, i.e.,

U(Z)=]—{F—9A ()+C—]B (z) } | (5-36)
d q ' 72 "p=t?) T Tk Ppe
~az -qz -az -qz
_e - e e hg -1 e _
pr(z)— q-a +q+a+hq+]q+a (5-37)
ORI ' 53

The same results are obtained by taking an infinite 1imit of the slab
thickness (d -~ =) in Eq. (5-35), or starting from the diffusion equa-
tion with an appropriate boundary condition such as Eq. (5-33). These

agreements were confirmed. See. Fig. 5-2.

V.2.6 Point Source in the Medium

Another asymptotic case of the beam wave incidence is a point
source. We take a zero 1imit of the beam width (w-0) in the beam
wave solution for a semi-infinite medium (Eq. (5-30)), while keeping

the total incident energy constant ( =w? = const.). Then, we get

Ug(rs2) = € [ 220 () (e, + FagA (2) + iB_(2)) (5-39)
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where
_ 3 C
2 = T6nZ P9%%3

[=]

3 % exp(-r2/w2)2xr dr = w2 = const.

(@]
i

and A_, B_ are given in Egs. (5-31), (5-32).

For the dense random media, the optical distance is much larger than

unity (thZ >> 1), and e ®% §s negligible if it is compared with
...-YZ

e = Then, Eq. (5-39) can be written in the following form:
s ada -1z
Ud(r,z) = Cq % Y JO(Ar) f(y) e (5-40)

where f(y) = (atr + ﬁat)A'(z) + pB'(z) and using Egs. (5-31) and
(5-32)

A (Z) - e"OtZ _ e-YZ N e-OLZ + e—YZ ) 2 e-yz
had Yy - a Yy tao hy + 1 Yy +a
-1 1 2 1\ -1z vz )
“(yoatyva T wrTyeae LA(2e (5-41)
B,(2) = A &2 4 B (2)e”” (5-42)

The integral in Eq. (5-40) is evaluated by the method of steepest

descents (saddle point technique), giving
= -qR Z -
Ug(rsz) = ¢, eR f(ag) (5-43)

where R = (r2 + 22)]/2 . Detailed discussion is given in Appendix V.A
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Finally, the beam wave solution, Eq. (5-30) reduces to

U( )=C _3_a _e;q,R_A (E) (5 44)
q\m? 347 Ytr &R “'ps ‘R e
where
qx(Za + 3a, . + 3poa, + 6ua_x2)
A__(x) = po t tr i Qt o (5-45)
ps s (gqx - Satr/z)(q X2 - oy )

Ishimaru (1978b) solved the following diffusion equation for a point

source in the scatterers,
(V2 - q2) Uy(F) = - 1o oy, (5-46)
and obtained
3 e-qR

Ug(F) = 77 e rr (5-47)

On the z-axis or r = 0 and R = z, Eq. (5-44) agrees with Eq. (5-47)

at least in the spatial dependence.

V.2.7 Impulse Respbonse

The output power in time domain can be expressed

[ee]

P(t) = [ P, (t") G(t - t') dt' (5-48)
where Pin(t) is the input power and G(t) 1is the response due to
the delta function input power or Pin(t) = §(t). G(t) is called the

impulse response.
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In the previous sections, the solutions of the diffusion equa-
tion were presented in terms of the two-frequency average intensity

Ug(Fsug,0y)  in the frequency domain. It is defined by
Ug(F s0q0mp) = 7= [ I4(FsS50q,0,) do (5-49)

It has been shown that the impulse response G(t) 1is given by the
Fourier transform of the two-frequency mutual coherence function
I'O(md), 'i.e.,

-l oo "iwdt
G(t) = B f Po(wd) e dwd (5-50)

where ro(wd) is the mutual coherence function which represents the
correlation function between the output fields due to the time-
harmonic inputs at two different frequencies W, *wg and wy * wo
evaluated at the same time t and at the same point r , and

Wy = wy - (Ishimaru, 1978a, p. 96, p. 313).

Since

Po(;;wd) = f I(n,g;wd) dQ = 47 Ud(F;wd) (5-51)

4n
we get the impulse response as a Fourier transform of the Ud’ i.e.,

_ . _ "-iwdt
G1(r;t) = f_mUd(r;wd) e dugy (5-52)

As can be seen in Eqgs. (5-52) and (5-49), the impulse response

G1(t) represents the signal averaged over all directions. Thus, it
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is applicable when the receiving pattern of the detector is isotropic
(no directivity) or the directivity of the incoming signal is sharply
peaked to be confined in the receiving pattern of the detector. In
practice, these conditions are not always easy to satisfy. In fact,
our system uses the detector with a very narrowly peaked receiving
pattern to obtain the directional information of the (diffusely)
scattered intensity. Therefore, in the following analysis, the impulse
response G(t) refers to the Gz(t) which is given as the Fourier
transform of the specific intensity Id, i.e.,
o o o —iwdt

G(t) = Gz(r,s;t) = fm Id(r,s;wd) e du g | (5-53)

The specific intensities to be used for the analyses in the later
sections are listed below. They are obtained by substituting the
each solution Uy for semi-infinite media into Egs. (5-6), (5-8').
(1) Beam wave incidence 2

incident flux: F(P;w],mz) = F, e- w?

where FO is the flux at r =0, r 1is the radial distance in
1

cylindrical coordinate system (r,0,z), and w is the e ' half
beam width.
Id(r,o,s;m],mz)
w2 .
= . 3 i 20 422 MY " %tr
o Fopos L % Ada JO(Xr)w e v+ satr)(Y 7 a)
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2
W
L +
2 Y atr

,\.._,\‘”2 o 4
+r - s L) Az dx Jy(ar)w?e (2 ¥ 3o (v + alay,

w2
- - (o, . + ua)
s a 2 4)2 1 “tr
+7-5s % ada J (ar)w? e 2y + 3ag, { 5y * o)
_r2
Y ~ A~ U w2
+py-—T1-31-2.8-+¢ ]
“tr “tr

Previous sections (V.2.1, V.2.2) should be consulted for the

definitions of parameters.

(2) Plane wave incidence

incident flux: F(w],wz) =F, (const.)

Id(Z = 0,§;w-l ,mz)

3 I
" Fo P95 T2 ¥ 3a,)(q * o)

(2 - 35 - 2)

(3) Quasi-spherical wave (point source at the boundary)

Id(Rs¢9S;w1aw2)
~qR
- 3 e q
= - 2y Etot [o¢p zor f(cos0)

_._—q -y 2 ~ ~
+ iﬂRz {(qR + 1)f(cos$)R + S + sing f'(cos¢)s - s}]

where )
21 x(x2 + C1)

Fx) = eoog o T T - Ty

(5-54)

(5-55)

(5-56)
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2
) 20 3x= + C]

] —_ d
1 {x) = gx F(x) = pog o Uixs C,)(x2 -°C

3)

x(x2 + C])(Bx2 + 20, - C3)

{x + C2)2 (x2 - C3)2 }

C-I = atr(Za + 3pa + 3octr,)/2uq2 . CZ = 3ottr./2q s

o
]

3 (a/q)? and the spherical coordinate system (R,0,¢)

was used. ¢ = 90° at the boundary.

(4) Point source in the medium

-gR
a 3 9 1
Lq(RoRswys0p) = 77 g (ogr 0 ¥ 1) (5-57)
V.2.8 Improvement for Plane Wave Backscattering

As will be discussed in the néxt section, the diffusion solution
is not applicable for the scattering from the region near the boundary
of the scattering medium. Since, in this region, optical distance is
not high enough to satisfy the conditions of diffusion, the first order
multiple scattering (FOMS) is taken into account. Note that this
approach is not a simple addition of the solution for the FOMS to that

of the diffusion equation.
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We start from the two-frequency equation of transfer for the
diffuse intensity Id(F,§;m],w2), i.e.,
d . * * *
Definitions of parameters are given in Section V.2.1.

The equation of transfer is formulated into the integral equation

as

I(F‘,g;w],wz) = IN.(F',ggw] swp) Id(F,é;w] s5) (5-59)

- A

_ = 2 -0S
r‘,S) - Ii(rO,S) e

Iri(

® . - po A A = Ay ) = &
Id(r,s) = % e afs 51)_2?9 I | p(s,s')I(r],s Yo' + s(r],s)}ds

e

1

_where 1, is the incident intensity at the incidence point r = Fo >

s 1is the distance from Fo in the direction s , o = oy - in and

P(ﬁ,%;w],wz) = %E»f](a,%) f;(a,g) is the two-frequency phase function.
t .

To this point, no approximation has been made.
If the unknown total intensity I(F1,§) in the integrand is

approximated by the reduced incident intensity Iri , we get the ordi-

nal FOMS approximation (Ishimaru, 1978a, p. 169). Here instead, we

approximate the I(F],é) by the I plus the diffusion solution

ri
Id, i.e.,
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- A

-(F,S;w],wz) + Id(Fsg;m]’wz) (5'60)

I(Y‘,S;w] ,wz) = IY‘]

F—t 3

d(r’s’w]’wz) Ud(raw]3w2) + An Fd(r,w],wz) S

Comparing Eqs. (5-59) and (5-60), if Ed = I4 the solution is exact.
In other words, the accuracy of this approach depends on that of the
diffusion solution. For convenience in further calculations, the

solution Id is written as a sum of the Id] and Id2 which repre-

~

sents the contributions from Iri and Id respectively, i.e.,

Id(f‘,§;w],w2) = Id](F,§;w] Jwp) + Idz(F,é;w] J5) (5-61)

- A S-— - pc A A - A
Id](r,s) = % e o(s Sl){jﬂ}-_&mp(s,s')lri(r],s')dﬂ'} ds] (5-62)

5 {2 4"p(s,s )Id(r],s)dn + s(r],s)} ds](5—63)
After these general formulations, we consider the geometry of our

problem shown in Fig. 5-1. A beam of a pulse with the intensity Ii

is incident normally on the slab of scattering medium with the

thickness d , i.e.,

L (F»850p0,) = F e "s(s - 2) | (5-64)

where T = rr + zZ . From Eq. (5-59) the reduced incident intensity

is given by

w2 -az 2 a

Iri(r,é;w],mz) = F0 e e §(s - 2) (5-65)
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Substituting Eq. (5-65) in (5-62) we have

2
d - re
S: = —oZ w2 po A sy . =QZ
Id](r‘,z,s,w],wz) [ e Fo e . tp(s,z) e "1 dz.I
z T
The backscattering (s = - zZ) from the semi-infinite medium

(d = ») observed at the boundary (z = o) is therefore given by
P2

5. - wz °% 1
Id](r,o,—z,m] ,wz) = FO e I a (5-66)

where 9 is the backscattering cross section defined by

~

op = 4 o4(-1,1) = o, p(-3,3)

where cd(a,%) js the differential cross section.

In the backscattering case, Idz also reduces to the simpler

expression. The term in the bracket {-} of Eq. (5-63) becomes

po A A -~ - A _ _
4£F £n p(-z,s")14(r,s")da" = oo {Uy(T) - i%-u Fq(r)
where ! p(5,8%)da" = 4no /oy [ p(5,5")8 - s'de' = - 4muo /o4 >
4r S At S

?d(F) = Fd(F)i , and no source, e(r,s) =0 .

Therefore, for the semi-infinite medium

©

A - 3
Idz(r,o,—z;w],wz) = % e %%y pos{Ud(r,z ) - E?'“Fd(r’zl)} dz, (5-67)
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Finally, substitution of Eqs. (5-66) and (5-67) to (5-61) yields the-- =

solution to the equation of transfer which includes the effects of

the FOMS and diffusion.

it

In the case of plane wave incidence, it is given by
Id(z =0, -z ; W) s wz) = Id1 + Id2

poy, 2 Uq Oy 20+ 3pa + 3o+ G“Ga' uq ;'&;r
o L& (pc ) s (29 + 304 )(q + o) 200,

3 (5-6¢
r. e

V.2.9 Sign of Diffusion Solutions at Time-Origin

As mentioned before, the diffusion abproximation is'not vd]idifﬁ
for the scattering from the region close to the bouhdary of the scat-
tering medium. This corresponds to the uncertainty of the impulse
response near the time origin. In fact, the diffusion solutions can
be negative near t = 0 . Therefore, by checking the behavior of the
diffusion solutions at the time origin, we can obtain the conditions
in which the diffusion solutions should not be used.

According to the initial value theorem of the Laplace transform,

Tim f(t) = T1im sF(s) (5-69)
t-+0+ S ‘

where the function F(s) 1is the Laplace transform of the function

f(t). Defining a new variable

©4q
PO¢pC

s = -1

where wyq = wy - wy : (5-70)
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we have

1im (o /spoy,) = 1im (1 + o /s0,) =1

S>> S

lim (o /spoy.) = Vim (1 + o /so, ) =1
S>oo S

Tim (o, /spo,.) = Tim (1 + 1/s) =1
S tr tr Sroo

1/2
11m(q/spotr) = Tim {3(1 +0a/Sotr)(] + 1/s)} = /3
S

S>>0 >0

lim (y/spo,,) = lim VAZ + q2/ spo,. = /3
S>> S>>

Thus, applying this theorem to the specific intensity for the beam
wave incidence on the semi-infinite medium given in Eq. (5-54),
we get

1im G(t) = 1im s Id(s)
t>o+ S

o -(5)?
3 F S 2 V3 u -1

TR AT D@ 328 (57)

Therefore, the impulse response at t = 0+ 1is positive, when

0<u<1//3 and z -5 <2/3 (o> 48.2°) or

A A (5-72)
1/ /3 <u<1 and z - s >2/3 (o < 48.2°) ‘
The interpretation of this result is as follows. The former

condition implies that diffusion cannot be expected in the large

angles (0 > 48.2°) unless the scattering pattern of each constituent
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particle is fairly isotropic (0 < u < 1/¥3). The latter condition
implies that if the scattering pattern is peaked in the forward

angles (1/V3 < u<1), diffusion cannot be expected in the large
angles (o > 48.2°). Thus, the impulse response based on the diffu-
sion approximation is not valid near the time-origin, if the above
conditions are not satisfied. It should be emphasized that the above
conditions do not guarantee the validity of the solution even if they
are satisfied. They just show the coﬁditions under which the solution
is not reliable.

The same method is applied to the point source case given in

Eq. (5-57):
1im G(t) = 1im s Id(s) ) ' (5-73)
>0+ S>o

where

Tim s(s + 1) exp {-¥3s(s + T} R} = lim [ e)sq()i isﬁﬂ "
S+ e

= Tim [ —(—ﬁ {1+ /35(s + T) R+ 5 3s(s + NRZ + . . . 3]}
S0 S + ]

This result is reasonable, since in the case of the point source, the
time origin of the scattered wave corresponds to the spatial origin
where the source is concentrated in a point.

As expected from the similarity in the geometry, the results for
the plane wave and the quasi-spherical wave are the same as those for

the beam wave given in Eq. (5-71) and the point source, Eq. (5-73),
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respectively.

There is an interesting equivalence seen in the derivation of
Eq. (5-71) to that of Eq. (5-55). HNote the similarity in the final
forms shown in Egs. (5-71) and (5-55). This is attributed to the
following. As can be seen in the definition given in Eq. (5-70), an
increase in s corresponds to an increase in the frequency wy >
and a decrease in the wavelength A . A decrease in A is equiva-
lent to a relative increase in the beam width w of the incident
wave. Thus, taking the infinite limit in s corresponds to the same
1imit in w which reduces the diffusion solution for the beam wave
incidence to that for the plane wave incidence. It is shown in

Section V.2.4.

vV.2.10 Diffusion Optical Distance

The "optical distance" (Ishimaru, 1978a, p. 157) or the "optical
thickness" (Chandrasekhar, 1950, p. 9) has been defined as

T = fpot ds (5-74)

where o, Ot and ds is the particle concentration, the total cross
section and the distance element. If the scattering medium is homo-

geneous and the wave travels in the =z direction, it becomes
T = pog zZ (5-75)

This parameter represents the attenuation characteristics of the

medium due to scattering and absorption, ij.e.,
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I(z) =1 e’ (5-76)

where I(z) 1s the intensity at the position z and I0 is the
incident intensity.

As can be seen in the following definition, the transport cross
section Oty includes the effect of the unisotropic scattering, and
therefore represents the scattering characteristic of the diffusive

media better than other cross sections.
Ogp = (1 - u)os + o, (5-77)

where u 1is the average cosine of the scattering angle. u =0 and
1 corresponds to isotropic and purely forward scattering, respectively.
Using Tpps @ NEW parameter is defined and called a "diffusion optical

distance":
g < / potr ds = P02 for homogeneous media (5-78)

In the following analysis with diffusive media, parameters and func-
tions are normalized by POy, OF pdtrcmed where Cmed is the
group velocity of Tight in the scattering medium.

It is demonstrated in later sections (V.4.1, VIII.4.3) that
diffusive scattering depends mostly on T4 and that the choice of
the above normalization constant is appropriate. It is also verified

experimentally in Section VIII.4.3.
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V.3 NUMERICAL ANALYSIS

The theoretical discussions presented in the previous section
(V.2) are examined by numerical analysis. The diffusion solutions in
the time domain or the impulse responses are calculated and their
pulse-shapes are analyzed. The values of parameters are chosen within
a practical range. Most of them are those used in the experiments
which are discussed in subsequent chapters. The calculations are
made with 16 digits precision.

The outline of the algorithm developed for this analysis is as

follows.

1. Initiate the program, i.e., read the given parameters, calculate
necessary constants, etc.

2. Set the frequency in a given range, w; (i=1,2,...N)

3. Calculate the spectrum of the specific intensity Id(wi) . If
numerical integrations are involved such as in the beam wave
case, check the convergence of the integration. If necessary,
apply the tapering window on the high-frequency tail to prevent
the leakage phenomena in the following FFT.

4. Take Fourier transform of the spectrum by the Fast Fourier

Transform technique.

5. Output the results in graphs.
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V.4 RESULTS AND DISCUSSION

V.4.1 Diffusion Solution for Beam Wave Incidence

Fig. 5-3 shows the impulse response of a semi-infinite diffusive
medium calculated by Eqs. (5-53) and (5-54). This is the intensity
profile of the scattered signal in time, where the incident wave is
assumed to be a beam of an impulse whose dimension is longitudinally
infinitesimal and laterally Gaussian. The abscissa is the time nor-
malized by (pcr,”,Cmed)'1 and the ordinate is the intensity of the

impulse response normalized by pctrC where o, Tty and Cmed

med’
are the particles concentration, the transport cross section and the
group velocity of light in the medium, respectively. As to the choice
of this normalization constant, more discussion is given elsewhere
(v.2.10, v.4.2, VIII.4.3). The time-origin is defined as the instant
when the incident impulse passes the first boundary of the scattering
medium. Through this chapter, impulse responses are presented in a
linear scale unless otherwise specified.

We can see in Fig. 5-3, the typical characteristics of the
impulse response of the diffuse media, namely the rapid rise and slow
asymptotic decay. As mentioned before, the diffusion approximation is
not valid for the scattering from the region near the boundary of the
scattering medium. This corresponds to the uncertainty of the impulse
response in the normalized time t' < 1 . The part of the asymptotic

decay, however, should be reliable. In the following analysis, this

part is referred to as a "diffusion tail" due to its origin.
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Fig. 5-4 is the same impulse response as Fig. 5-3, plotted in
dB . Its linear decrease implies that the asymptotic decay can be
approximated by exp(-Crd), where C 1is a constant and 1, is the

diffusion optical distance defined in Section V.2.10.

V.4.2 Effect of Observation Geometry

The geometry of observation is illustrated in Fig. 5-5. The
backward scattered pulse for the beam wave incidence is observed at
the radial distance r and at the scattering angle o .

Fig. 5-6 shows the effect of the radial distance r . As r
increases, the scattered intensity is rapidly attenuated, but pulse
broadening does not occur, at least in the range examined. The pulse
keeps its relative shape as it is attenuated.

Fig. 5-7 shows the effect of the observation angle o. Again, as
©® increases the magnitude of the pulse decreases, but the relative
shape of the pulse is preserved. The angular dependence of the magni-
tude seems to be (1 + cose)/2. According to Lambert's cosine law,
the dependence would be cos® if the medium is an ideal diffuse

reflector.

V.4.3 Effect of Scatterers

Fig. 5-8 shows the effect of the sizes of scatterers. They are
latex spheres with 0.481 um, 5.7 um and 45.4 uym diameters. Their
relative refractive indices to water are 1.59/1.33 for A = 0.53 um.
Average cosines u which represent the degree of anisotropy are

0.85, 0.90 and 90.93 respectively. Their concentrations are set in
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10% by weight or 1.64 x 1012 cm™3, 9.87 x 108 cm™>, and 1.95 x 106
cm.

The curve of 45.4 um spheres shows the highest magnitude and the
fastest decay in the diffusion tail due to the large u or high
anisotropy. Except for these points, there is no significant dif-
ference observed among their shapes.

Fig. 5-9 shows the effect of the absorption of scatterers. The
absorption is characterized in terms of the ratio of scattering and
total extinction or the albedo, w_ = os/ct . Now, the shape of the

0
impulse response changes significantly for the different w_ . The

0
pulse width (FWHM) for absorbing scatterers (w0 = 0.85) is ~60%

of that for non-absorbing scatterers (w0 = 1.0). This is due to the
suppression of the diffusion tail caused by the absorption of the
scatterers. This effect is demonstrated experimentally in a later
chapter (VIII.4.2). The separation in the starting points of the

rising part of the impulse response is not fully understood. It may

take more time for the absorbing scatterers to start the diffusion.

Except for the above case of absorption, the curves presented in
this and previous sections show general and common features. This can
be attributed to the proper choice of the normalization constant
POt C discussed in Section V.2.10. If we use a different kind of
normalization constant such as poLC, POC, etc., the curves appear to
be very different for different situations. Therefore, these results

suggest the possibility of the universal curve which is applicable
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to a variety of physical situations.

V.4.4 Comparison of Different Solutions

In Section V.2, diffusion solutions were obtained for different
types of incident waves, namely the beam wave, plane wave and point
source cases. The beam wave solution reduces precisely to the plane
wave solution by taking the infinite 1imit of the beam width. By
taking the zero 1imit, the beam wave solution reduces to a solution
similar to that of the point source, but is not exact. This asymp-
totic solution is called a "quasi-spherical wave" solution. Fig.

5-10 illustrates these concepts. |

In this section, the impulse responses calculated by these solu-
tions are analyzed. They are the plane wave,.beam wave, and quasi-
spherical wave incidences on semi-infinite media calculated by Egs.
(5-55), (5-54) and (5-56) respectively, and the point source by
Eq. (5-57). They are shown in Figs. 5-11, 5-12, 5-13 and 5-14
respectively. The impulse responses were calculated for two sizes of
scatterers, namely 2.02 uym and 45.4 um in diameter. These two sizes
correspond to the diameters of the spherical equivalents of a RBC
and a platelet aggregate which are used in our applications (Ishimaru,
1976). In the point source case, the analysis with the average inten-
sity Ud is sometimes more practical than with the specific intensity
Id . However, no significant difference is found in the impulse
responses calculated from Uy and Iy by Egs. (5-47) and (5-57).

Comparing Figs. 5-11 ~ 5-14, first we note the difference in

time scales. In the case of 2.02 um spheres, the difference amounts
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to four orders of magnitude between the plane wave case and point
source cases. The quasi-spherical wave case lies in between and close
to the point source case. The same argument applies for the 45.4 um
spheres as well, although the difference is a little smaller. This
may be attributed to the dimensional difference of the diffusion model.
In the plane wave case, the diffusion is considered in only one dimen-
“sion, while in the point source case it is in three dimensions. Thus,
in the latter case, photons are supposed to suffer more collisions
against the scatterers than the former case and the effect of diffusion
appears enhanced. The result of quasi-spherical wave is also reason-

able if we consider the similarity in the geometry of the source point.

V.4.5 Diffusion Tales

By comparing the two curves for 2.02 pm and 45.4 um spheres in
Figs. 5-11 ~ 5-14, we can see the following. In the plane wave case,
there is no difference between the diffusion tales of the two curves.
While for the point source, the diffusion tale for the 2.02 um
spheres develops three orders of magnitude larger than that of the
45.4 ym spheres. This three orders of magnitude difference can be
seen in the quasi-spherical wave case as well. Although the dif-
ference is verysmall, the ]afger tail for 2.02 um spheres appears in
the beam wave case, which is otherwise almost identical to that of
the plane wave. This is reasonable, since the beam wave case is
categorized between the plane wave and the quasi-spherical wave cases,
and is closer to the former in the dimension of diffusion discussed

above.
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These differences in the diffusion tails are attributed to the
difference in the degree of diffusivity which is represented by the
diffusion optical distance T = PO¢pZ - The larger the T4 is, the
more diffusion occurs resulting in the larger diffusion tale. The
14'S per unit disfance (potr) for 2.02 um spheres and the 45.4 um
spheres are 204 cm™! and 5.39 cm™ respectively, where the density
is 10% by weight for both cases.

Based on these theoretical analyses we can conclude the following
points which will be useful for the practical applications. The aggre-
gation of platelets in dense medium can be detected by observing the
changes in the diffusion tales of the scattered pulses. This is con-
firmed experimenta]]y in Chapter VIII. Note that in the above analysis,
the fractional weight of the scatterers were kept constant (10%) for
2.02 um spheres and 45.4 um spheres, thus simulating the condition of
aggregation in which the size of each scatterer grows large but the
fractional weight does not change.

Furthermore, the above analysis shows that in the detection of
aggregation, a point source or a narrow beam incidence is more

effective than the wide wave incidence, such as the plane wave.

V.4.6 Inclusion of First Order Multiple Scattering

Fig. 5-15 shows backscattered (180°) impulse responses for the
plane wave incidence. Fig. 5-15(a) is calculated by the diffusion
solution for the plane wave incidence given in Eq. (5-55) and
Fig. 5-15(b) is by the improved solution Eq. (5-68) obtained in
Section V.2.8.
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They Took almost identical but a closer look reveals an improve-
ment near the origin. A magnified view of this region is inlayed in
the same figure. There is a peak originated by the first order mul-
tiple scattering (FOMS). Since the FOMS is attenuated rapidly in a
short optical distance, it looks 1ike an impulse. The peak shown is
that of the 45.4 um spheres. The one for 2.02 um spheres is too small
to see. The effect of the FOMS peak is shown in Table 5-1 in terms
of the areas of the peak normalized by the area under the impulse
response curve. The area in the time domain corresponds to the value
of the spectrum at the frequency origin. The method of the calculation
is shown in Table 5-1, where Id] and Id2 are the specific inten-
sities due to the FOMS and the diffusion discussed in Section V.2.8,
respectively. As can be seen in the table, the effect of FOMS is
neg]igib]e for small latex spheres, but it becomes comparable to that
of diffusion in the cases of 3.20 um and larger spheres. This is
demonstrated in experiments discussed in Section VIII.4.1.

Another difference between Figs. 5-15(a) and (b) is the separa-
tion of the rising points apearing in the latter. This is to be
expected since the 45.4 um spheres are less diffusive (pctr = 5.39 cm})
than the 2.02 um spheres (pctr = 204 cm'l), because it takes more

- time for the former to start the diffusion.
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i

dia. std. dev. ‘b % m ~d1l
mean Id2
0 2 2
(um) (%) (um®) (um™)
0.481 0.374 0.0176 0.186 0.849 9.94E-3
2.02 0.668 0.253 7.96 0.886 3.29E-3
3.20 5.94 11.3 20.1 0.871 5.86E-2
5.7 26.3 88.4 59.4 0.890 1.54E-1
5.7 abs. 26.3 85.2 59.4 0.891 1.48E-1
45.4 19.6 3945. 3428. 0.928 1.18E-1
Table 5-1
Effect of First Order Multiple Scattering Relative to Diffusion
e
since \W
Ny ® int _
w0 = [ 1yt e at | o = [ 140 at
, = energy of the pulse , ]
% Id](w=0) / Idz(w=0) gives the energy ratio between
 the scattered signals due to FOMS and diffusion,
] where B
| L (w0) / Iy(w0) = —2—/ (L-+ )
! dl d2 Gos 6 2
for a - 0
AN /




Chapter VI
FOUR PHASES OF SCATTERING
VI.1 INTRODUCTION

Although 1ight scattering is an old subject dating back to the
study of the blue color of the sky in the late nineteenth century,
there is no exact solution available which describes the propagation
and scattering through the entire spectrum of scatterer densities.
Various theories and approximations have been developed for each
specific density region and have been used successfully (Ishimaru,
1978a, p. 69) (Ishimaru, 1977). However, the boundaries of their
valid range are not always clear.

In Chapter V, the solutions to the diffusion equation were ob-
tained for different geometries. Their behavior at time-origin could
give some idea on the inapplicable range but a more rigorous analysis
is required to determine the range of validity.

In this chapter, one method is proposed to classify the different
types of scattering according to the scatterer density. The justifi-
cation for this classification is shown in scattering patterns, the
graphs of scattered intensity as a function of scatterers density, and
visual observations of collimated 1ight beam in the scattering medium.
Based on these results, the correlation between measurement and theory
is investigated on the first order multiple scattering and diffusion

approximations.
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VI.2 THEORY

VI.2.1 p-dependence of Tenuous Medium

Assume that a plane wave impulse is incident on a slab of scat-
terers and that the scattered intensity is range-gated in the impulse
shuttering time s(t - to). The received intensity was obtained in
Eq. (4-6), which is

- &y =g 0lf(8.,2)]2 -potcty
Irec(r’s) Fi T+ coso € (6-1)
where p is the number density of the scatterers. See Fig. 6-1 and
Section IV.2.1 for the definitions of other parameters. Considering

p as an independent variable, Eq. (6-1) has a maximum at

o = (6-2)

When range-gating is not applied, or the shutter is kept open, the
received intensity is given by Eq. (4-7), which is

- -po,ct
= Ay |f(s,2)]2 1 POLCly
(¥,5) Fi 1+ coso oyc (1-e

rec (6-3)
This equation shows the p-dependence in the form of the function
f(x) =1 - exp(- x) .

I we take account of the finiteness of the beam width, pulse
length and the range-gating shutter open period, the received inten-

sity is given by Eq. (4-12), which is
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- A ~ —r t
- Ay 41f(s,2)]2 PotCho . 1
Lrec(rss) = F potc(T + cose) € sinhlpoy (1 + cose)b}
x sinh (thC At) (6-4)

As was shown in Chapter IV, Eq. (6-4) applies to both the range-gated
case and the non-range-gated case with the different definitions of
At . That is, At is half the shutter open period for the range-gated
case and At = a(l + cose)/c sine for the non-range-gated case. See
Fig. 6-2 and Section IV.2.2 for the definitions of parameters.
Eq. (6-4) has a maximum at
1 to + At

Pmax = Zo.c AE 11 (to - At

t

(6-5)

where the following approximation is made use of

1
coso

sinh {po, (1 + 1 )py o oo (1 +

coso )b

since pctb << 1 for the tenuous medium. If the sampling point Z,
is not close to the front surface of the slab (z = o), the sampling
time to is much larger than the shutter open period At (t0 >> At).
Then the natural-log in Eq. (6-5) is approximated by

+
tO At

2 At 2 At 2at
t, - At

]n( )z ~
tO - At to - At t

) =1n (1 +

(6-6)
0

and Eq. (6-5) reduces to Eq. (6-2) which was obtained above for the

impulse-incident and impulse-shuttering case.
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V1.2.2 p-dependence of Dense Medium

With dense media, the narrow beam incidence can be approximated
by a point source located at the impinging point of the incident
beam. The solution of the diffusion equation for the point source

case was given in the previous chapter, i.e.,
-gR
=, _ 3 e d

Ug(rswyoup) = 70 opp 2og (6-7)
See Chapter V for the definitions of parameters. The intensity at r
due to a delta function input pulse at the origin is called the impulse
response G(t). It is given by the Fourier transform of the two-
frequency mutual coherence function which is proportional to the

average intensity Uy (Ishimaru, 1978b), i.e.,

© - —'iwdt
G(t) = [ Uy(rswpsu,) e dugy
_ 3 ‘bt - 1 _
= &R © { as(t to) +_ s'(t to)
L LD
+ adty + artto —5—} (6-8)

for t>t,. G(t) =0 for t < t,

where wyg = Wy T wos a-= pos(1 - nu)e/2, b = p(ot + oa)C/Z

r

= a + po,Cs to = v/3 R/c, I] and 12 are modified Bessel functions,

and Z = a(t2 - ’c(z))]/2 .
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With the range-gating synchronized at the time t], the
received intensity is approximately proportional to G(t1), if the
input pulse and the gating time are short enough to be considered as
an impulse. Note that, without range-gating, the received intensity
is proportional to &TG(t)dt which is a constant.

To examine the p -dependence of the impulse response G(t) ,

Eq. (6-8) can be rewritten as

3/2

G(t) = Aop exp(- BP) for t > tO (6-9)
where
30ty (2-2)Pet o (10 32
A =
gnRe (2n) /% (12 - £2)°/4 2
B =4 o (1-d)c{t-(t2-t)/%} +oct
X
and the asymptotic form In(x) ~ =7y  was used. Calculating
(27x)

é%—G(t) = 0 , we obtain the number density p at which G(t) has a

maximum

P

iy = 3o (1 - e (e (12 - 12)1 /2y 40 77 (6-10)

Since t - (t2 - tg)]/2 ~ tg/?t for t >> to or ct >> V3 R,
Eq. (6-10) is simplified for the non-absorbing case (oa = Q) as

p - 2ct
max osil-ﬁ)Rz

where ¢ is the velocity of light, t 1is the sampling time of the
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range-gating shutter, and R 1is the distance of the observation point
from the source point at the origin.

If we start from Eq. (5-44) which was obtained by taking the zero
1limit of the beam width (w=+0) 1in the solution for beam wave inci-

dence, we get a similar result

o

P =14 ct
max = 3 o, (1 - )R

VI.2.3 Normalization for Turbidity Measurement

Although we use matched spectrophotometric cellis to contain the
sample solution,the matching is not perfect. In addiition, the output
power of the 1ight source (He-Ne laser) fluctuates dwwring experiments.
To overcome these problems, the following normalizaztiom technique is
developed.

First, we measure the transmission of the suspgendimg medium of
the scatterers in two cells. Here, the scatterers are Tatex micro-
spheres and the suspending medium is the water with swrfactant.

Their transmissions are given by

T(w,a,t]) I(t]) ay expl- tw(t])}
(6-13)

T(wibyty) = 1(t;) ap expl- 7, (t;))

where T(w,a,t]) is the transmission of the water (%) in the cell
(a) at the time (t]), T(w,b,t]) is the same for the cell (b),

I(t]) is the incident light intensity at t], a, and o are

a



_h,};(quwas the turbidity of the water at t
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attenuation constants of the cells a and b respectively and

1 -
Next, the content of the cell b 1is replaced by the solution

~ of scatterers. Their transmissions become

T(w,a,tz) = I(t2) a, exp { - Tw(tz) }
(6-14)

T(s,b,tz) = I(t2) ap exp { - rw(tz) } exp{ - rs(tz)}

where rs(tz) is the turbidity of the scatterers at the time t, .

The ratio of above quantities yields

T(s,b,ts)/Tlw,a,ty)

= exp { - 1 (tp) } (6-15)
T(w,b,t])/T(w,a,t])

Finally, we obtain the desired turbidity, free from those problems
mentioned above.

T(s.b,t,)/T(w,a,t,)

Ts(tZ) =-n{ T(w,b,t])/T(w,a,t]S } ' (6-16)

With this technique, the turbidity measurements can be calibrated

over different scatterers as well as over the different times.
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VI.3 EXPERIMENTS

VI.3.1 Experimental Facility

The range-gating system described in Section IV.3.1 was used.
In addition, a turbidity measurement system was developed. Fig. 6-3
is a schematic diagram of the system. A beam of He-Ne laser light
(» = 0.6328 um) is mechanically chopped by the chopper (CHOP) for
the phase-lock technique. The chopping signal (C) is sent to the
lock-in amplifier (LIA). The lateral and angular position of the
beam is finely controlled by the beam manipulator (BEAM MAN) which
consists of three mirrors actuated by four micrometers. (Molcho,
1975). Intensity of the incident beam is adjusted by two attenuators.
They are the variable neutral density filter (NF]) and the calibrated
neutral density filter (NFZ)‘ By the combination of these two, the
signal intensity is kept under the saturation level of the detector
and at the same time the measurable range of the lock-in amplifier is
expanded. After passing through the scatterers contained in a spec-
trophotometric cell (SC), the transmitted light is received by the
detector (DET). The detector has a very narrow angle of acceptance
(~0.1°) attained by a focusing lens and a field stop pinhole. The
electrical signal from the detector is -sent to the lock-in amplifier,
LIA. It is a phase responsive amplifier with a narrow effective
bandwidth. It suppresses various noises by the phase-lock technique

and through signal averaging.
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VI.3.2 Backward Scattering Pattern Measurement

Fig. 6-4 illustrates the measurement of the scattering pattern
of backward angles. See Section IV.3 for the detailed discussion.
The scattered intensity is measured at the scattering angle o =
1.83° ~ 29.7° with and without range-gating. The method of the
measurement follows the same as that in Section IV.3 except for the
concentration of the scatterers. Here, the concentration is varied
from 107%% to 10% in weight, which spans from very tenuous to dense
cases. 30% solution is available only for the spheres with 2.02 um
diameter.

The scattering volume observed by the detecting system is a

Tmm diameter cylinder with the length of 2mm in the range-gated
case and about 5~ 30mm for © = 30°~ 5° 1in the non-range-gated
case.

While changing the concentration of the scattérers from tenuous
to dense, the conditions of experiments are kept the same, including
the synchronization time of the range-gating shutter. Thus, when the
scattering medium becomes dense or diffusive, it results in measuring
the tailing part of the scattered pulse where our theory is supposed

to be more accurate than near the peak.

VI.3.3 p-dependence Measurement

By the normalization method described in Section IV.3.6, the
scattered intensity can be calibrated over the different measurements.
Therefore, the scattering patterns obtained above for different con-

centrations give us the p-dependence of the scattered intensity, as
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well. It should be noted again that the measured intensity of the

dense medium is not the peak value of the scattered pulse.

VI.3.4 Turbidity Measurement

In every experiment, the turbidity of the scattering sample is
measured, to provide the parameters necessary for the theoretical
calculations and to insure that the dilution of the sample solution
is done properly.

The short-term stability of the laser within each measurement
(~a few min.) was fairly good. The long-term instability of the
laser and the mismatch among the spectrophotometric cells are cali-
brated by the normalization technique described in Section VI.Z2.3.
After the normalization, the turbidity of the scatterers is obtained
by subtracting the turbidity of the background which is mostly that

of the suspending medium.
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Vi.4 RESULTS AND DISCUSSION

VI.4.1 Backward Scattering Patterns of Tenuous and Dense Media

Fig. 6<5, 6-6 and 6-7 show the backward scattering patterns of
latex spheres with 0.481 um, 2.02 ym and 3.20 um diameters, respec-
tively. The concentrations of the scatterers vary from 107"%% to
10% by weight. 30% wt. solution was available only for 2.02 um
spheres. Each data point is the average of 3~ 7 shots of the laser.
The standard deviation is within 10% of the average, and uncertainty
in the scattering angle is +0.7°.

Each figure shows an interesting transition in the shapes of the
patterns as the concentration changes. According to the shape, we
can classify the concentrations into four groups. Following the
terminology used by Ishimaru (1978a, p. 69), they are referred to as
"single scattering," "first order multiple scattering (FOMS),"
"multiple scattering" and "diffusion" regions. Fig. 6-8 illustrates
the concept. As can be seen in the Figs. 6-5, 6-6 and 6-7, the border
of each region is not necessarily clear, but the difference in the
patterns is evident. A further justification for this classification
is given in the next section.

In the single scattering region, the curves show the patterns
characteristic to each size of scatterers. Detailed discussions on
the characteristic patterns are given in Chapter IV. The concentra-
tion of scatterers is 107"y ~10'3% by weight. The optical distance

per unit distance (pct) is 0.02~0.2 cm > . Since the single
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scattering approximation is valid in this range, the patterns closely
follow the calculations obtained from Mie theory.

In the FOMS region, the patterns become smoothed. However, they
still carry the vestiges of the characteristic patterns buried in the
smoothed curves. Thus, they are considered as the single-scattering
patterns smoothed by the multiple scattering effect. The concentration
of scatterers is 107°% ~1072% by weight and po, 1is 0.2~2.0 em L.

In the multiple scattering region, the patterns are more smoothed
and the vestiges of the characteristic patterns disappear. They have
lost the distinction between the different sizes of scatterers. This
loss of identity marks the dividing point of this region from the FOMS
region. The dividing point is shown clearly in an alternate way of
presenting the scattered intensity, which is discussed in the next
section.

This strong smoothing is attributed to the multiple scattering
effect which, by the randomness of the scatterers in both position and
movement, cancels the orientational effect of each scatterer. Thus,
the patterns in this region are characteriied by the flat shape or
an isotropic scattering. The concentration of scatterers is 107 ~
1% and poy is 2.0 ~ 200.

In the diffusion region, the scattering patterns start peaking
up in the small angles. (Hereafter in this chapter, the small angle
refers to the angle close to the backward normal.) This phenomena
can be explained in the following way. In a dense medium, incident

light is attenuated rapidly due to scattering and absorption as it
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diffuses. Therefore, when the incident beam is narrow, the light
diffuses as if from a point source at the impinging point of the
incident beam. Then the scattered intensity is proportional to r'z,
where r 1is the radial distance measured from the impinging point.
Since r is proportional to the observation angle o if o is
small, the scattered intensity is proportional to 6'2 which
explains the peaking phenomena in the small angles of the scattering
pattern. However, if the point source approximation mentioned above
is valid, the scattered intensity received should be much smaller,
especially in the larger angles. This may be due to the propagation
of light through the air-glass-water interfaces or in the glass wall.
The scattering pattern of 10% wt. and 30% wt. concentrations
show an interesting local minimum and maximum at ~170° and"v165°
respectively. These correspond to the existence of concentric dark
and bright bands around the incident beam. In fact, they can be
observed with the naked eye when a beam of continuous wave laser is
incident on a dense medium. The dark band can be seen also on the
side of the scattering cell. Their appearance is shown in Fig. 6-9,
where a beam of a He-Ne laser incident on the face of the scattering

cell. They are compared with the case of 1% solution.

VI.4.2 Four Phases of Scattering

Fig. 6-10 shows the scattered intensity as a function of the
scatterers density (p) with the different focal depths (f.d.) of the

receiver. The curves in the figure are the measurements with latex
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spheres (2.02 um dia) at a fixed scattering angle (0 = ~11°). Here,
the classification proposed in the previous section is clearly shown.
See Fig. 6-11 also in the following discussion.

From the left, thelinearly rising part of the curves corresponds
to the single scattering region ((:),p = 1072 ~107% wt.). In this
region, scattered intensity is proportional to the density of the
scatterers and the curve is close to the straight line with a slope
of 1. As the density increases, the curve separates from the linear
increase, reaches a maximum, énd decreases. This is due to the attenu-
ation of incident light and scattered light along theirvpropagation
paths. Thus, this part corresponds to the FOMS region ((:),p =
1073 ~107% wt.). As can be seen in the figure, the deeper the focal
depth is (the Tonger is the propagation path), the more attenuation
is suffered by the scattered intensity. In the lower two cases
(f.d. = 1.04 cm and 1.43 cm), the scattered intensity went down below
the level of measurement noise. The upper two curves (f.d. = 0.497 cm
| and 1.04 cm) were obtained with the old facility (Bruckner, 1978a),
the lowest measurable level of which is one order of magnitude
higher than the present facility (Shimizu, 1979).

As the density increases, the scattered intensity becomes obser-
vable again. Now, multiple scattering becomes predominant and the
light observed does not follow the same path as in the previous case.
The photons are scattered back and forth between the scatterers and
lose fheir original directionality. Thus, they reach the receiver

through various paths. Since the more scatterers send more photons
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to the receiver through this mechanism, the received intensity
increases almost linearly as the density of scatterers increases.
This part corresponds to the multiple scattering region ((:),p =
107~ 12 wt.).

As the density of scatterers increases further, the 1light starts
diffusing. Since photons encounter many scatterers in a short dis-
tance, the scattering becomes isotropic and as a whoele,1ight propagates
in a diffusing manner. In this phase, the 1ight is attenuated rapidly
due to the many scattering as it propagates. Thus, it results in the
decrease of the received intensity as the density of scatterers
increases. This part corresponds to the diffusion region. ((:),

o > 1% wt.). The difference of the scattering can be observed in a
visual observation with naked eyes. Their appearances are shown in

Fig. 6-11.

VI.4.3 p-Dependence of Dense Media

Figs. 6-12, 6-13, and 6-14 show the p-dependence of the scattered
intensity for latex spheres with 0.481, 2.02 and 3.20 um diameters,
respectively. Each figure consists of a measurement with range-gating
(a), theoretical calculations (b), and measurement without range-gating -
(c). Each data point is the average of 3~ 7 shot of the laser. The
standard deviation is within 10% of the average.

First, we compare the measurements with range-gating for different
sizes of scatterers, i.e., Figs. 6-12(a), 6-13(a) and 6-14(a). In the
single scattering and the FOMS regions, the curves appear different

for different sizes of scatterers, while in the multiple scattering
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and the diffusion regions, they are much similar. This is attributed
to the following. In the latter regions, the multiple scattering
averages out the characteristics of microscopic scattering from each
particle, and the macroscopic scattering from a co]]ectibn of par-
ticles becomes similar. While in the former regions, the difference
in the microscopic scattering appears also in the macroscopic scat-
tering.

Next, a comparison is made between the cases with and without
range-gating, i.e., (a)'s and (c¢)'s in Figs. 6-12, 6-13 and 6-14.
The non-range-gated case corresponds to the quasi-CW case discussed
before (IV.4.3). The incident wave is a pulse but the range-gating
shutter is kept open by the quarter-wave plate. Thus, the measured
intensity is the time-integration of the received pulse intensity.

The difference in the magnitude of the curves for different
receiving angles (1.83°, 11.0°, 20.2° and 29.3°) is much larger in
the non-range-gated case than the range-gated case. Note that in
Figs. 6-13(c) and 6-14(c), the curves for o = 1.83° were shifted
down by the amount shown in the captions. The difference is more
evident in the Tower density (p < 1072 wt.) than in the higher
one. This difference is attributed to the change in the scattering
volume as the receiving angle o changes. ( ~1/sine). With
range-gating, a constant scattering volume is sampled regardless of
the receiving angle, thus eliminating the factor 1/sine . Detailed
discussion on this effect of range-gating is given in Section IV.4.5.

When the density of scatterers is high, the scattering volume is
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located along the boundary and the change in the scattering volume

(1/cose) is.negligible if the receiving angle 6 is small. Thus,
Tittle difference can be seen between the cases with and without
range-gating.

Lastly, the measurements with range-gating and theoretical cal-
culations are compared, i.e., (a)'s and (b)'s in Figs. 6-12, 6-13
and 6-14. The theoretical curves in the low density region
(p < 10~%% wt.) were calculated by Eq. (6-4) and those in the high
density region (p > 107%% wt.) by Eq. (6-9). The equations are based
on the FOMS approximation and the diffusion solution for a point
source, respectively. The point source solution was chosen on consi-
deration of the beam width (1mm radius) and the radial distance of the
observation points (0.46, 2.7, 5.0 and 7.3 mm for 1.83°, 11.0°,
20.2°, and 29.3°). Since, in the low density region, there is little
difference among the curves for different angles (almost within the
thickness of the line), only the one for © = 11° was shown. The
vertical position of the calculated curve in the low density region
was adjusted so that its maximum coincide with the center of the
maxima of measurements for o = 11.0° and 20,2°. The vertical posi-
tions of the calculated curves in the high density region were
adjusted so that the center of maxima for © = 11.0° and 20.2°
coincides with that of the measurement. Therefore, the relative
magnitude between the curves of low density and high density region
is not exact. However, in the high density region, the relative mag-

nitude among the curves of different observation angles is. exact.



169

The theoretical calculations and the measurements agree well in
the low density region. More discussion is given in Section IV.4.4.

In the high density region, the agreement between theory and measure-
ment is poor in the location of maxima and the attenuation of scat-
tered intensity in higher density.

The locations of maxima in the low density region and the high
density region are given in Tables 6-1 and 6-2. The theoretical values
were obtained by Egs. (6-5) and (6-11) based on the FOMS approximation
and the diffusion solution for a point source, respectively. In
Table 6-1, the agreement between the theory and the measurement is
very good. In Table 6-2, the calculated values are consistent]y
larger than those measured, however, the difference is within an
order of magnitude. Note the agreement in large angles. This dis-
crepancy in the small angles can be attributed to the impropriety of
the point source assumption.

Fig. 6-15 shows the diffusion solutions for a point source and
for a plane wave incidence along with the measurements observed at an
angle o = 11°. Al1 three cdrves were normalized by their peak values.
As expected, the peak of the measurement lies between the two solutions
which are two asymptotic cases of the beam wave solution. See
Sections V.2.4 and V.2.6 for the detailed discussions. As a whole,
the measurément follows the plane wave solution better than the point
source solution. This corresponds to the similarity of the impulse
responses between the beam wave case and the plane wave case discussed

in Section V.4.4. HNote their agreement in the slope of the curve at



170

~10% wt. density.

Although the plane wave solution describes well the density-
dependence at each receiving angle independently, it cannot show the
effect of the radial distance of the observation point which is a
function of the receiving angle in our geometry. Therefore, in
Figs. 6-12, 6-13 and 6-14, the point source solutions are compared
against measurement to see the general behavior of the scattered
intensity for different receiving angles. The curves calculated for
the different angles by the plane wave solution, lie very close
each other, while by the point source solution, they 1lie more
separated than the measurements. This suggests again that our

experiment falls in between these two extreme cases.
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Fig.6-8 Concept of four phases of scattering :
single scattering (S.S.), first order multiple
scattering (FOMS), multiple scattering (M.S.),
diffusion (DIFF.)
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(d)

Fig.6-9 Dark and bright bands on dense solution of latex spheres :
collimated beam of He-Ne laser on 2.02 um¢ spheres,
(a) frontal view of 10 % solution, attenuation of incident
beam ND = 2.3, f 16, 1/60 sec. (b) side view of 10 % sol.

ND = 0, f 16, 1/15 sec. (c) frontal view of 1 % solution,
ND = 2.3, f 16, 1/60 sec. (d) side view of 1 % sol.
ND = 1.0, f 16, 1/8 sec.
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(b)

(d)

Visual observation of different phases of scattering :
collimated He-Ne laser impinged on aqueous solutions
of 2.02 umd latex spheres, (a) particle concentration
o =0.001 % wt., f 16, 1/8 sec, (b) o = 0.01 % wt.

f 16, 1/60 sec, (c) o = 0.03 % wt., f 16, 1/8 sec,
(d) o = 0.1 % wt., £ 16, 1/15 sec. See Fig.6-9 for
the cases of 1 % and 10 % solutions.
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dia."._l std. dev. g .calculated measured
—_ t
mean ok 0 0

max max
m) | (2)  (md) (emd) (cm™3)
0.481 0.374 0.186 1.89E8 1.64E8
2.02 0.668 7.96 4.41E6 6.78E6
3.20 5.94 20.1 1.74E6 2.80E6

Table 6-1

Maxima of Scattered Intensity for Tenuous Media

t. + At h
Pmax ~ Zc]cAt ]"(to—At)
t 0
where
cAt =3 (mm), ct, = 28.6 (mm)
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Calculated Pmax

dia. average radial distance r = 1.430 (cm)

(um) 0.137 0.320 0.503 0.640

0.481 1.09E12 1.99E11 8.05E10 - 4.97E10
2.02 3.36E10 6.16E9 2.49E9 1.54E9

3/20 1.18E10 2.15E9 8.92Et8 5.39E8
'pmax/= _E_ZEE_:,_ where tc = 2.86 (cm)
roo_(1-u)
S
Measured pmax
dia. radial distance of observation (cm)
(num) .046-.23 .23-.41 .41-.59 .55-.73

0.481 1.64E11 4.92E10 8.20E10 3.28E10
2.02 6.78E9 2.26E9 2.26E9 1.13E9

3.20 2.81E9 5.61E8  5.61E8 2.81E8

Table 6-2

Maxima of Scattered Intensity for Dense Media
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Chapter VII
MEASUREMENT OF LIGHT VELOCITY IN DIFFUSE MEDIA

VII.1 INTRODUCTION

Measurement of 1light velocity is an old and new subject.
Starting from Galileo's attempt, it has been a significant area in
physical science (Froome, 1969). The accuracy of measurement has
been steadily improved with the progress of science and technology
(Halliday, 1960, p. 1001). The accuracy can be used as an indicator
to show the accelerated growth of today's science. Almost a century
has passed after the theory of relativity was verified and still
active studies are being conducted on the velocity of Tight.

However, it is rather surprising that (as far as we know) no
report has been found on the slowing rate of light velocity in dif-
fuse media. Just recently, Ishimaru theoretically predicted that
Tight is slowed down to 1A/3 of the case without scatterers. In
order to measure such a large velocity as light, we must use a long
base line or measure a small time interval. The measurement using
a reflector on the lunar surface is an example of the former. The
picosecond resolution of the range—gating'technique enables the
latter. |

In Chapter VI, we discussed the different phases of scattering
along with the analysis on the correlation between theory and

measurement. Based on the analysis, in this chapter, scattering
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models are constructed for our observation geometry with tenuous

and dense media. According to the models, the slowing rate of the
light velocity in diffuse media is obtained by measuring the difference
in arrival-time of pulses scattered from tenuous and dense media. The

slowing rate measured is shown to be very close to the predicted

value, v 3 .
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VII.2 THEORY

VII.2.1 Received Pulse Shape for Dense and Tenuous Media

The intensity profile of the scattered pulse through the range-

gating shutter is given by the following convolution:

free(t) = [ 14(%) S(¢ - 1) a (7-1)

where Id(t) is the diffuse intensity and S(t) 1is the transmission
of the range-gating shutter. As was seen in Section VI.2.2, S(t) is
approximated by the rectangular function with the width At ( ~10
psec).
Thus we have
t+at

(t) =/ I4(t") dt! ' (7-2)

I
rec t-At

If the time-scale of the Id(t) is much larger than At, the received
intensity profile Irec(t) approximates the scattered pulse shape
1,(t).

Id(t) for dense medium was obtained in Chapter V, which was char-
acterized by the sharp rise and slow decay. Here, Id(t) for tenuous
medium is obtained from the gometry of the system. See Fig. 7-1.
Beams with diameter a and b represent those of the incident pulse
and the receiving cone of the detector, respectively. The range-
gated scattered intensity is proportional to the overlapping volume
between the scattering volume AB'D'C and the sampling volume (shown

by a dark rectangle box in Fig. 7-1). As the sampling volume is
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Fig.7-1 Geometry of range-gated scattering volume in tenuous medium :
incident laser beam with beamwidth a, and receiving pattern
with thickness b, scattering angle or observation angle 6
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moved along the receiving cone, full overlap occurs in the region
BC-B'C' while in AB-A'B' and CD-C'D' the overlap is partial.

The lengths of each region are

AB

CD = b/tano

BC

a/sino - b/tane

where © 1is the scattering angle.
Therefore, Id(t) for tenuous medium can be approximated by the

trapezoid with the following parallel sides. The top side is given by

_ a b ‘ -
BC/c = ( sine = tano )¢ (7-3)

and bottom side ijs

; a b
AD/c = ( sino -tano

)/c (7-4)

where ¢ is the group velocity of light in the medium which suspends

the scatterers.

VII.2.2 Velocity of Light in Diffusive Media

The diffusion equation for the point source located at the

origin was given in Eq. (5-46) which is

(v2 = 02) Uy (Fsopaup) = = g5 agp Pylugup)8(F) (7-5)

It can be transformed into the time domain, yielding



189

3 9% 1 3 - 3 (123
(v - & aez -0z ot - o)) = - g (o
+ 0oy, Ps(t)6(F) (7-6)

where D2 {is the diffusion coefficient and is given by
-1

a)}

path (Morse, 1953, p. 178). P0 is the total energy radiated at the

D2 = cly4/3, 14 = {p(ctr + 0 and 1, 1is the diffusion mean free
origin and is given by

—i(wy-w,)t
12 dw, dw

ff P.(w .0, € = P s(t) (7-7)
it1’m2 1 72 o

Eq. (7-6) shows "the propagation and diffusion characteristics of a
pulse wave. The second term shows the propagation with the velocity
of c¢/¥ 3, which is consistent wifh the diffusion phenomena. The
third term shows the diffusion and the fourth term indicates the
absorption." (Ishimaru, 1978b).

In the following sections, this "slowed down speed of 1ight" is

measured.
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VII.3 EXPERIMENTS

VII.3.1 Experimental Facility

The range-gating system described in Section IV.3.1 was used.
As discussed in Section IV.3.2(f), the scattering cell of the horizon-

tal cylindar replaces the vertical one. See. Fig. 7-2.

VII.3.2 Scattered Pulse Shape Measurement for Tenuous and Dense

Medium

Since the pathlength of the infrared gating pulse determines the
sampling time of the scattered intensity, we can measure the scat-
tered intensities as a function of time by changing the IR pathlength
(dashed 1ine in Fig. 7-2). Thus by scanning the prism PRy, we can
trace the intensity profile of the scattered pulse in time. As can be
seen in Fig. 7-1, in the case of tenuous media, this operation corres-
ponds to sampling different depths along the path of the scattered
light toward the detector. This is where the term "range-gating"
comes from. In other words, the pulse shape obtained represents the
spatial profile of the scattered intensity as well as the temporal
profile. In the case of dense medium, it‘represents only the
.temporal profile.

Note that as shown in Eq. (7-1), the profiles mentioned above
are the convolutions of the scattered intensity and the transmission
of the range-gating shutter.

Since the reference signal is available as described in Section

IV.3.1, we can compare thé magnitudes of the scattered pulses between
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the tenuous and dense media cases. The measurements are conducted at
the scattering angle © = 2.76°~ 21.6° and with the concentration

b
p =10 % ~10% by weight.

VII.3.3 Measurement of Light Velocity in Diffusive Media

Fig. 7-3 illustrates the measurement. When the medium is tenuous,
the incident light-pulse travels along the path L] and the light
scattered at an angle © travels back to the detector along the path
LZ . The light traveled in any other path can be eliminated by the
narrow receiving pattern of the detector and the range-gating tech-

nique. The traveling time of the pulse is given by

t, = (Ly + Ly)/v, (7-8)

where vy = c/n is the group velocity of light in the tenuous medium
and n is the refractive index of the medium.

When the medium is very dense, the 1light received by the detec-
tor is predominantly the one which diffused the shortest distance
L3 along the boundary. In the medium with high PO, @ small
increase in pathlength attenuates the light considerably.

Although the direction of the propagation along the boundary
does not coincide with the acceptance angle of the detector, the almost
isotropic scattering of the diffusion phenomena allows us to measure
the diffused intensity. In the dense medium, the pulse shape changes
as it propagates such as pulse broadening and tailing. The diffusion
time tb is defined as the period taken for the peak of the pulse to

reach the detector. It is given by
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tb = L3/vb (7-9)

where vy is the velocity of interest at which the peak of the pulse
propagates.

As was seen in the previous section (VII.3.2), the intensity
profile of the scattered pulse can be obtained by changing the path-
length of the infrared range-gating pulse. Therefore,‘we can deter-
mine the IR pathlength at which the scattered intensity reaches the
peak value. Two such pathlengths are measured, one for a tenuous
medium (]a) and another for a dense medium (lb). The difference
in these pathlengths corrésponds to the time difference between t

a
and tb , 1.€8.,

(]a - 1b)/vIR =t -t | (7-10)

where VIR is the velocity of the infrared gating pulse which travels
in the air. Therefore, by measuring the difference in the IR path-
lengths, ]d = ]a "‘]b we can obtain the velocity of Tight in the
diffuse medium, i.e.,

L+ L 14

v, =L, (
b 3 Vq

- e ! (7-11)

Noting that v_ = c¢/n and ViR = ©» the factor of the slowing down

a
by diffusion is given by

XE ) L3
c n(L] + L2) - ]d

(7-12)
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As was discussed in Section VII.2.1, the intensity profile
observed is nof the scattered pulse itself. It is the convolution of
the scattered pulse and the gating-pulse. Their pulse width can be
comparable sometimes. However, it should be noted that while the
convolution broadens the pulse shape, it does not change the relative
position of the two pulse-peaks between the cases of tenuous and

dense media.
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VII.4 RESULTS AND DISCUSSION

VII.4.1 Shapes of Scattered Pulses

Figs. 7-4(a) ~ (j) show the intensity profile of the received
signals measured as a function of time. Each figure consists of a set
of pulses with different scatterer densities which range from 107"
to 10% by weight. A Tog-scale was used for the ordinate to present
the results of tenuous and dense media in the same graph. Each data
point is the average of 3-7 shots of the laser. The standard devia-
tion in intensity is within 10% of the average value, while the
uncertainty in the temporal location is x0.017 psec. The time origin
(t = 0) was defined as the instance at which the peak of the incident
pulse passes the boundary of the scattering‘medium. It was obtained
by subtracting the time duration t = (L] + LZ)/V from the center
time of the trapezoidal pulse shape measured in the case of tenuous
media, See Fig. 7-3 and Section VII.2.1 for the definitions of para-
meters and more discussions. The center times of the trapezoids were
very stable and no fluctuation was observed in the measurement. At
the top of each figure are shown the two calculated arriving-times of
the pulse peak. The calculations are based on the assumptions of the
regular group velocity of light in the medium and the slowed-down
velocity due to the dfffusion discussed in Section VII.2.2. Thus,
the left and right marks correspond to t = L3/v and t = /§'L3/v s
respectively. At the bottom of each figure, are shown the two time-
durations which correspond to the para]]eT sides of the trapezoid

calculated by Egs. (7-5) and (7-6).
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As was discussed in Section VII.2.1, the difference in the
received pulse shape is evident between the tenuous and dense media.
They are characterized by the trapezoides in the former case, and the
rapid rise and the slow asymptotic decay in the latter case.

An interesting transition in their shapes can be seen as the
scattering angle (o in Fig. 7-3) changes or equivalently the radial
distance (L3) of the observation point changes. First, the transition
in the bottom two curves is studied, which are the measurements with
the tenuous media. The measured widths of the parallel sides of the
trapezoidal curves are well correlated to the theoretical calculations.
The slightly wider sides of the measurement are due to the finite width
of the sampling volume or the finite shutter open duration. Note that
the decrease in the lateral sides of the trapezoids is steeper if they
were shown in a linear scale.

Next, the transition in the pulse shapes for dense media is
studied. The pulses are shown in the top three curves for .0 = 2.76°~
8.25° and in the top two curves for 0 = 16.4° - 21.6°. There is no
significant reason for not measuring the third curves for the latter
angle range. They were not particularly necessary for the Tight
velocity measurement which was the major purpose at the beginning.

The characteristic shapes predicted theqretica]ly in Chapter V
are verified. Fig. 7-5 shows the comparison between theory and
measurement at different observation angles (o = 4.13°, 8.25°) with
different densities (o = 1%, 10% wt.). The theoretical curves are

obtained by applying the formula of range-gating, Eqs. (8-5)(8-6) to
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the diffusion solution for the beam wave case, Eq. (5-54). The
agreement is good except for the low intensity parts where the mea-
surements are less accurate due to the low signal to noise ratio,
dark current of the detector, etc.

In addition to the agreement in the general shape, the theory
well describes the inversion of the pulse peak positions for the 10%
wt. and 1% wt. cases when the receiving angle changes from ¢ =4.13°
to 0 = 8.25°. The inversion-can be better understood in Fig. 6-13(a).
At the angles close to the backward normal, the scattered intensity
increases as the scatterers density increases, while at other angles
the intensity decreases in the higher density.

Concerning the curves for dense media in Figs. 7-4(a) ~ (j),
some points listed below are not fully understood. (1) A pulse-
broadening is observed only for 10% wt. and 1% wt. densities at the
smaller angles © = 4,13° ~ 8.25°. No noticeable broadening appears
in other conditions. (2) The relative positions of two pulse peaks
for 10% wt. and 1% wt. densities are again reversed at 0 = 16.4° ~
21.6°. (3) In the larger angles (0 = 16.4° ~ 21.6°), the arriving-
time of the pulse peak for 1% wt. density is consistently later than
that for 10% wt. density.

These results imply that in the large angle region tﬁe diffusion
mechanism may be different from the ones we have analyzed so far. The
computer program based on the diffusion solution for the beam wave
1ncidence, fails to ca]cuiate a reasonable impulse response for the

conditions equivalent to the measurements in this range. Difficulties
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in explaining the behavior of the scattered intensity in the large
angle region were also encountered in the analysis of the backward

scattering patterns in Section VI.4.1

VII.4.2 Velocity of Light in Diffuse Medium

The table 7-1 shows the result of the 1ight velocity measurement
described in Section VII.2.2. In the table, o, L3, L] + Lo, 1d and
a are the scattering angle, the radial distance of the observation
point, the propagation path of the 1ight pulse when the medium is
tenuous, the difference in the pathlength of the IR shutter-activating
pulse and the slowing rate of the light velocity which is of ultimate
interest. See Fig. 7-3 for the illustration.

Since the propagation distance L3 for the diffuse light is
short in the first five angles, the results are not as accurate as
the latter five angles. However, four data out of five show a greater
slowing rate than ¥3 . According to the small samp]ing theory using
the Student's t distribution, the 99% confidence interval for all
ten data and the last five data are 1.85 + 0.35 and 1.75 + 0.081,
respectively. Although this is not the direct measurement of the 1ight
velocity such as the transmitting velocity, and the number of data is
not many, the results evidently show the slowing phenomena and the
slowing rate obtained is very close to the theoretically predicted
value, Y3 . See Fig.7-6.

Regardless of diffusion, 1light propagates slower in the material
of the particles (n = 1.59 for A = 0.53 um) than the suspending medium

(water, n = 1.33). However, the slowing rate due to the higher
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refractive index of the particle material would be 1.19, even if all
the spaces are filled with the material, or the packing factor H = 1.
The particle densities used in these experiments were much less,

H < 0.1. Therefore, at least with statistical significance, we can
conclude that the ve]ocity of Tight in a diffuse medium is decreased
by the factor 1/V/3 from its group velocity in the suspending medium
of the scatterers.

As can be seen in Figs. 7-4(a) ~ (j), the rising periods of the
pulses are well correlated to those calculated which are shown at the
top of each figure as the widths of the two arriving-times. The more
rapid rise for the shorter L3 cah be seen. Note the sharp rise in

the log-scale of the ordinate.
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Slowing
0 L3 L] + L2 ]d rate
(deg.) (mm) (mm) (mm) a
2.76 .769  28.5 36.5 1.37
4.13 1.16 28.5 35.0 1.88
5.51 1.54 28.6 34.5 1.73
6.88 1.94 28.7 32.5 2.20
8.25 2.33 28.9 30.5 | 2.56
16.4 4.85 30.2 29.0 1.73
17.7 5.30 30.6 28.0 | 1.80
19.0 5.77 30.9 27.5 | 1.77
20.3 6.25 31.3 27.0 | 1.76
21.6 6.74 31.8 27.0 | 1.71

- Table 7-1

Slowing Rate of Light Velocity in Diffuse Medium

99% confidence 1imits for « is

1.75

I+

0.081 for lower five data
1.85

i+

0.35 for all tenvdata
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Chapter VIII
REMOTE SENSING OF DENSE MEDIA BY PICOSECOND PULSE BACKSCATTERING
VIII.1 INTRODUCTION

Optical pulse propagation in dense random media represents a
class of scattering problem that is important in mamy practical appli-
cations, such as remote sensing in meteorology, astwomamy and biology.
Although CW studies in dense media have been reported (Ishimaru, 1978a,
p. 175), (Reynolds, 1976), very few attempts have heem made to treat
the problem of backscattering of a short optical pullse from a dense
distribution of scatterers. Recently, the general fmmmulation for
backscattering of a pulse from a dense medium was ofstadined by applying
the diffusion approximation to the time-dependent eguation of transfer
(Ishimaru, 1978b).

With the advent of lasers capable of generating wltrashort pulses
with durations of the order of picoseconds, and evem firactions of a
picosecond (Bradley, 1977, p..36), a new field of experimental studies
in time-dependent Tight scattering has become possible. MApplying
picosecond optical range-gating techniques (Duquay, T971){Bruckner,
1976, 1978a) to 1ight scattering measurements, it is mow possible to
record the intensity profile of a backscattered pulse om a picosecond
time scale.

For several years, there has been significant interest in the

possible deterious effects of micro-aggregates in tramsfused blood
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when administered in massive amounts as large blood transfusions. It
has been proposed that these aggregates consist of platelets, white
blood cells and fibrin (Solis, 1974).

Currently, there is no satisfactory technique for identifying,
sizing and quantifying such micro-aggregates. The evidence for their
clinical significance is largely based on the demonstration of such
material in the pulmonary capillaries of experimental animals which
have undergone massive transfusions of whole blood. The primary tech-
nique which has been used for quantification of such material in blood
is the screen filtration pressure measurement (Arrington, 1974). This
is an indirect technique which measures the pressure required to push
blood through a filter of standard size at a fixed rate. It is cur-
rently the best method available but is not useful in quantitating
size and amount of particulate material and is obviously subject to a
number of variables. Therefore, the technique which provides a better
evaluation of micro-aggregate size and number, is desirable. Since
our ultimate goal is the measurement in vivo, the technique should be
applicable to a dense medium such as whole human blood at normal
hematocrits.

In previous chapters, a theory was developed for the backscattering
from random media (Chapter V), the range of validity for the diffusion
approximation was investigated (Chapter VI), and pulses scattered in
the off-axis backward directions (0 # 180°) were measured (Chapter VII).
This chapter presents the development of a remote-sensing technique

for dense media by picosecond pulses scattered in the backward normal



211

direction (o = 180°).

The range-gating technique is formulated and the recefved pulse
shape is calculated using the diffusion solution obtained fn Chapter
V. A good agreement between theory and measurement is shown both in
the shape and magnitude of the scattered pulse. The analysis of the
backscattered pulse shape shows the sensitivity of this technique to
the scatterers' absorption characteristics and diffusioh optical
distance (rd = potrz) of the scattering medium. Finally, the feasi-
bility of this technique for the remote sensing of platelet aggregation

and dense cataracts is demonstrated.
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VIII.?2 THEORY

VIII.2.1 Principle of Measurement

The principle of the backscattered picosecond pulse measurement
is illustrated in Figs. 8-1, and 8-2. The picosecond shutter con-
sists of a rectangular cell filled with carbon disulfide (CSZ)
placed between two crossed polarizers, P] and P2 whose axes are
45° to the horizontal. Since the polarizers are crossed, the shutter
is usually closed. The signal light in the visible wavelength
(A = 0.53 um) is a plane wave propagating in the z-direction with the
signal information (backscattered pulse shape) contained along the z-
direction. It impinges on the shutter normally and the shutter-acti-
vating infrared (IR) pulse passes through the CS2 in the xQdirection.
The intense electric field of the IR pulse induces a narrow zone of
birefringence in the CSZ which makes a narrow transparent window
through the crossed polarizers at the position of the IR pulse.

Since the IR pulse travels at the speed of light, the transparent
window moves across the shutter at the same speed. Thus, we observe
the streak record of the incoming signal along the path of the IR

pulse across the shutter face.

VIII.2.2 Formulation of Range-Gating Technique

Fig. 8-2 shows the geometry of the problem. The temporal beha-
vior of the backscattered pulse is resolved by means of a transversely
gated laser-driven Kerr effect streak shutter (Bruckner, 1978a, 1976).

The Kerr medium (CS2 in the present case) is rendered birefringent on
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a picosecond time scale by a powerful ultrashort infrared pulse
travelling in the x-direction, obtained from a Nd:glass laser. The
beam-expanded backscattered pulse is incident on the shutter along
the z-axis, as shown. .The transmitted signal is a cross-correlation

of the gating pulse and signal pulse. Details of the experimental

setup are given in Section VIII.3.
The intensity function of the signal pulse propagating in the

z-direction and normally incident upon the Kerr shutter is given by

S(x,y,z5t) = £ (g (G T(=)] o)y (8-1)
g

where f] and gy are intensity profiles of the signal pulse in the
x- and y-directions, vg is the group velocity of 1ight in the shutter
and [G*I] is the backscattered signal given as a convolution of the
jmpulse response G(t) of the scatterers and the incident pulse shape
I(t) evaluated at t - z/vg .

An infrared (IR) pulse travelling at the speed of light induces a
narrow zone of birefringence at its position in the shutter which is
normally closed, thus rendering it momentarily opeh at its location.
Thus, the transmission of the shutter driven by the IR pulse is given

by
T(x.y,25t) = I(t - x/vg)g,(y)hy(2) (8-2)

where I(t - x/vg), gz(y) and hz(z) are transmission profiles of
the transparent zone in x-, y- and z-directions respectively. Note

that the profile in x-direction is the intensity profile of the
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incident pulse I(t) appearing in Eq. (8-1). This is because the
transmission of the shutter is assumed proportional to the square of
the IR gating pulse and the incident pulse was derived from the IR
pulse by second harmonic generation, which also scales approximately
as the square of the IR pulse inténsity. Thus, T(t) « I%R(t) < I(t).
Combining Egs. (8-1) and (8-2), the gated signal intensity recorded

on the x-y plane can be shown to be:

o d
D(x,y) = [ dt fa S(x,y,z3t) T (x,y,z3t)

d
f1(x)gy()gy(y) [ dz hy(2) [6(x)*Rp ()] _
~d

= X-Z
Yg
= f1(x)g;(¥)g,(y) I dz h,(z) [6(x)*R; ()] _ x-z
\'}
g
= £1(x)9,(¥)gp(y) Thy(2)*G(x)*Rp(x) I . x
Yg (8-3)

where RI(t) is the autocorrelation function of I(t), and the inte-
grand is a fast decaying function in z . In our measurement system,
the intensity variation in the x-direction is sampled and f](x) is
almost constant across the sampling width. Therefore, the intensity

profile of the range-gated backscattered pulse is given by

D(x) = Cylhy(r)*G(r)*R ()] . x
v
g
= €, 7 Thy(w)14(0,-230) S(w)] (8-4)

where C] and C2 are constants and Hz(m), Id(w) and S{w) are

the Fourier transforms of h2(t), G(t) and Rl(t)’ respectively.



217

Assuming that I(t) and'hz(t) are approximated by Gaussian functions,

D(x) can be expressed as a function of measurable parameters;

o (ATZ L w2y o e X
T G gy e? 7o
D(x) = C3 5= [ I4w)e 9 e % d (8-5)
g -3
where
z/v
o -G’ -2
I(t) = Py h2 _) = e g - e L]

C3 is a constant, At is the incident pulse duration, and w 1is the
beam width of the IR gating pulse. Id(w) is given in Eq. (8-10)
derived in the next section.

D(x) represents the time-resolved backscattered pulse as seen
through the Kerr shutter, where the spatial variable x along the
axis of the shutter corresponds to time. The backscattered time

resolved pulse at z =0 will now be defined as IS s where

10 = 000 [y (8-6)

VII.2.3 Backscattering from Dense Medium

Since in measurement the beam width of the incident wave is
collimated widely ( ~ 20 mm dia. ), it is approXimated as a plane
wave. The diffusion solution for the plane Wave incidence was obtained
in Sections V.2.4 and V.2.5 as asymptotic cases of the beam wave
solution. Here, the same result is derived from the diffusion equa-
tion for a plane wave incidence, which is considerably simpler than

the beam wave incidence.
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The diffusion equation and boundary conditions describing the
propagation of the average intensity Ud(z) for a plane wave pulse
incident on a semi-infinite slab consisting of a random dense distri-

bution of anisotropic scatterers is given by (Ishimaru, 1978b)

32 2 _
('é‘z“z'”q )Ud—QO

Q

d _
o 0, at z

U 37

h u, +

[t}
o

(8-7)

d - d

Ud =0 E at z =

where Q0 and 01 represent the isotropic and anisotropic source

contributions within the medium.

3 L, - -az
T ﬁ?'Fopcs(atr * uaje

L
I

(8-8)
u Y

Q, = F po_. 21— ™

1 077S oy

and F0 is the source photon flux at r =2z =0, u is the average
value of the cosine of the scattering angle ( - 1 < n < 1) where - 1
is purely backscattering, + 1 is purely forward scattering, and O
represents isotropic scattering. The microscopic scattering and
absorption cross-sections are Og and Cgs P is the density of

scatterers, and

2 =
q 3001
_ 2
h—30L ?

tr
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plo. +0.) - i=—

Q
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tr = PLog(1 - w) +0,.7 - s

W

o-i—d
P03 c

Q
]

Note that equation (8-7) is derived from the two frequency equation

of transfer, where

wd=w]"w2
and the phase velocity within the medium at each frequency is approxi-
mately equal to the velocity of 1light ¢ . Detailed discussion is
given elsewhere (Ishimaru, 1978b).

Solving the diffusion equation, the solution for the average

intensity in a dense medium is given by

caz 3oc_tr+ (2+31_1)0L+6ﬁaa

3atr

F po
-3 0°% -
Ua(2) = 37 sz ((ogy * wale

-qz _
¥ 29 a8 } (8-9)

This agrees with Eq. (5-36) exactly, which was obtained through a
different approach in Section V.2.5.

Using Eq. (8-9), the specific intensity improved to include the
effect of first order multiple scattering at the boundary of the scat-

tering medium, was given in Eq. (5-68):
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Iy (z = o, -i;w],wz)

po 2 g - a 20 + 3pa *+ 30, + 6ua
= Fo [+ (oog)” ——1E fr_~a
ba S qc - a (2q + 30ttr)(q + a)

4 "o

ugq + dtr
- 57— }] (8-10)
20 LT

Definitions of parameters and detailed discussion on the derivation
are given in Section V.2.8. Note that the first and the second term
of the square bracket [-] corresponds to the first order multiple
scattering and diffusion, respectively.

Since this is an intensity in the frequency domain, the Fourier
transform of Eq. (8-10) gives the impulse response in the time-
domain, 1i.e., |

o]

6(t) = [ 14(F.80y)e” %t duy (8-11)

-0

These results coupled with the picosecond rangé—gating technique given
in the previous section will be the basis of our analytical evaluation
of the experimentally obtained time-resolved backscattered pulse on

the interface plane of a scattering medium at z = 0.
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VIII.3 EXPERIMENTS

VIII.3.1 Experimental Facility

The apparatus used in Chapters VI and VII is modified. Its
schematic diagram is shown in Fig. 8-3. A mode-locked Nd:glass
laser, LASER generates a train of ~100 IR pulses (» = 1.06 um),
each of ~10 psec duration (FWHM) and carrying a peak power density
of ~200 MW/cm? . Frequency doubling occurs in a KDP crystal adjusted
to yield ~10% conversion efficiency. The green pulses are separated
from the IR pulses by a dichroic beam splitter DBS. The vertically
po]arized green pulses are directed by prism PR] toward a polarizing
beam splitter cube PBS, which reflects vertically polarized light
but transmits horizontally polarized light. The quarter-wave retar-
der plate, /4, serves to circularly polarize the green pulses
impinging on the scatterers contained in the scattering cell SC.
The backscattered pulses are randomly polarized, which allows them to
pass through the polarizing beamsplitter. The presence of the retar-
der plate assures that the scattered light from the first few mean
free paths in the medium will also be transmitted by PBS. After
passing through the field stop aperture FS, the beam of signal puTses
is expanded by a pair of cylindrical lenses L] and L2’ to a trans-
verse width of ~5 cm before entering the picosecond shutter.

In the meantime, the IR pulses, polarized vertically by the half-
wave retarder plate 1/2, traverse a variable optical delay line, con-
sisting of three right angle prisms PRZ—PR4, to equalize the IR and

green pathlengths and thus assure proper gating synchronization. The



R P
SC PBS FS

k] EEL> 0 cCTV b~LLL

LI La |
: :j L Ry PR,
IRF == éﬁ}
< ____e_______l _______
. Y
S
M I DBS
i i |
NF GF L op

|
\*I\—-— LASER

Fig.8-3' Schematic of on-axis backscattered pulse shape measurement

2eé



223

picosecond shutter consists of a rectangular quartz cell containing
carbon disulfide (CSZ) placed between two crossed polarizers P]
and P2 whose polarization axes are at 45° to the horizontal
(Duguay, 1969). The beam of IR pulses is rendered vertically
polarized by a half-wave retardation plate, A/2, and its diameter

is reduced to ~2 mm by the pair of lenses L3 and L In the C52

4
each IR pulse induces a narrow zone of birefringence which travels
through the Kerr liquid at the speed of light. At the location of
the IR pulse, the shutter transmits 1ight incident at a right angle
to its path. A portion of the beam-expanded signal pulse is thus
transmitted along the IR path at a position which is proportional to
the signal pulse delay. In this way, one can observe a time-resolved
streak record of the incident signal through the shutter. The peak
transmission factor is ~1%, with an on-off contrast ratio of ~1000.
The output from the shutter is detected and processed by a low-light-
level video detector system described in Section IV.3.2(3). Note the
image intensifier was not used in this experiment. Since each pulse

train consists of ~100 pulses, the final record is a multiple exposure

of the same event.

VII.3.2 Sample Scatterers

The scattering media were aqueous suspensions of latex micro-
spheres obtained from Dow Chemical Corp. with diameters of 0.481 um,
2.02 ym, 3.2 ym, 5.7 um and 45.4 ym. They were provided in concen-
trated solutions with the density, 30% by weight for 2.02 um spheres

and 10% wt. for other spheres. Sample suspensions of desired density
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were prepared by diluting the concentrated solutions with 0.01%
detergent water. The detergent, sodium dodecyl sulfate, was added

to distilled and deionized water as a surfactant to prevent aggrega-
tion of the particles. The suspensions were contained in cy]indrical.
spectrophotometric cells with 22 mm diameter and 50 mm pathlength.

To simulate an impulse response of a measurement system, a dif-
fusely reflecting plate was used in place of the scattering cell. It
was a white, 5 cm x 5 cm barium sulfate plaque obtained from Photo
Research. It was designed for a reflectance standard and has diffuse

reflectance nearly 100%.

VIII.3.3 Data Processinag

The time-resolved intensity profiles of the backscattered pulses,
obtained from the detector system in Fig. 8-3,were recorded with an
oscilloscope. An example of the recorded signals is shown in Fig. 8-4.
The curves were digitized and stored on magnetic tapes for further pro-
cessing. The intensity axis of the recroded pulse (ordinate) was
linear over the intensity range of interest, but the time axis (abscis-
sa) was not linear due to the imaging characteristics of a video detec-
tor. The calibration factors for this nonlinearity were obtained by
measuring the time shift of the recorded pulse as a function of a
known change in the pathlength of the IR gating pulse. Since the
laser output intensity fluctuates from shot to shot, from 10 to 20

data curves were collected for each scattering medium.
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VIII.4 RESULTS AND DISCUSSION

VIII.4.1 Agreement between Theory and Measurement

Fig. 8-4 shows an example of the recorded signals. They are the
superimposed intensity profiles of backscattered pulses from a dif-
fusely reflecting plate and a suspension of 0.481 ym latex spheres.
The pulse shape from the diffusely reflecting plate is smooth and
closely follows the average outline of the more noisy profiles
obtained with a mirror as the target, except for a slight tailing.
Therefore, it was concluded that the pulse shape of the diffusely
reflecting plate closely represents the impulse response of our
measurement system.

After normalization of each curve by the peak intensity of the
impulse response, an average-and a standard deviation were calculated
at each point on the time axis sampled in the digitizing process.

The width of the double curves in the following figures (a) define .
the standard deviation of the data. Fig. 8-5(a) shows the normalized
backscattered pulse shapes from suspensions of 0.481 um latex spheres
having concentrations of 10%, 1% and 0.1% by weight and from the
diffusely reflecting reference plate. Fig. 8-5(b) shows the back-
scattered pulses calculated by Egs. (8-6), (8-5) and (8-10), where
the scattering and absorption parameters were calculated using MIE
solutions modified to include size distributions of scatterers.

Figs. 8-6 ~ 8-11 show a similar comparison between experiment (a) and
theory (b) for latex spheres with diameters of 2.02 um (p = 0.3%, 3%,
30% wt.), 2.02 um (hereafter, p = 0.1%, 1%, 10% wt.), 3.20 um,
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5.7 um, 5.7 um (absorbing) and 45.4 um, respectively. These sizes
investigated correspond to those of biological particles of interest.
Their correspondence i$ as follows: 0.481 um and 3.20 um are the
typical diameters of microwave induced cataracts in an eye of a
rabbit (Bruckner, 1978a). 0.48] pm and 45.4 um are the typical
diameters of a spherical equivalent of a platelet and a platelet
aggregate (Ishimaru, 1976). 5.7 um is the diameter of a spherical
equivalent of a red blood cell (Reynolds, 1975). 2.02 um is a
representative diameter of general biological microparticles.
Measurements are not shown for 0.1% solution of 2.02 um spheres and
0.1% and 1% solutions of 45.4 um spheres, where the signal was below
the noise level.

Discrepancies can be seen between measurement and ca1cu1ation,
particularly in the cases of the lowest density (p = 0.1% wt.) where
the validity of the diffusion approximation is questionable. They are
the time-shiftS‘of the pulses and the separation of the effect of
first order multiple scattering (FOMS) from that of diffusion. Both
appear in theoretical calculations but not in measurements. Otherwise,
the agreement between theory and experiment in the pulse shapes is
good. Note the difference in the pulse shape for the least concen-
tration between the cases of 0.481 um, 2.02 um spheres and 3.20 um,
5.7 um spheres. As was theoretically predicted in Section V.4.6,
FOMS becomes comparable to diffusion for 3.20 um or larger spheres.

The general pulse shape is characterized by a rapid rise and

slow asymptotic decay. The response to a decrease in scatterer
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concentration is that of pulse broadening and an intensity increase in
the asymptotic decay. Except for the case of 45.4 um spheres, pulse
broadening for a 10% solution was a few picoseconds, while the
broadening for a 1% solution is approximately 5 to 10 picoseconds.

In general, pulse broadening increases as the concentration is
decreased and for a 0.1% solution the pulse broadening extends for
several tens of picoseconds.

Despite the fluctuation in the intensity of the incident 1ight,
the agreement in the relative magnitude of the pulse is also good.
Fig. 8-12 shows the result of the regression analysis for the peak
values of the measured and calculated pulses. The correlation coeffi-
cient obtained (pxy = 0.894) is considered to be high for this
experiment which was originally designed for the qualitative
analysis. |

During approximately the first 20 psec the backscattered pulse
shapes seem to be dominated by the impulse response of the measurement
system rather than that of the scatteking medium of interest. The
impulse response of the measurement system is mainly determined by the
cross-correlation function of the laser pulse shape and the shutter
transmission function. To remove the influence of the laser pulse
shape and shutter response, and thus more fully characterize the
scattering and absorption properties of the medium, a laser and gating
system of much shorter pulse duration and resolution, respectively,
will be required.

The following hypotheses are considered to explain the above
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discrepancies between theory and experiment. The backscattering
from the boundary region of scatterers may be larger than that calcu-
lated by the FOMS approximation. If so, the impulse response of mea-
surement system is predominant at the time origin of the backscat-
tered pulse and the effect of the diffusion appears only in the
asymptotic tale of the pulse. This clarifies the difference in the
measured pulse shapes for the least concentration between the cases
of 0.481 um, 2.02 um spheres and 3.2 um, 5.7 um spheres. Since in
the latter cases, the diffusion tail appears late and small, the
observed pulse shape without a tail is due to the scattering at the
boundary of the scattering medium. While, in the former cases, the
diffusion tail is large and c¢lose enougﬁ to merge in the pulse shape
due to the scattering at the boundary.

Another plausible hypothesis to explain the discrepancies is the
following. There may be a different mechanism of scattering which
cannot be described by the asymptotic expansion of the FOMS and
diffusion approximations. This scattering corresponds to the "multi-
ple scattering”" region named in Section VI.4.1, which was placed
between the FOMS and diffusion regions. See Section VI.4 for detailed
discussions. A new theory may be required to fill this gap or

"missing link."

VIII.4.2 Sensitivity for Scatterers Characteristics

Figs. 8-6 ~ 8-10 show that the shape of the backscattered pulse
is sensitive to the change of particle concentration but not to the

change of particle size itself in the range of 0.481 ~ 5.7 um. It
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should be remembered that with a tenuous medium scattering patterns
are very sensitive to the change of the scatterers size. The scat-
tering patterns for 0.481 um, 2.02 ym and 3.20 um spheres were shown
to be completely different in Section IV.4.2. See Figs. 4-5, 4-6
and 4-7. This insensitivity to a particle size is attributed to

the multiple scattering effect which averages out the distinct
scattering patterns of individual scatterers and make the macro-
scopic scattering isotropic.

However, as was theoretically predicted in Section V.4.3, an
effect of the scatterers' absorption characteristics on the back-
scattered pulse shape can be expected. To examine this effect,
experiments were conducted with absorbing and non-absorbing scat-
terers. They are respectively blue dyed latex spheres and regular
bwhite latex spheres, both with 5.7 um diameters, and the incident
1ight is green (A = 0.53 m). Fig. 8-13 shows the comparison of their
measurements. The effect of absorption can clearly be observed in the
reduced pulse height maxima and the almost completely diminished
diffusion tail. The theoretical discussions made in Section V.4.3
are thus verified. The agreement with the theory can be confirmed
in the comparison between the measurement and calculation shown in
Figs. 8-13 and 8-14.

The results presented in this section suggest the applicability
of this technique to remoté sensing problems. Particularly it will
be useful to investigate the density or the absorption characteristics

of dense media.
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VIIT.4.3 Dependence on Diffusion Optical Distance

Fig. 8-15 shows the comparison of the measurements with 0.481 um
and 45.4 um dia latex spheres. The backscattered pulse shapes are
similar between 0.1% wt. solution of 0.481 um spheres and 10% wt.
solution of 45.4 um spheres. Between these two cases, all the para-
meters such as particle sizes, cross sections, particle densities,
etc. are different except for the diffusion optical distance per unit
distance, rd/z = P04y - Note the closeness in POty (4.61 cm_1
and 5.39 cm™ ) and the difference in the regular optical distance,
t/z = po, (30.5 cm ‘and 74.1 cm? ). This verifies experimentally
the results of the numerical analysis presented in Section V.4.1 and
V.4.3 which showed the dependence on T4 Also, it justifies the
choice of T4 as the normalization constant in the analysis of diffuse
scattering.

The results shown in this section suggest the following appli-
cations. (1) Since the backscattering from dense media is dependent
on T4 = poy. Z, the physical change which causes the change in any
one of the parameters, P s Tgp and z can be detected by observing
the backscattered pulse shape. This is applied to detect the change
in microwave induced cataracts in vivo. The changes of interest are
the density of cataracts, the size of constituent protein particles
and the thickness of the cataractous Tesion.

If two of the three parameters, p , T and z are known,
another parameter can be estimated from the backscattered pulse shape.

For example, in remote-sensing of fog by 1idar, the density of the
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fog p can be estimated by knowing the average cross section <Typ>

of the fog particles and the penetration depth z of the light.

VIII.4.4 Detection of Platelet Aggregates

Finally, a theoretical basis is given for our ultimate goal,
i.e., the detection of platelet aggregates in a transfusion blood.

If scatterers are aggregated in a closed system, the density of
the scatterers does not change in terms of the fractional weight or
the fractional volume. However, the diffusion optical distance changes
consﬁderab]y due to the change in the optical cross sections of the
scatterers. This is because the volume of the scatterer is propor-
tional to the cube of the scatterers' size while the cross section is
approximately proportional to the square. Therefore, if the scatterers -
are aggregated, a change in the shape of the backscattered pulse is
expected.

An example is shown in Fig. 8-16(a) and (b) which are the back-
scattered pulse shapes from 0.481 um spheres and 45.4 pum spheres
both with the 10% wt. density. The conditions of (a) and (b) simulate
those before and after the aggregation of platelets, respectively.
This distinct difference in shape suggests a promising applicability
of this technique to the detection of scatterer aggregation in dense
media. If other parameters are constant or known, this technique

can be also used to evaluate the degree of aggregation.
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| Fig.8-5 Backscattered pulse shapes from 0.481 um¢ latex spheres :
normalized by peak value of bottom curve, i.e., Is(t) / [Is(o)]ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Dual curves
represent range of fluctuation of measured pulse shapes.

(b) theoretical calculations; 0.481 um¢ latex spheres {(above three
curves), and impulse response (bottom curve), wave length
A = 0.53 ym, beam width BW = 3 mm, pulse length PL = 10 psec.
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| Fig.8-6 Backscattered pulse shapes from 2.02 umd latex spheres (30%) :
normalized by peak value of bottom curve, i.e., Is(t)~/ [Is(o)]ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Dual curves

~ represent range of fluctuation of measured pulse shapes.

(b) theoretical calculations; 2.02 um¢ latex spheres (above three
curves), and impulse response (bottom curve), wavelength
A = 0.53 um, beam width BW = 3 mm, pulse length PL = 10 psec.
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Fig.8-7 Backscattered pulse shapes from 2.02 um$ latex spheres (10%) :
normalized by peak value of bottom curve, i.e., Is(t) / [Is(o)]ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Signal level of
0.1 % solution was too low to measure. ,

(b) theoretical calculations; 2.02 um$ latex spheres (above three
curves), and impulse response (bottom curve), wavelength
A = 0.53 um, beam width BW = 3 mm, pulse length PL = 10 psec.
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Fig.8-8 Backscattered pulse shapes from 3.20 um¢ latex spheres :
normalized by peak value of bottom curve, i.e., Is(t) / [Is(o)]ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Dual curves
represent range of fluctuation of measured pulse shapes.

(b) theoretical calculations; 3.20 um¢ Tatex spheres (above three
curves), and impulse response (bottom curve), wavelength
A = 0.53 um, beam width BW = 3 mm, pulse length PL = 10 psec.
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Impulse
/\[I ]ref Response
30

9 Backscattered pulse shapes from white 5.7 um¢ Tatex spheres :
ref

(a) measurements; aqueous solutions of spheres (above three curves),

(b)

and diffusely reflecting plate (bottom curve). Dual curves
represent range of fluctuation of measured pulse shapes.
theoretical calculations; 5.7 um¢ latex spheres (above three
curves), and impulse response (bottom curve), non-absorbing
spheres, albedo wo= 1.0, A = 0.53 ym, BW = 3 mm, PL = 10 psec.
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| Fig.8-10 Backscattered pulse shapes from blue 5.7 um¢ latex spheres :

normalized by peak value of bottom curve, i.e., Is(t) / [IS(O)]

ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Dual curves
represent range of fluctuation of measured pulse shapes.

(b) theoretical calculations; 5.7 um¢ latex spheres (above three
curves), and impulse response (bottom curve), absorbing spheres
n; = 0.0001, wo = 0.992, A = 0.53 ym, BW = 3 mm, PL = 10 psec.
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' Fig.8-11 Backscattered pulse shapes from 45.4 um¢ latex spheres :
normalized by peak value of bottom curve, i.e., Is(t) / [Is(o)]ref

(a) measurements; aqueous solutions of spheres (above three curves),
and diffusely reflecting plate (bottom curve). Signal Tevel of
0.1 % and 1 % solutions was too low to measure.

(b) theoretical calculations; 45.4 um¢ latex spheres (above three
curves), and impulse response (bottom curve), wavelength
A = 0.53 um, beam width BW = 3 mm, pulse length PL = 10 psec.
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Fig.8-13 Effect of absorption of scatterers : measurement
5.7 um¢ latex spheres, (a) non-absorbing (white),
(b) absorbing (blue)
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Fig.8-14 Effect of absorption of scatterers : theory
5.7 um¢ latex spheres, (a) non-absorbing ( n; = 0.0,
WO = 1.0 ), (b) absorbing ( n; = 0.0001, W, = 0.992 )
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Fig.8-15 Dependence on diffusion optical distance : measurements
of 0.481 um¢ (a), and 45.4 um¢ (b), latex spheres
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Chapter IX
SUMMARY AND CONCLUSIONS

QUTLINE

| This thesis discussed the development of the following three
remote sensing techniques. The preceding chapters were devotéd to
the theoretical analysis of their methods and the experimental veri-

fication of their applicability. They are,

(1) Fourier Transform Inversion Technique: This technique determines
the size distribution of tenuous scatterers from the forward
scattering pattern.

(2) Backward Scattering Pattern Analysis: This technique determines
the average size and variance of tenuous scatterers from the
backward scattering pattern.

(3) Pulse Backscattering from Dense Medium: This technique evaluates
the optical parameters and condition-changes of scatterers in a
dense medium by means of backscattered pulses. |

These techniques are applied to the non-invasive probing of
biological particles, namely bacteria in urine, cataracts in an eye,

and platelets in blood, respectively.
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RESULTS

(1) A modification of the Rayleigh-Debye approximation was proposed
to extend its range of validity. The derivation of the modification
was given in two different methods. The improvement due to the modi-
fication was demonstrated by comparing the scattering patterns for
spheres ca]cu]ated by the modified Rayleigh-Debye approximation,
regular Rayleigh-Debye approximation and the exact Mie solution.

The improvement is evident, particularly in the scattering angles

for the extrema of scattered intensity.

(2) An dinversion technique was developed which determines the size
distribution of tenuous scatterers from the forward scattering pattern.
This technique is applicable for 1, 2, and 3 dimensional scattering
(diffractions). It does not require matrix-inversion or a priori
knowledge of functional forms of the size distribution, and it can
take advantage of other techniques in spectral analysis such as the
Fast Fourier Transform or digital filtering technique.

Susceptibility to noise was checked by adding the random noise
to the scattered intensity pattern simulated by the Rayleigh-Debye
approximation. Typical error for 10% noise was within a few % for
mean and standard deviation in the estimation of Gaussian distribution
using 1024 points FFT.

Size distributions were determined for the latex spheres with
known sizes and bacteria in homogeneous and highly aggregated condi-

tions. The range of validity of this technique was extended by the
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modification discussed above. A resolution comparable to the wave-
length of the probing 1ight was demonstrated. In the case of prolate
spheroidal bacteria, the determined size was found to be that of the
minor axis of the spheroids. With aggregated bacteria, a large peak
and small periodic peaks were recovered-corresponding to the bacteria
bpprcimed il bl wige diq .
in singlets and multiplets, respectively.
(3) A technique was developed which determines an average size and
variance of the scatterers from the backward scattering pattern.
Using the solution of the equation of transfer under the first order
multiple scattering (FOMS) approximation, a time-dependent specific
intensity was obtained as a function of geometrical and jlluminating
conditions. An experimental system was constructed which can measure
backward scattering patterns while eliminating extraneous scattering
by the range-gating technique.

Measurements with and without range-gating showed the noise-
suppression of more than two orders of magnitude. Scattering patterns
were measured with latex spheres of 0.481 pm, 2.02 um and 3.20 um
diameters where the wavelength of probing light is 0.53 um. With
range-gating, they agreed with Mie calculations very well. Without
range-gating, the patterns were severely distorted by the forward
scattering due to the reflection from the backwall of the scattering
cell.

Reduction of the multiple scattering effect by range-gating was
demonstrated. The density range of single scattering and FOMS is

extended by an order of magnitude from the non-range-gated case. The
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valid range of FOMS is further extended if the multiple scattering
effect is included as a decrease of measured turbidity. The useful-
ness of the range-gating technique was also shown in eliminating

the correction for the change of scattering volumes.

(4) The equation of transfer was solved under the two-frequency
diffusion approximation and a closed form expression was obtained for
beam wave pulse incidence on a slab of dense random media. It was
shown that the solution is general and inc]ddes the cases of the semi-
infinite medium, the plane wave incidence and the point source, as
its asymptotic cases. The validity of the diffusion approximation was
theoretically investigated by examining the sign of the impulse res-
ponse at the time-origin. A new parameter "diffusion optical distance,"
Tg = PO4pZ » Was proposed.

Through the numerical analysis, the following were obtained.
The pulse shapes scattered at backward angles are characterized by a
rapid rise and slow asymptotic decay. The decay, called a diffusion
tail, is approximated by exp(- Crd), where C 1is a constant. The
normalization with T4 enables us to present the scattered pulse
shapes in a universal curve for different observation geometries
and scatterer properties except for the absorption characteristics.
The effect of scatterer absorption appears in the scattered pulse
shape as an attenuation of peak intensity and as suppression of the
diffusion tail. The pulse broadening is greater for the point source
than for the plane wave incidence by 3 ~ 4 orders of magnitude. The

effects of diffusion, particularly in the diffusion tail, appear more
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pronounced for point source than for the plane wave incidence. The
beam wave case has the property of these two cases. A closed form
expression was obtained for the backscattered specific intensity
which includes the effect of FOMS near the boundary of the scat-
tering media where the diffusion approximation is not valid. It

was shown that the effect of FOMS is significant around the time-
origin of the scattered pulse for particles larger than 3.20 um among

those used in experiments.

(5) The dependence of scattered intensity on the scatterer density
was investigated. Backward scattering patterns and visual observation
of the collimated beam in a scattering medium suggested the four dif-
ferent phases of scattering. Their distinctions were shown clearly
when the scattered intensity is plotted as a function of scatterer
density. Two peaks appeared in the Tow and high density regions.
The four phases were found to correspond to thé ascending and descen-
ding slopes of each peak.

The two peaks were well described by the solution of the equation
of transfer under the time-dependent FOMS and the two-frequency dif-
fusion approximations, respectively. The locations of the peaks

calculated were generally in good agreement with measurement.

(6) By the optical range-gating technique, pulse shapes scattered
in the off-axis backward directions were measured in the picosecond
range. Trapezoidal and exponentially decaying pulse shapes were

observed for tenuous and dense media. The pulse shapes agreed well
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with the solutions of the equation of transfer under the time-
dependent FOMS and two-frequency diffusion approximations, respectively.
The slowing rate of light velocity in diffuse media is obtained
by measuring the difference in arrival-time of the pulse peaks scat-
tered from tenuous and dense media. The 99% confidence interval for
the slowing rate measured at five different propagation distances was

1.75 + 0.081 which is very close to the theoretically predicted value
of /3.

(7) Backscattered pulse shapes were observed on-axis with picosecond
resolution. The range-gating technique was formulated mathematically.
The agreement between theoretical calculation and measurement was very
good both in the shape and the magnitude of the backscattered pulses.
The correlation coefficient between theory and measurement was 0.894
for the peak intensity of the pulses. The effect of scatterer absorp-
tion was seen in the reduced pulse heights and considerably diminished
diffusion tails. The bu]se shapes were found to be dependent on the
diffusion optical distance rather than'the regular optical distance.
These results verified the theoretical anaiysis made above. Further-
more, they showed the feasibility of this technique to assess the
aggregatfon of scatterers in a closed system such as the platelet

aggregates in transfusion blood.
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CONCLUSIONS

(1)

(2)

(4)

(5)
(6)

The three remote sensing techniques proposed are feasible. They
are applicable to the medical problems specified.

The scattering patterns calculated by the Rayleigh-Debye apprqxi—
mation are considerably improved, if the approximation is modified
to include the refractive index of the scatterer in the Fourier
transform kernel.

The range-gating technique is useful in backward scattering
pattern measurements.

Light scattering can be classified into four categories according
to the scatterer density.

Light is slowed down in diffuse media by the factor 1/V/ 3 .

The two-frequency diffusion approximation is a valid mathematical
approach to the description of the backscattering of optical

pulses from dense random media.
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FUTURE STUDY L el

Progressing technology is now producing the laser wﬁith-is |
capable of generating optical pulses shorter than a picosecond. H{ﬁh..
the shorter pulses, the latter two remote sensing techniques proposed
in this thesis become more powerful. Further study should be con-
ducted to refine these techniques with the shorter pulses.

As to the practical applications, the techniques are still in
the stage of development. Further effort is aiso'keqhifed to imple-
ment these techniques in clinical app]ications,'such as fe]iabi]fty :

study, safety study, etc.
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Appendix III.A Derivation of Eq. (3-19)

(Inversion Formula for 3-Dimensional Case)

The field at a spherical scatterer with the radius a is
given by
1 D<rg¢a

E(r,a) = rect(r,a) =
0 r>a

As can be seen in Eq. (3-15), the inverse transform of the scattered

intensity is the autocorrelation function of the above field, i.e.,
S _l[I(kr,a)] = RE(r,a) = %{r - 2a)2(r + 4a)rect(r,2a)

where the transform $~! was defined in Eq. (3-12). Applying the

differential operation, we have

2 -
g%{ S 1[I(kra)] = r rect(r,2a) + (r2 - 4a2)s(r) + %{r3 - 12ra?

+ 16a3)6'§r)

where (r2 - 4a2)s(r - 2a) =0

and (r3 - 12raz + 16a%)s'(r - 2a) = 0
Therefore,
21 3% ok a)] = - o(r - 2a) + £(r)s(r) + £,(r)s"(r)
oar r sr2 r’ 1 2

+ f3(r)s"(r)

where f], f2, f3 are functions of r .
Q.E.D.
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Appendix II1.B Proof of Eq. (3-21)

(Elimination of Differential Operation in 3-Dimensional Case)

The differential equation for the spherical Bessel function

is given by

2
%ng +%%¥+ {kz-.—(-—””r;’” } y=0

and the solution is y = C] jn(kr) + Cznn(kr) where C] and C,

are constants.

Hence, the spherical Bessel function of order 0 , or jb(kr)

satisfies the equation

2
g.l: _E_d-y_kz‘y

drz =~ " r dr

(3B-1)

As was shown in Eq. (3-19), the size distribution of scatterers is

given by
2 -
Cn(F) + Cpslr) = 2 125 s71(k)]

3 . 1 32

= O ¢ 1 97 2 A
% I(k) TR Jo(kr) } k2 dk 2 A
Using Eq. (3B-1), we have
1 ny 2 1 k2 ' _ 8 k2 f 3k2
(+9) =(-Fy -F9" =(F3-F)y+3%

where y' = g%-jo(kr) = - k j](kr) .

(38-2)

(3B-3)
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Substituting (3B-3) in (3B-2), we have the spherical Bessel
transform converted into the Fourier-cosine and -sine transforms,

i.e.,
- 8kZ _ Kk*
A = % ( 5 - 72 ) I(k) cos kr dk

bl 3
A HE B ) 1K) sin ke dk (3B-4)

Since I(k) 1ds an even function with respect to k , Eq. (3B-4) is

combined into the regular Fourier transform, i.e.,

o

A = % fe(k) cos kr dk + % fo(k) sin kr dk

[Tk + i F (k) e K" gk

--00

1
2

where fe(k) and fo(k) are even and odd functions. Therefore,

finally we obtain

- 2 ‘4 3
() = PO - ) w1 (B - 2y 1) 3

r>20

Q.E.D.
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Appendix III.C Extrema of Scattering Pattern for Spheroids

Fig. Al shows scattering patterns of a sphere and spheroids with
different axial ratios (e) using the Rayleigh-Debye approximation.
Here, an axial ratio is defined as the ratio of one axis and an axis
of revolution.

The locations of extrema for prolate spheroids (e > 1) coincide
with those of spheres (e = 1), but those for oblate spheroids (e < 1)
do not. This phenomenon can be interpreted as follows. When a prolate
spheroid rotates in all the directions uniformly, it fdrms a sphere
with a concentric inhomogeneity. Its core is a sphere with a radius
equal to the minor axis of the prolate spheroid. Considering a degree
of overlap, the core is most dense and therefore gives the largest

contribution in scattering.
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® »

Fig.A-1 Scattering patterns of randomly oriented spheroids
by Rayleigh-Debye approximation :
e ( axial ratio ) = one axis / axis of revolution
e > 1 ; prolate spheroid, e =1 ; sphere
e <1 ; oblate spheroid
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Appendix V.A. Derivation of Eq. (5-43)

(Saddle Point Technique for Evaluation of Integral)

The integral to be evaluated is

[e:]

I = % f(y)JO(Ar)exp(— vz) %-dx

= %-{Z}f(x) Héz)(xr) exp( - vyz) %-dx

where 2 =22 - k2 , g% = -3 @ oy = -k?

Using the asymptotic form for the Hankel function of the 2nd kind,

P 0r) ~Z2 expl- dar + 5T )

we have

~expin/a) (" i - STTRE
I o f | f1(2) exp( - Jar - /32- k2 z) dx

-0

J 2o K2
where f](A) =,Wl fU7 A% K
r /32 - KZ

changing the variables

A=k sina , Zz=R cos® , r =R sino

we have .
I eXp(j_‘r)ff() [KR fa(a)] d
Az —— a) exp o a
V2n c 2 3
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where

' S 1/2 .
f](k sina) k cosa = ( k sina ) f(Jk cosa)

fale) R sino / 3

- j cos(a -~ 0)

f3(a)

Change in the integration path and the steepest descent contour (SDC)

are shown in Fig. 5A-1.

A - plane a - plane
Im[x]g Imfa]
A=k sina
-k ? -n/2 Re[a]
o ‘
1
Im[u]

vRe[u]

‘ 6 (Saddle)

Point

Fig.5A-1 Method of steepest descent contour :
8 3 saddle point
SDC (----- ) ; steepest descent contour
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Saddle point a_ 1is given by

s
3g f3le) = 3 sin(fa - 0) =0 a. =0

We choose ¢ so that - e32¢ f"(as) is real positive and the

integration contour C follows the SDC. 1In this case
¢ = /4

Using the method of steepest descents or the saddle point technique

(Ishimaru, 1974, p. 338), we have

I = ﬂ%{%‘ﬂl [ fla) explkRfs(a)] da

ELELM— f (0‘ exP[ka3(0‘ ) + J¢]\/ exp(32¢)f"(a YkR

- expUin/4) K £(3k c0s0) oy (- jkr + 33 ) o 2L
= R
-qR

1

f(jk cose) g}g%;i&&i = f(q coss) &

il
~h
~h

=
v.
-~



264

Appendix P : Computer Programs

App.P-1 Fourier transform inversion technique for measured data :

(s Nz N X 2]

31

32

determination of size-distribution of scatterers
from measured scattering pattern

PROGRAM INVMES {(INPUTsOQUTPUT,PUNCH)
INVERSION FOR MEASURED DATA DCT. 1978 KeSHIMIZU
SIZE DISTRIBUTION ESTIMATION FROM SCATTERING PATTERN
IOMIT 3 OMIT LOWER ANGLE DATA (1), HIGHER ANGLE (21, OR NOT (3)

REAL KS,KSLMT -

OIMENSION SIK(1030)sKS(1030)5R(1030}

DIMENSION X(515),Y¢(515)

DATA NsMsNOUT,RMAXs YMAX / 5125 95 200s 1.5 5.0 /

DATA IWINDsIPUNCHLIFILT / 1, 1, 0 /

DATA PIsWL,RFMED / 3.14159265358979» 0.6328s 1.33 /
FORMAT(1H1)

FORMAT(EL1T.13,E17.10)

FORMAT(///30X,*SCATTERING PATTERN¥*)

FORMAT(///30X,*SIZE DISTRIBUTION ——=— ESTIMATED®*)
FORMAT(///30Xs*SIZE DISTRIBUTION —~— FILTERED=*)
FORMAT(///10Xs #*N=u*, 159 5X, #BAND=+=%,FB8.25 /15X *1/P WINDOW=*,12,5%
1s*0/P FILTER=%,12)
FORMAT(/10Xs*MEAN=%,E12.555X,*STD.DEV.=%5E12.5)
FORMAT(10X»E12.555X2E12.5) ‘
FORMAT(10(/)530K,*XXXXX DATA ARE PUNCHED IN CARDS XXXXX¥)

-—— READ IN MEASUREOD DATA

I=}

READ 11, xX{I)»Y(I)

IF { X(I) .LT. 0.0 ) GO TO 22
I=1+1

GO0 YO 21

NDATA=[-1

PRINT 10

PRINT 18s ( X(I)sY(1),I=Ll,NDATA }
CONTINUE

~——= INTERPOLATE DATA FOR 2**H

AK=2,*PT*RFMED /WL

YNORMaY(1)

DO 31 I=1,NDATA

X(I)=AK*2 ,0%SIN(X(I)%PI/360,)
Y(I)=10.%ALOGIOCY{I)/YNGRM)

KSLMT=X(NDATA)

NHLF=eN/2

DO 32 I=l,NHLF
KSCI)mXCL)+(KSLMT=X(L))*FLOAT(2%I~1)}/FLOAT(N)
CALL INTPOLT(XsYsNDATAsKS»SIKsNHLF)

PRINT 10 . : '
PRINT 18s ( KS(I)sSIK(I)sI=1,20) e
PRINT 10

CALL PLOTA(KSsNHLF» SIKs NHLF)

CALL PLOT3(1H*»KSs»SIKsNHLF)

CALL PLOT3(1HX»XsYsNDATA)

CALL PLOTG(1,1H )

IF ( IPUNCH +EQe 0 ) 6O TQ 35

XEND==~10,0

YEND=0.0

PUNCH 185 (KS(J}»SIK(J)sJnlsNHLF)

PUNCH 18s XENDsYEND

PUNCH 18y (X(J)sY(J)pJ=1,NDATA)
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36

51

w N
wn

‘72

73

.81
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PUNCH 185 XEND»YEND
‘D0 36 I=1,NHLF CoT
SIK(I)=10.%*(SIK(I)/10.)

——— WINDOWING TO REDUCE THE LEAKAGE

IF(IWIND.EQ.0) GO TO 53

00 51 J=1,NHLF
ARG=PI#FLOAT(NHLF~J+1)/FLOAT (NHLF)
WIND®0,42-0.5%COS(ARG)+0,08*COS(ARG*2.)
SIK(NHLF+J)=SIK(J}*WIND
KSINHLF+J) =KS (J)

DO 52 J=1,NHLF

STK(JI=SIKIN=J+1)

KSUJ)m=KS (N=J+1)

CONTINUE

PRINT 10 ,

CALL AUTOPLT{KSsSIKs»N)

PRINT 12

-—— SIZE DISTRIBUTION ESTIMATION

CALL ESTDERV (SIKsKS»RsNsMsKSLMTsXsYsNOUT,RMAX)
D0 61 J=1,NOUT

X(Jd)=X(Jr/2.

Y{J)==Y(J)

IF (IPUNCH.EQ.O) GO TO 62

PUNCH 18, (X{(JloY(J)s J=1,NOUT)

PUNCH 18, XENDs,YEND

CONTINUE

PRINT 10

CALL FIXPLOT(XsYsNOUTs0.0sRMAX50.05YMAX)
PRINT 14

NSTOP=NOUT/10

D0 63 J4=1,NSTOP

Y(J)=0.0

PRINT 10

CALL AUTOPLT(X,Y,NBUT)

PRINT 14

~== FILTERING THE ESTIMATED SIZE DISTRIBUTION

IF (IFILT.EQ.0) GO TO 64
CALL FILTER(XsYsNHLF)
PRINT 10

CALL AUTOPLT(XsYsNHLF)
PRINT 15

CONTINUE

-—= MEAN AND STD.DEV. OF ESTIMATED DISTRIBUTION

SUM1=0.0

SUM2=0.0

NSTOP=NOUT/12

DO 72 J=NSTOP,NOUT
SUML=SUM1+X(J)*Y(J)
SUM2=SUN2+Y (J)

XAVsSUM1/SUM2

SUM1=0.0

00 73 JsNSTOPsNOUT
SUML=SUMI+(X{J)-XAV)*%2%Y(J)
XSTDEV=SQRT{SUM1/5UM2)

PRINT 10

PRINT 16s NeKSLMTs»IWINDSIFILT
PRINT 17y XAVsXSTDEV

IF (IPUNCH.EQ.0) GO TO 81
PUNCH 16s NoKSLMT,IWINDSIFILT
PUNCH 17, XAV»XSTDEV

PRINT 19

CONTINUE

PRINT 10

STarP

END

SUBROUTINE INTPOLT{X»Y,NsXC,YC,NC)

OIMENSION X(IN)sY(N),XCINC)>YCINC)»C(90,3)s3PAR(4)

BPAR(1)=1.

BPAR(Z2)=6.%{Y(2)=Y(1))/{(X{2)=X{1))%%2
BPAR(3) =0,
8PAR(4)=0.
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CALL ICSICU(XsYsNsBPARSCs»IC,IERL)
CALL ICSEVU(XsYsNsCrICrXCrYC,NC,IER2)

RETURN

END

SUBROUTINE ESTDERV (SIK,KsRsNsyM» KLMT5Xs Y, NOUT,RMAX)
c SIZE OISTRIBUTION ESTIMATION FOR 3 DIMENSION
c BY TAKING DERIVATIVES AFTER FFT

REAL KsKLMT
coMpPLEX CSI
DIMENSION SIK(NIsK{N),RINIsX{NOQUT),»Y(NQUT)
DIMENSION CSI(1030)s8PAR(4}sC(1030,3),0(1)
10 FORMAT(1H1)
11 FORMAT(//730X,*PROCESS OF ESTIMATION®)
00 30 J=1,N
‘ ARG=SIK(J)*K(J)
“30 CSICJ)=CMPLX(ARG» D)
CalLL FASTFT(CSIsMsKLMTsR)
NMleN=-1
DO 40 J=1lsNM1
R(J)=R(J+1)
40 SIK(J)=AIMAGICSI(I+1))}/{2,%R(J))
PRINT 10
CALL AUTOPLT(R,SIKsNM1)
PRINT 11
8PAR(1)=0.
8PAR(2) =0,
3PAR(3)=0.
3PAR(4) =0,
ICaNM1-1 -~
‘ DO 50 J=1,NOUT
50 X(J}m2 #(RELI+{RAAX=R (1)} *FLOAT{J-1) /FLOGATINDUT~1))
CALL ICSICU(R,SIKsNM1,8PAR,C,IC,IER]1)
CALL DCSEVU(R»SIKsNMLsCsICsX5Y,NOUT,»D,0s IER2)
00 60 J=1,NOUT
60 IF &t Y(J) «GT. 9.0 )} Y{(J)=0.0
: IC=NOUT-1
CALL ICSICU(XsY»NQUT2BPARyCsIC,IER3)
CALL DCSEVU(XsYsNOUTSCrICoXsYsNOUT»D»0s LERSG)
D3 70 Jsl,NOUT

70 IF  ( Y{J) «LTe 0.0 ) VY(J)}=0,.0
00 80 J=1,NOUT
80 Yd)=Y(J)/X(J)

CALL ICSICU(XsYyNOUT,BPARSCHICHIERS)
CALL DCSEVU(XsY,NOUTACrICsXsYsNQUTH»D»0sIERG)
00 90 J=1,NOUT
90 IF ( Y(J) .GT. 0.0 ) Y(J)=C.O
PRINT 10
CALL AUTGPLT(X,Y,NOUT)
PRINT 11
RETURN
END
SUBROUTINE FASTFT (CsM»B8,T)

THIS ROUTINE CALCULATES FAST FOURIER TRANSFORM

| N

1 C(OUT) =  SUM CCIN) * EXP( I*W(JI*T(K) ) * Di
| K Jdel 4 , .

W(J)=(J=1)*DW=~B*(N=1)/N» T(K)=({K=1)*0T,
DW=2*B/Ny OT=PI/B, N=2%%M, (=B,B)wBAND WIDTH
NOTE ¢ SPECIAL CONSIOERATIONS ON THE SYMMETRY

COOOOO0O000

COMPLEX C,CARG

DIMENSION C(1030)»T(1030),IWK(20)
PI=3,14159265358379

Na2%®M

FRCTN=1,-1./FLOAT(N)

CALL FFT2(CsoMyIuK)

CALL FFROR2(CsM»IWK)
ARG1l=2.#B/FLOATI(N)
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App.P-2 Fourier transform inversion technique for simulated data :

DO 1 J=l,N 267
ARG2=—FLOAT(J~1) «FRCTN#*PI
CARG=CMPLX{ CDOS(ARG2)»SIN(ARG2) )
C(J)mARGI*CARG*C(J)
T{J)=FLOAT(JS-1)%PI/B
CONTINUE
RETURN
END
SUBROUTINE FILTER(X,Ys»N)
DIMENSION X (NJsY(N)
RETURN
ENOD
SUBROUTINE FIXPLOT (XsYsNs XMIN,XMAXs YMINs YMAX)
PLOTTING IN FIXED SCALZ
DIMENSION X(N)»Y(N),IMAGE(561),NSCALE(5)
NSCALE(1)=0
CALL PLOTL(NSCALEs5,10,105,10)
CALL PLOT2{(IMAGEs XMAXsXMINsYMAX,YMIN)
CALL PLOT3(1H*sXsYsN)
CALL PLOT4(1,1H )
RETURN
END
SUBROUTINE AUTOPLT(XsYsN)
PLOTTING AUTOMATICALLY SCALED
DIMENSION X(N)sY(N)
CALL PLOTACX,NsYsN)
CALL PLOT3{1H*,X,YsN)
CALL PLOT4(1,1H )
RETURN
END

analysis of the technique with simulated scattering
patterns

PROGRAM INVSIM (INPUT,OUTPUT,PUNCH)

INVERSION FOR SIMULATED DATA - 0CT. 1978 KeSHIMIZU
SIZE DISTRIBUTION ESTIMATION FROM SCATTERING PATTERN
IOMIT 3 OMIT LOWER ANGLE DATA (1), HIGHER ANGLE (2)s OR NOT (O)

REAL KS,XKSLMT

DIMENSION SIK(1030),4K5(1030)»R(1030),A(150),SDIST(150)
DIMENSION X(515),Y(515)

DATA NsMHNOUT»RMAXs YMAX / 1285 75 200s 3.0s 1500. 7/

DATA NDIST,AVE,STDEV,SNR /101, 2.0, 0.18s 0.00 /

DATA IWINDs IPUNCHsIFILT,IOMITSNCUT / 1, 1s 0s 0Os 1000 /
DATA PIlsWL,RFMED / 3.141592653583979s 0.46328s 1.33 /
FORMAT{1HL)

FORMAT(///30Xs%SIZE DISTRIBUTION === GIVEN®*)
FORMAT(///30Xs*SCATTERING PATYTERN%*)

FORMAT(7//30Xs*RESULT OF TRANSFORM*)

FORMAT(///30X,*SIZE DISTRIBUTION ~~— ESTIMATED*}
FORMAT(///730Xs*SIZE DISTRIBUTION === FILTERED*}
FORMAT(///10X s #Nusks15,5X #BAND=+=%, FB,25/15X» #I /P WINDOW=%,12,5X
1,#0/P FILTER=#,12/15X,%0ATA OMIT#%,12,5X,*CUTOUT NO.=%*,15)
FORMATI{/30Xs*(GIVEN DISTRIBUTION) %5 9X, *MEAN®,E12,5,5X,
1*¥STDDEVem*3E12,5730Xs*(ESTIMATED DISTRIBUTION)#55X, *MEAN=*
27E12.595Xs*STDDEV.2%E12.555Xs*SNR=%*5FB.4)
FORMAT(10X»E12.525X5E12.5)

FORMAT(10(/),30Xs*#XXXXX DATA ARE PUNCHED IN CARDS XXXXX*)

-== SIZE DISTRIBUTION

‘ARG1=SQRT (2 *PI)*STDEV T e
D0 31 1s1,NDIST

A(I)=1,00+FLOAT(I=1)+40.02

ARG2=—0.5%((A(L)=AVE) /STDEV)*42
SDIST(I)=EXP{ARG2)/ARGL
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.43

45

56

51

52

62
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PRINT 10
CALL AUTGPLT(A,SDEIST,NDIST)
PRINT 11
XEND==10.0
YEND=0.0

IF ( IPUNCH .EQ. 0 ) GO TQ 32
PUNCH 18s ( A(J)»SDIST(J)s J=1,NDIST )
PUNCH 18, XENDsYEND
CONTINUE
~== GENERATION OF SCATTERING PATTERN

KS=aWAVEND CORRESPONDS TO SCATT.ANG.=0-60 (DEG)

WAVEND=2,=PL*RFMED /WL

KSLMT=WAVEND

CALL SCATPAT(KS»SIKsNsAsSDIST,NDISTHKSLMT)
——— MOOIFICATION OF SCATTERING PATTERN

NHLF =N/ 2

NCUTH=NCUT/2

NCUTHL=NCUTH+1

IF(IOMIT=1) 45,41,43

D0 42 I=1,NCUTH

SIK(I)=sSIKINCUTHL) #(KSINCUTHL)/KS(I))*%4

60 TO 45

00 44 I=NCUTH1,NHLF )

SIK(I)=SIKINCUTH)*(KS(NCUTH) /KS{I)) %4

CONTINUE ’

YNORM=SIK(1)

——— NOISE ADDITION (IF UNWANTEDs» SET SNR=0.0 OR ADD»

[X=2%%24+43
CALL RAND(15,1X»0sNHLF»R)
00 46 J=1sNHLF
R(J)=2,%R{J)~1.0
SIK(J)=(1,+SNR*¥R(J))I*SIK(J)
CONTINUE

~== PLOTTING THE FORWARD SCATTERING PATTERN
D0 56 Is1,NHLF
X{I)=KS(1)
IfF ( SIK(I) +EQs 0.0 ) SIK{1)=1.0E-10
Y{I)}=10.%ALOGLO(SIK{I)/YNORN)
PRINT 10
CALL AUTOPLT{XsY,NHLF)
PRINT 12
IF ( IPUNCH .EQ. O ) GO TO 58
PUNCH 18, (X(J)sY{J)sJalpNHLF)
PUNCH 18, XEND, YEND
CONTINUE

=~~~ WINDOWING TO REDUCE THE LEAKAGE
IF(IWIND.EQ.O) GO TO 53
00 51 J=1,NHLF
ARG=PI*FLOAT(NHLF~=J+1)/FLOAT(NHLF)
WIND=0.42-0.5%COS(ARG)I+0.08%C0S (ARG*2,)
SIK(NHLF+J}=SIK(J)*WIND
KS (NHLF+J)=KS(J)
00 52 J=1,NHLF
SIK{JI=SIK(N=J+1)
KS(J)==KS(N=J+1)
CONTINUE
PRINT 10
CALL AUTOPLT{KS»SIKsN)
PRINT 12

=== SIZE DISTRIBUTION ESTIMATION

CALL ESTDERV {SIKsKSsRsNsMsXSLHT, Xy Y3 NOUT, RMAXD -

DO 61 J=1,NQUT

X{4i=x(g)s2,

Y(Jd)==Y1(J)

IF (IPUNCH.EQ.0) GO TO 62

PUNCH 18, (X(J)sY(J), J=l,NOUT)

PUNCH 18s XEND,YEND

CONTINUE

PRINT 10

CALL FIXPLOT(XsY»NOUT»0.0,RMAX»0.05 YMAX)

GO TO 43)
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PRINT 14
NSTOP=NOQUT/10
DO 63 J=1,NSTOP
Y(J4)=0.0
PRINT 10
CALL AUTOPLT(X»Y,NOUT)
PRINT 14

——— FILTERING THE ESTIMATED SIZE DISTRIBUTION

IF (IFILT.EQ.O0} GO TO 64
CALL FILTER(X»YsNHLF)
PRINT 10

CALL AUTOPLT{(XsYsNHLF)
PRINT 15

CONTINUE

—— MEAN AND S5TD.DEV. OF ESTIMATED DISTRIBUTION

SUH120.0

SUM220.0

NSTOPeNOUT/5

DO 72 J=NSTOPsNOUT

SUML=SUHL+X{JI%Y(J)

SUM2=SUN2+Y(J)

XAV=SUM1/SUM2

SUM1=0.0

DO 73 J=NSTOP,NOUT

SUMLmSUML+ (X (J)=XAV)**2%Y(J)

XSTDEV=SQRT(SUAL/SUM2)

PRINT 10

PRINT 165 NsKSLMT,IWIND,IFILT,IOMIT,NCUT
PRINT 17, AVE,STDEV,XAVsXSTDEV,SNR

IF (IPUNCH.EQ.0} GO TO 81

PUNCH 16, N,KSLMT,IWIND,IFILT,IGMIT,NCUT
PUNCH 17, AVE,STDEV,XAV,XSTDEV,SNR

PRINT 19 -

CONTINUE

PRINT 10

sTOP

END

SUBROUTINE SCATPAT(KS»SIKsNyApSOISTHNDIST,KSLMT)
SCATTERING PATTERN BY RAYLEIGH-DEBYE APPROXIMATION
INPUT 1 NpA(NDIST)»>SDISTUNDIST)»NOISTHKSLMT
QUTPUT & KS(NJ),SIK(N)

REAL KSsKSLMT

DIMENSION KS{N)»STK(N)»A(NDIST),SOIST(NDIST)
SCAT(Z)=3.%(SIN(Z)=Z*COS(Z))/T**3
P1e3.14159265358979

NHLFeN/2

D0 10 J=1,NHLF

KS{J)=FLOAT(2%J~1)#KSLMT/FLOAT(N)

SIK(J)1=0.0

D0 30 I=1,NDIST

V=4 kPI*A(1)*%3/3,

D0 20 J=1,NHLF

ARG=A(I)*KS{J)

SIKA=(V*SCAT(ARG))I**2
SIK(J)=SIK{J)+SIKA*SDISTLI)

CONTINUE

RETURN : : IR R

END

SUBROUTINE ESTDERV (SIKs»KsRsNsMe KLHTs X5 YoNCGUT,RMAXD
SIZE DISTRIBUTION ESTIMATION FOR 3 DIMENSION
8Y TAKING DERIVATIVES AFTER FFT
REAL KsKLMT

rests are same as App.P-1
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App.P-3 Solution of diffusion equation for beam wave incidence
on semi-infinite medium

PROGRAM BEAMWVE(OUTPUT,TAPE6=QUTPUT, PUNCH)
UNITS ARE IN CENTIMETERS
IPUNCH= NO PUNCH{O)s IMPULSE RESP.{1)s IMP.RESP. % SPECTRUMIZ}
BWs HALF WIDTH OF E—=1 POINTS (NGT FULL WIDTH)
ANGD= SCATT, ANGLE IN DEGREZ, FOR BACKSCATT. ANGD=130.
COMPLEX CSIsCT,CA»CTR
DIMENSION CSI(260},W(260)5s7(260),SIMAG(260)sSIPHSE(260)
j DIMENSION X{31},YR{31)
: COMMON  /PARM/ RDIST,BwWwsBWNRM»AMU» ANGRIRG
g COMMON /CS/7 CT,CAsCTR
| EXTERNAL FXRsFXI
DATA IPUNCHsNsMy ITAPERsSP / 0, 128, 75 ls 50 /
DATA AMUsHyRHO»5CATCS»ABSCS/0.8865040052.26E1057.95E~390.0/
DATA RDIST,B8W»ANGD / 0.0457567, 0.1y 173.1666667 /
DATA WLMT,ALMT,BLMTsRTOL/1.5050.05043050.0017
DATA IRG / 1 /
10 FORMAT(1H1)
101 FORMAT(//45Xs *REAL PART OF INTEGRAND*» 10Xy *We*yF5.3)
1111 FORMAT(/L10X ) #N=%y T14s5Xp*RAD.OIST.(CMI =€) FB.595Xs4E=1 BoWe (CM)mk
! 1)FBe3s5Xs*RECANG, (DEG)@*yFB,3/10X, *RHO(/CC)a#,E12.5,5X
! 25 ¥H(PACK.FACT.)®%*,F5.3,5X,*XUn%,F8,5)
112 FORMAT(LOXs*TRLC~S(CM**2)um,E12,5,5X, %TOTC~5=%,E124595X
1o *SCAT.C~Sa%3E12.5)5Xs*ABS.C~Sa%, E12.5/7)
12 FORMAT(30X»#NORMCOEFF. (RHO*S IGMATR*CMED I =rsE12.5,% (/SEC)*)
131  FORMAT(30X,#NORMALIZED ANG.FREQ. (OMEGA.D/NCRM.COEFF)n///)
132  FORMAT({40X,#NDRMALIZED TIME (T*NGRM.COEFF}=x)
133 FORMAT(1H1s5Xs*{IMPULSE RESP.)/(NGRM.COEFF.}*)
14 FORMAT(///7TXs*NQORMALLZEQ®»2X,*SPECTRUM OF SPECIFIC INTENSITY®
15*% ITERATION®/BXs*ANG.FREQ.%,4X, *(MAGNITUDEI*,4X,*{PHASE(DEG) )#*
! 25 4X> *REAL IMAG.*/)
1151  FORMAT(8XsF943,5Xs2(E12.553X),215])
{152 ° FORMAT(9XsF5.3+5X,2{E12.553%))
i 16 FORMAT(S//LTXp#NGRMALIZED*s L1Xs*[MPULSE RESPONSE*/20X,*TIME*, 11X»
E 1¥(REALI*,BX,* (IMAGINARY ) /)
17 FORMAT(15XsFlO.3»5XsE12.525XsE12.5)
‘18 FORMAT(LHL10(/)520%,#XXXXX DATA ARE PUNCHED IN CARDS XXXXX¥)
i C CONSTANTS
PI=3,14159265358979
C=3.,0E10 .
RFRMED=1.33
CMED=C/RFRMED
NHL FaN/2
ANGR=ANGC*PI/180.
SCACS=SCATCS

OO0

| SCATCS=SCACS*({1.,0~H)
TOTLCS=SCATCS+ABSCS
TRSPCS=(1.0-AMU)*SCATCS+ABSCS
SWNRMaRHG*TRSPCS43W
ANRM=RAO*TRSPCS*CMED

SETTING THE NORMALIZED FREQ.(OMEGA)
DW=2 #WLMT/FLOATIN)
FRCTN=1.~1./FLGAT(N)

w2 31 I=1,NHLF

WAL =LOAT{I=1)#DW—FRCTN*WLHT

O

31 WIN+LI=1, - w2
~C
c === SPECTRUM =——-
c
PRINT 10
PRINT 14

ARG1l=~SCATCS*BWNRM**2/TRSPCS
ARG2=~(RDIST/BuW)**2
ARG2=AMU*EXP{ARG2) /BWNRM®¥*2 ’ T -
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ARGR1=TOTLCS/TRSPCS

ARGR2=ABSCS/TRSPCS

00 51 Is=l,NHLF

CT=CHMPLX{ARGR1,=-uW(I))

CA=CMPLX({ARGRZs-W(11})

CTR=CHMPLX( 1.5 —-WI(I))

PL=5.E~12

PW=0.15

ARGW=0.5%PL**¥2+0.25%(PW/CHED) *%2
WO=RHO*TRSPCS#CMED*W(I)

RG=EXP{—ARGW*WD=%x2)

IF { IRG .EQ. O ) RG=1.0 .

CALL QUAD(ALMT,BLMT,RTOLsERR21»SIR)FXRsIERRSO)
CALL QUAD(ALMT,BLMT,RTOL,ERR»1»SIISFXI»IERI»O)
CSI(I)=ARGL*(CHPLX(SIR,)SIII-COS{ANGR)*ARG2*RG/CTR)
CSI(N+1-1)=CONJG(CSI(I))

SIMAG(I)=CABS(CSI(I))

SIR=REAL(CSI(I))

SII=AIMAG(CSI(I))

IfF { SIR +EQ. 0.0 +AND, SI1 JEQe 0.0 ) SIR=5II=1.0
SIPHSE(I)=ATAN2(SII,SIR}*180./P1

PRINT 151, W(I)eSIMAG(I)sSIPHSE(I }pIERR,IERI
CONTINUE

00 52 J4s=1,31
X(J)=ALMT+FLOAT{J=-1)%(BLMT-ALNT ) /30,
YRUJ)I=FXR{X(J)}

CALL AUTOPLT(Xs»YR»31)

PRINT 101, W{(NHLF)

CALL AUTOPLT(WsSIMAGHNHLF)

PRINT 131 '

PRINT 12, ANRHM

IF (IPUNCH «NE. O) PUNCH 111» NsROISTs»BWsANGDsRHOsH,AMU
IF (IPUNCH +EQ. 2) PUNCH 1525 (W(K)}»SIMAGIK}s»SIPHSE(K),»K=1,NHLF)

——=— IMPULSE RESPONSE ~-—

IF (ITAPER .EQ. 0) GO TO 62

CALL CTAPER(CSIsNyP)

CONTINUE

CALL INVFT(CSIsMaWlMT,»T)

DO 63 I=1l,N

SIMAGUI)=REAL(CSI(I))

PRINT 10

PRINT 133

CALL PLOTA(TsNsSIMAG,N)

CALL PLOT3(1H*,T,SIMAG,N)

CALL PLDT&(1,1H )

PRINT 132

PRINT 111, NsRDIST,BWsANGD,»RHOsH» AMU
PRINT 112, TRSPCS,TOTLCS,»SCATCS,»ABSCS
PRINT 12, ANRM

PRINT 10

PRINT 17 (T{(K)sCSI(K)sK=1l,N)

IF (IPUNCH.EQ.O) GO TO 64

PUNCH 16

‘64
99

PUNCH 17» (T(K)»CSI(K)sKalsN)
PRINT 14 )

CONTINUE

CONTINUE

PRINT 10

sTapP

END
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COMPLEX CTsCAsCTRyY»CARGL,CARG2,CARG3)C1sC2sC35C4sCFX
REAL MMBSJO,MMBSJ1
COMMON  /PARM/ ROIST»BWs3WNRMHIAMUSANGRSRG - T T
COMMON  /CS/7 CT,CA,CTR
YsCSQRT(X**2+3 ., *CA%XCTR)
ARG1I=ROIST#BwWNRM*X/BW
ARG2=MMBSJO(ARGL, IDUNMNMY)
ARGI=MMBSJL(ARGL,s IOUMMY)
ARG4=={ 3WwNRM®EX/2,) *%*2
ARG4L=EXP(ARG4)
Cl=sAMUSY-CTR
C222.*Y+3,*CTR
Ci=Y+CT
CanCTR+AMUXCT
CARG1=C1/7(C2%C3)
CARG2=CARG1/CTR
CARG3I=(1.5%C4/7C3+ANU*Y/CTRY/C2
CARG1=ARG2*ARG4*CARG1*X
CARG2=ARGI*ARG4H4*CARG2*X%¥*2
CARG2=ARG2*ARG4*CARG3*X
CFX=CARGL+SIN(ANGR}*CARG2+COS(ANGR}*CARG3
FXReREAL(CFX)*RG
RETURN
END
FUNCTION FXI(X)
COMPLEX CT,CAsLTRpYSCARGLISCARG2,CARG35sC15C2sC35C4sCFX
REAL MMBSJO,MMBSJ1
COMMON /PARM/ RDIST,BW,BWNRM,AMU»ANGR,RG
COMMON /CS7/ CT»CA,CTR
Y=CSQRT(X**2+3 ., *CA*CTR)
ARGI1=RDIST*3WNRM*X/BW
ARG2=MMBSJO(ARG1I,IDUMNY)
ARG3I=MMBSJ1(ARGL,IDUMNMY)
ARGé4=—~(BWNRM*X /2,1 %%2
ARG4=EXP(ARG4A)
Cl=AMU»Y-~CTR
C222.%#Y+3,*%CTR
C3=Y+CT
C4nCTR+AMURCT
CARG1=C1/(C2%C3)
CARGZ2®CARGL/CTR
CARG3=(1.,5%C4/C3+AMU*Y/CTR)/C2
CARG1I=ARG2*ARG4*CARGL*X
CARG2=ARGI*ARG4*CARG2*X **2
CARG3=ARGZ2*¥ARG4*CARG3*X
CFX=CARGI+SINCANGR)*CARG2+COS (ANGR)*CARG3
FXI=ALMAG(CFX)*RG
RETURN
END
SUBROUTINE AUTOPLT(XsYsN)
PLOTTING AUTOMATICALLY SCALED
DIMENSION X{N)»Y(N)
PRINT 10
FORMAT(1H1)
CALL PLOTA(XsNsYsN)
CALL PLOT3(LH#*»X»YsN)
CALL PLOT4(1,1H )
RETURN
END
SUBROUTINE CTAPER (C,NsP)
SPLIT-COS~BELL TAPERING Pt % OF SERIES TO B3E TAPERED (IN %)
COMPLEX C
ODIMENSION C(N)
PI=3.14159265358979
IF ((P (LE. 0.3) .OR. (P GT. 100.)) RETURN
Me=INT(O.01*P*FLOATIN)I+0.5)/2
D0 10 I=1,M
We0,5~0,5«COS(PI*(FLOAT(1)~0.5)/FLOAT(M)
T CAI)sCLLIY*N T T s T -
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10 CIN+1-I)=C{N+1-1) *y
RETURN
END
SUBROUTINE INVFT{CsMs8,T)

c THIS ROUTINE CALCULATES INVERSE FOURIER TRANSFORM
c .
c N
c CIOUT) = 1/72%PT ( SUM CUIN) *EXP( =-I*W(J)}*T(K}) }*DW
C K Jal d
o
c WlJ)a{J=1)*#DW~B*{N=1)/Ns TIK)={(K=N/2)*0T
c Dw=2%8/Ns OT=Pl/By Nw=2%ixMy (-BsB)=8AND WIDTH
C NOTE ¢ SPECIAL CONSIOERATIONS ON THE SYMMETRY OF FREQ. AND TIME
c
COMPLEX C»CA»C85CARG
OIMENSION C(1030),CA(1030),CB(LO30),T(1030),IWK(20)
; PI=3,14159265358979
% N=2%kM
i FRCTN=]l,.~-1./FLOAT(N)
: NHLF=N/2
00 L I=l,N
CA(L)=C(I)

CALL FFT2(CAsMs1uK)
CALL FFRDR2(CAsMpIWK)
CALL FFT2(C3sM»yIWK)
CALL FFRDR2(CBsMsIUWK)
ARGL=8/(PI*FLOAT(N)}
D3 2 I=1i,NHLF
ARG2=—~FLCAT{NHLF-~I)*FRCTN*PI
CARG=CMPLX(COS{ARG2),SIN(ARGZ))
C(L)=ARGI*CARG*CA(NHLF+1-1)
2 T(I)=-FLOAT(NHLF-I)*PI/8
03 3 I=1,NHLF
ARG2=FLOAT(I)*FRCTN*P]
CARG=CMPLX{COS{ARG2),SIN(ARG2))
CINHLF+I)=sARGL*CARG*CONJG(LC3(I+1))
3 TINHLF+I1)=FLOAT{I)*PX/B
RETURN
END

i
!
31 CBLII=CONJGI(C(I))

App.P-4 Solution of diffusion equation for quasi-spherical wave
incidence on semi-infinite medium

PROGRAM SPHRWVE(QUTPUT,TAPE6=0QUTPUT, PUNCH)
UNITS ARE IN CENTIMETERS
IPUNCH= NO PUNCH(O0)> IMPULSE RESP.(1)s IMP.RESP. $ SPECTRUM(2)
FB8W= NOMINAL BEAM WIDTH (TO KEEP FLUX(l.0)*Bw##*2 CONSTANT}
AFFECTS ONLY ON MAGNITUDE CF QUTPUT
ANGD= SCATT. ANGLE IN DEGREE, FOR BACKSCATT. ANGD=180.
(ROBS,PHID)= POLAR COORDINATE OF OBSERVATION POINT (CMsDEG)
COMPLEX CSI»CTsCAsCTR)CQsCARGPC1sC25C3»CNOMCDENSCSIL,CSIZ
DIMENSION CSI(260),W(260),T(260)sSIMAG(260),SIPHSE(260)
DATA IPUNCH,Ns,M,LTAPER,P / 1, 256s 85 1s 50. /
DATA  AHU,HsRHO»SCATCS»ABSCS/0.93C»0.1091.95E643295, 0:-890 0/
OATA  WLMT,ANGDsROBS,PHID,FBW / 4.00005,150.51.000, 90.05 0.01 7

0 FORMAT(1H1)

11 FORMAT(/10X,*Nu#*yT14,5Xs #*RHO(/CCI=*pE12,555Xs*%H{PACKWFACT,. ) =%
15F5e3,5Xs*%MUn*,FB.5,5Xs*REC.ANG,. (DEG) »*,FB8,3 )
2/10Xs*DIST.OF 0BS.(CM) =*,F10.5,5X,*ANGLE OF DBS.(DEG) =*,FB8.3)

1112 FORMAT{1O0X,»*#TR.C-S(CHM**2) 2k, E12,555X9*TOTC—S=%,E12.595X

1p#SCAT.C~Sm%yE12.555X»*%ABS o C~Su*yEL12,.5/7)

12 FORMAT(30Xs#NORM.COEFF, (RHO*SIGMATR*CHED ) nw,E12.55% (/SEC)*)

OO0 0

1
1

|
|
|
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FORMAT(30X»ANCRMALIZED ANG.FREQe (OMEGAD/NORMJCDEFFIN//I)
FORMAT(40X,#NORMALIZED TIME (T*NORMJCUEFF1I=#)
FORMAT(1H1s5Xs*(IMPULSE RESP)/(NDORMJCOEFF ) *)
FORMAT(//77Xs «NORMALLZED*,2X,*SPECTRUM OF SPECIFIC INTENSITY*
1/8Xs *ANGFREQ«*»4Xs *(MAGNITUDE )} *5 4Xs % (PHASE(DEG) ) %)
FORMAT(6X,F9¢355X52(E12.553X3)
FORMAT(9XsF5.3s5X»2(E12.5923X))
FORMAT(///17Xs*NORMALIZE D*;llX;‘IFPULSE RESPUNSE*/720K,*TIME*, 114>
1*(REALI*s8X»* (IMAGINARY)®/)
FORMAT(15X»FLl0e325X9E12.595XsE 2.5)
FORMAT(1HL,10(/)220Xs*XXXXX OATA ARE PUNCHED IN CARDS XXXXX*})
CONSTANTS
PI=3,14159265358979
C=3.0E10
RFRMED=1,33
CMED=C/RFRMED
NHLFaN/2
PHIR=PHID*PI/130.
ANGR=(ANGD—-PHID)*PI/180,
SCATCS=aSCATCS*(1.-H)
TOTLCS=SCATCS+ABSCS
TRSPCS=(1.0-AMU)*SCATCS+ABSCS
ANRM=RHO*TRSPCS*CMED
BWNRM=RHO*TRSPCS*FBW
RNRM=RHO*TRSPCS*ROBS
DWw=2 + *WLMT/FLOAT(N)
SETTING THE NORMALIZED FREQ.(DMEGA)
FRCTN=1.,=-1./FLOAT(N)
00 31 I=1lyNHLF
WH(I)nFLOAT(I~1)%0W4—FRCTN®WLMT
WiN+1-1)=-W({])

-—- SPECTRUM —=—=

PRINT 10
PRINT 14
ARGR1=TOTLCS/TRSPCS
ARGR2=aBSCS/TRSPCS
X=COS{PHIR)
00 51 I=l,NHLF
CT=CMPLX(ARGR1,=W(I})
CA=CMPLX(ARGR2,-WI(TI))
CTR=CMPLX({ l.s -=w(I))
CQ=CSART(3.*CA*CTR)
CARG=0., 5*BNVRM**2*C°XP(—CQ‘QNRH)*SCATCS*AHUI(kNRH*TRSPCS*CTR)
CleCTR*(CT+1.5%AMUSCT+1.5%CTR )/ (ANU*CQ*%x2)
C2=1,5%CTR/CQ
C3=(CT/CQ)%%2
CNOMuX* (X*%2+C1)
COEN=(X+C2)*(X*»2~C3)
CSI1=(CTR+{CQ+1./RNRMI*COS{ANGR) }*CNOM/CDEN
CSI2m (3 *#X**x2+C1)/COEN-CNOM* (36X *%2+42 #C2%X—~C3)/CDCN*%*2
CSI2=CSI2*SIN(PHIR)*SIN(ANGR) /RNRHM
CSI(I)==CARG*(CSEL+CSI2)
CSI(N+1~I)=CONJG(CSI(I))
SIMAG(I)=CABS(CSI(I))
SIR=REAL(CSI(I))
SII=AIMAGI(CSI(I))
SIPHSE(I)=ATANZ2(SIIs,SIR)I*180./P]
PRINT 151» W(I)sSIMAG(I)»SIPHSE(T)
CONTINUE
CALL AUTOPLT{WsSIMAGHNHLF)
PRINT 131
PRINT 12, ANRM
IF (IPUNCH .NE. 0) PUNCH 111s NsRHO»HsAMU» ANGD»ROBS»PHID
IF (IPUNCH .EQ. 2) PUNCH 1525 (W(K)»SIMAGIK)sSIPHSE(K)sK=1sNHLF)

=== IMPULSE RESPONSE ===

IF (ITAPER .EQ. 0} GO TQ 62
CALL CTAPER(CSI,NsP)
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62 CONTINUE
CALL INVFET(CSI,MsWLMT,T)
DO 63 I=1,N
63 SIMAGII)=REAL(CSI(I))
PRINT 10
PRINT 16
PRINT 17y (T{(K)»CSI(K)sKs1lyN)}
PRINT 133
CALL PLOTA{(TsNsSIMAGsN)
CALL PLGT3{(1H*,T»SIMNAGSN)
CALL PLOT4( (1,14 )
PRINT 132
PRINT 111, NsRHO»Hs AMUy ANGDsRUIBSs PHID
PRINT 112y TRSPCS»TOTLCS»SCATCSsABSCS
PRINT 125 ANRM
IF {IPUNCH.EQ.0)} GO TO 64
PUNCH 16
PUNCH 17y (T(K)sCSI(K)sK=lyN])
: PRINT 18
‘64 CONTINUE
39 CONTINUE

PRINT 10
STQP
END
SUBROUTINE AUTOPLT(X»Y»N)
¢ PLOTTING AJUTGHMATICALLY SCALED

OIMENSION X (H)sY(N)

rests are same as App.P-3

.
.
.
.

App.P-5 Solution of diffusion equation for a point source

PROGRAM PNTSRCE (QUTPUT,PUNCH)
UNITS ARE IN CENTIMETERS
IPUNCH= NO PUNCH(0)» IMPULSE RESP.{1)s IMP.RESP. $ SPECTRUM(2)
BWe HALF WIDTH OF E~1 POINTS (NOT FULL WIDTH)
ANGD= SCATT. ANGLE IN DEGREE, FOR BACKSCATT., ANGD«180.
HPL= HALF PULSE LENGTH OF E-1 POINTS (SEC)
HPW= HALF PULSE WIDTH OF E-1 POINTS (CM)
COMPLEX CSI,CTsCA,CTRsCQ .
DIMENSION CS5I(260)sW(260)sT(260),SINAG{26U)sSIPHSE(260)
DIMENSION X{(31),YR(31),YI(31)
DATA IPUNCHsNsMs ITAPERSP 7 1, 2569 3 1y 3504 7
: DATA AMUsHsRHO»SCATCS,»ABSCS/0¢93050.1051.95E953295.0E-8,0.0/
| OATA WLMTHROST»IRGsHPLSHPW / 0.800, 1.00000s O 5.E£-12, 015 /
10, FORMAT(1H1)
111 FORMAT(/10X,p #*Nu®y 145X #RHO(/CC)I =% EL2.5s5Xs#H{PACKJFACT ) =
LyF543s5Xs*MUs%,FB.595Xs*RADDIST.(CM)=2%5F3.3)
112 FORMATIL1O0X»#TRoL-S(CM**2 )ma,E12,555Xs*TOToC~5»%32124555X
1s%SCATC-S=*3E12.5,5Xs#ABSC~Sn%,E12,57/)
12 FORMAT(30XsANCRM.COEFF. (RHO*SIGMATR*CMED)=nsELl2.55% (/SEC)*)
131 FORMAT(30Xs#NORMALIZED ANG.FREQ. (OMEGAD/NORM.CDEFF)IAZ/7)
132 FORMAT(40X»#NORMALIZED TIME (T®NORM.COEFF)#)
133 FORMAT(1H1,5Xs*(IMPULSE RESP«)}/(NORM.COEFF.}%*)
114 FORMAT( /777X, *NORMALIZED*,2Xs #SPECTRUN OF SPECIFIC INTENSITY*
- " 1/8Xs ¥*ANGFREQe*5 4 Xy *(MAGNITUDE) *#5 4X» *{ PHASELDEG))*)
151 FORMAT(6XsFI4355Xs2(EL2.55,3X))
152 . FORMAT(9X»F64355Xs2(E12.553X))

OO0 0O000
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FORMAT(///17Xp*NORMALIZED*,11X,*IMPULSE RESPONSE*/20X,*TIME*,11X,

1*{(REAL)*,8

Xs*{ IMAGINARY ) */)

FORMAT(15X,F10.3,5X+E12e55,5X5E12.5)
210(/)520Xs *XXXXX DATA ARE PUNCHED IN CARDS XXXXX*)

FORMAT (1H1
CONSTANTS

PI=3,14159265358979

C=3,0E10
RFRMED=1.3

3

CHED=C/RFRMED

NHLF=N/2
SCACSN=SCA

TCS*(1.-H}

TOTLCS=SCACSN+ABSCS
TRSPCS=(1.0~AMU)*SCACSN+ABSCS

ANRMSRHO*T

R5PCS+#CMED

RNRM=RHO*TRSPCS#RDST
SETTING THE NORMALIZED FREQ.(OMEGA)

D=2 *WLMT
FRCTN=l.-1

/FLOAT(N)
«/FLOAT(N)

0O 31 1I=1,NHLF

W(I)=FLOAT

(I-1)%0w=FRCTN*WLHT

WIN+I-I)==W (1)

--== SPEC

PRINT 10

PRINT 14

ARGl=(RHO*
ARGR1=TOTL
ARGR2=ABSC
00 51 1Is=1
CT=CHMPLXI(A
CA=CMPLX(A
CTR=CMPLX(
CQ=CSQRT(3

TRUM ===

TRSPCS)**2
CS/TRSPCS
S/TRSPCS
SNHLF
RGR1s~W(I})
RGRZs=W (11}
les ~W(I))
«*¥CA*CTR)

CSI(I1)=ARGL*CTR*CEXP(-CQ*RNRM)/RNRM

IF ( IRG .

EQ. 0 ) GO TO 41

ARGRG#QS*HPL**2+0.25%(HPW/CMED ) *%2

WO=RHO*TRS
RG=EXP{~AR
CSI(I)=CSI
CSI(N+1-1)
SIMAG(I)aC
SIR=REAL(C
SII=AIMAGH
IF ( SIR .

PCS*CHED*WLI)
GRG*WD**2)
(I)*RG
=CONJG(CSI(I))

ABS(CSI(I))

SI(Iy

CSI(IN

£EQ. 0.0 .AND. SII

«EQ. 0.0 ) SIR=SII=l.0

SIPHSE(I)=ATAN2(SII,SIR)}*180./PI
PRINT 151s W(I)s»SIMAG(I)sSIPHSE(I)

CONTINUE
CALL AuTOP
PRINT 131
PRINT 12,
IF (IPUNCH

---— INMPU

IF (ITAPER
CALL CTAPE
CONTINUE
CALL INVFT
00 63 Is=1
SIMAG(I)=R
PRINT 10
PRINT 16
PRINT 17,
PRINT 133
CALL PLOTA
CALL PLOT3
CALL PLOT4
PRINT 132
PRINT 111,

LT(wWsySINAG,NHLF)

ANRHM
«£Q. 2) PUNCH 152,

LSE RESPONSE -——-—

«EQ. 0) GO TOD 62
R{CSIsNsP)

(CSIsMsWLMT,T)

sN

EAL(CSI(I})
(TIK)»CSIIKIIK=1,N)
(TaNsSIMAGsN)

(1H*, T»SIMAGH N)
(1l,1H )

NsRHOs Hy AMUS RDST

(W (K)sSIMAG(K)sSIPHSE(K)sK=LsNHLF)
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PRINT 112, TRSPCS»TOTLCSsSCACSNsABSCS
PRINT 12, ANRM
IF (LPUNCH.EQ.0) GO TO 64
PUNCH 17, (TU(K)},CSI(K)sK=1lsN)
PRINT 18

64 CONTINUE

99 CONTINUE
PRINT 10
STOP
ND

: EUBRDUTINE AUTOPLT(X»YsN)

c PLOTTING AUTOMATICALLY SCALED
DIMENSION X{N),Y(N)

rests are saﬁe as App.P-3

App.P-6 Solution of diffusion equation for plane wave incidence
on semi-infinite medium : Effects of range-gating and
first order multiple scattering are included.

PROGRAM PLANINC {QUTPUT,PUNCH)

CALCULATION OF BACKSCATTERED-PULSE—-SHAPE FOR PLANE WAVE PULSE
INCIDENT ON SEMI-INFINITE DIFFUSION MEJIUM NOQV. 1978
PL=PULSE LENGTH» FULL (NOT HALF) WIDTH OF E-1 POINTS (SEC)
BW=BEAMWIDTH DOF RANGE GATING PULSEs F.W. CF E-1 POINTS (CM}
IPRINT= NUMBER OF DATA TO BE PRINTED OR NO PRINTING

IPUNCH= PUNCH(1)} OR NOT(O0)

IHIND= WINDUWING{1) OR NOT(O)

UNITS ARE IN CM (CENTIMETERS)

X2 e aNeRananane s

COMPLEX CSI»CRGsCT»CTRsCA»CQsCARGSCARGLSCARGZ5CARG3s CARGS
COMPLEX CSIA,CRGA o
DIMENSION CSI(260),CRG(260),W(260),T(260),YA{260),YB(260)
DIMENSION CSIA(260),CRGAL260)
DATA  NsM» IPRINT, IPUNCHs IWIND / 2565 8, 20, 1» 1 /
DATA  AMUsHsRHO»SCATCS»ABSCS /0.92651.000,1.95E753427.5E—-85 0.0 /
DATA  WLMT,PL,BW»BACKCS / 2.5E12, 10.E~125 0.3s 3945.46E=8 /
{10 FORMAT (1H1)
11 FORMAT (5X»E12.5,5Xs4E14.5)
12 FORMAT (1H1,10(/),30X»*XXXXX DATA ARE PUNCHED IN CARDS XXXXX*)
PI=3.14159265358979
C=3.0E10
RFMED=1,62
V=C/RFMED :
HPLPLIZL0 = - e o e o e e e
HBW=BW/2.0
NHLFeN/2
NPRINT=NHLF+IPRINT
C —~- SPECTRUM OF SCATT. INT,
D0 90 IIl=l,3
‘ RHO=RHD/10.
H=H/10.
SCACSN=SCATCS*(1.-H)
TOTLCS=SCACSN+ABSCS
TRSPCS=(1.0~AMU)*SCACSN+ABSCS
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RT=RHO*#TOTLCS

RTR=RHO*TRSPCS
RA=RHO*ABSCS
DW=2 . *W MT/FLOAT(N)
FRCTN=]1.~1./FLOAT(N)
00 31 J=1,N
! W{JY=FLOAT(J=1)*%0W~FRCTN*WLHMT
| DKaw(J) /v
! CT=CHPLX(RTs-DK)
i CTR=CMPLX(RTR,~DK)
CA=CMPLX{RA»-DK)
CQ=CSQRT(3,*CTR*CA)
CARG1=RHO#BACKCS/ (6.%CT)
CARG2=(RHO*SCACSN) **2
CARGZ2=CARG2* (AMU*CQ-CTR)/(CQ*%2-CT*%2)
CARG3=(2.+3.*AMU) *CT+3,*CTR+6 . % AMU*CA
CARG3=CARG3/((2.%CQ+3.*CTRI*(CQ+CT}))
CARG4=(AMU*CQ+CTRI/(2.#CT*CTR)
CSI(J)=CARG2*{CARG3I-CARG4)
CSIA(J)=CARGL
c ——= RANGE-GATING
ARG=QS*HPL #%2+0,.25%(HBW/V)*%2
ARG=—ARG*W (J)**2
CRGIJ)IACSI(JI*EXP(ARG)*PL**2%8W/Y
CRGA(JI=CSIA(JISEXP (ARG )I*PL**2%8y/V
31 CONTINUE
IF ( IPRINT +.EQ. O ) GO TO 32
PRINT 10
PRINT 11, ( WOIlpCSI(INsCRG{I)s IuNHLFsNPRINT)
32 CONTINUE
00 36 J=1,N
YA{J)=CABS(CSI(J))
36 YB8(J)=CABS(CRG(J))
! CALL AUTOPLT (WsYALN)
CALL AUTOPLT(WsYB,N)

C ——= BLACKMAN WINDOW TO REDUCE THE LEAKAGE

[« FOR IMPULSE RESPONSE ONLYs NOT FOR THE RANGE=GATED
IF ( IWIND .EQ. O ) GO TQ 38
NHLF=N/2

D0 37 J=lsNHLF
ARG=PI*FLOAT(J)/FLOATINHLF)
WIND=2Q.42-0.5%COS(ARG)+0.08%COS(ARG#2,)
CSI(J)=CSI(JI*WIND
CSIA(J)=CSIA(J)*WIND
CSI(N+1-J)=CSI(N+1=-J)*WIND
37 CSIA(N+1-J)nCSIA(N+1~J)*WIND
38 CONTINUE
C ~=—= INVERSE FQOURIER TRANSFORH
CALL INVFT(CSIsMsdLMT,T)
CALL INVFT(CSIA,MsWlMT,T)
CALL INVFT(CRGsMy WLMT,T)
CALL INVFT(CRGAsM»WLMT,T)
DO 33 J=1,N
YA(JI)=REAL(CSI(J))
IF € YA(J) «LTe 0.0 ) YA(J)=0.0
YA(JY=YA(JS)+REAL(CSIAC(Y)) T
IF ( YA(J) .LT. Q0.0 ) YA(J)=0.0
YB(J)=REAL({CRG(J))
IF ( YB(J) LLT. 0.0 ) VYB(J)}=0.0
YB(J)=YB(J)+REAL(CRGA(J))
IF ( YB(J) .LT. 0.0 ) Y8(J)=0.0
33 CONTINUE
CALL AUTOPLT(TrYA»N)
CALL AUTGPLT(T»YBsN)
IF ( IPRINT .EQ. @ ) GO TO 34
PRINT 10
PRINT 11, ( T{(I)sCSI(I)sCRG{I)sI=NHLFsNPRINT)
34 CONTINUE
IF ( IPUNCH .EQ. Q0 ) GO TO 35
PUNCH 11, ( T(I)sCSI(I)sCRG(I},IulyN )
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CONTINUE

CONTINUE

PRINT 10

sTOP

END

SUBROUTINE INVFT(C,M,85T)

THIS ROUTINE CALCULATES INVERSE FOURIER TRANSFORH

. N
C(OUT) = 1/72+P1 ( SUN C(IN) *EXP( —=I*W(J)*T(K)) )*OW

K Jsl J

W{J)=(J=1)*0OW=B*(N=1)/Ns TI{K)=(K=N/2)*DT
OW=2%8/Ns OTa2Pl/Bs Na2k%M4, (=B,B8)=BAND WIDTH

NOTE ¢+ SPECIAL CONSIDERATIONS ON THE SYMMETRY OF FREQ.

COMPLEX CsCAsCB»CARG

OIMENSION C(1030),CA(1030),CB(L030)sT(1030)s1uK(20)
PI=3,14159265358979

N=2 k%M

FRCTN=1,~1./FLOAT(N}

NHLF=N/2

00 1 1I=1,N

CA(I)=C(I)

CB(I}=sCONJG(C(I))

CALL FFT2(CA,M»yIWK)

CALL FFRDR2{CA,MyIWK)}

CALL FFT2(CBsMsIWK)

CALL FFRDRZ2{(CB»MsIWK}?
ARGLl=B/7(PI*FLOAT(N))

00 2 I=1,NHLF
ARG2=~FLOAT(NHLF~I)*FRCTN*PI -
CARGaCMPLX(COS(ARG2)sSIN(ARG2))
C(I)=ARG1*CARG*CA(NHLF+1-1)
T(I)=—FLOAT(NHLF~1)#*P1/8

D8 3 I=1,NHLF
ARG2=FLOAT (1) *FRCTN#PI

CARG=CMPLX(COS(ARG2),SIN(ARG2))

CINHLF+I)=ARGL*CARG*CONJG(CB(I+1))
TINHLF+I)=FLOAT(I)*P1/B

RETURN

END

SUBROBUTINE AUTOPLTI{X»Y,sN)
PLOTTING AUTOMATICALLY SCALED

DIMENSION X(N)sY(N)

PRINT 10

FORMAT(1HY)

CALL PLOTA(X,N»YsN)
CALL PLOT3(1H#*sXs»YsN)
CALL PLOT&4(1,1H )
RETURN- T e
END
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App.P-7 Mie theory modified for asymmetrical size-distribution

OO OAOOOO0OOO OGO
o

11
12
13

14

15
16
1165
17
18
19

c

of spherical scatterers

PROGRAM MIE(INPUT,CUTPUT, TAPES=INPUT,TAPEG=QUTPUT, PUNCH)

MAIN PROGRAM MIE —— CALLS SUBROUTINE DAMIE
MODIFIED FOR ASYMMETRIC SIZE DISTRIBUTION BY K.SHIMIZU MAY 1977

THE PROGRAM CALCULATES ANGULAR SCATTERED INTENSITY ANO
SCATTERING PARAMETERS (C=~S. AND EFF.FACT.)
GAUSSIAN QUADRATURE INTEGRATION FOR SIZE DISTRIBUTION
RFR,RFI = REAL AND IMAGINARY PARTS OF REFRACTIVE INDEX OF SPHERE
RFMED = REFRACTIVE INDEX OF BACKGROUND MEDIUM (REAL)
WVLENG = WAVELENGTH IN VACUO (MICRON)
JX = NO. OF ANGLES IN 0-90, AJX = ANGLE STEP SIZE
TD1(1) = FIRST ANGLE IN DEGREES ... USUALLY 0.0
R = AVERAGE RADIUS OR MODE OF DISTRIBUTION (MICRON)
POR = FULL 30B-WIDTH OF SIZE DISTRIBUTION IN % OF MOOE RADIUS
PDR = 2.,86*STD.DEV/RADIUS (NOT OIAMETER)
PORL»PDRR=S5,0.410TH OF LEFT $ RIGHT OF MODE RaDIUS (POR=PDRL+PDRR)
IF SIZE DIST.IS NOT NEEDEDs SET N=l,LPDOR=RPOR=ZI(1)=0.0,WETI{(1)=21.0
GAUSS DATA ORDER ZIKI)sWEI(I)=(0.0)sRIGHTILEFTIRIGHTSLIRILS eseee
IPUNCH = DATA PUNCH(1) OR NOT(0)
[RANGE = SCATTERING RANGEs WHGLE(O)s FORWARD(1), BACKWARD(2)

COMMON IRANGE

DIMENSION SIVV1(100)sSIVV2(1G0),SIVV(200},SIVYN(200}

DIMENSION TD1(100),TD2(100)sTD(200},ELTRMX(4,100s2)

OIMENSION ZI(15),WEI(15)5DIST(15)

DIMENSION NS(5),IMAGE(1000)sXx(200),Y(200)

DATA  (ZI{I)»I=21515)/0.0,0.201194093997435,-0.201194093997435,
0.394151347077563,-0.394151347077563,0.570972172608539,
=0.57097217260853950.724417731360170s-0,724417731360170,
0.846206583410427,~0,848206583410427,0.337273392400706
=0.93727339240070650.987992518020485,~0.987992518020485/

DATA (WEI(I)sI=1,15)/0.202578241925561,2%0.198431485327111,

1 2%0.186161000115562,2%0.16626920581659452%0.139570677926154,

&S W

2 - 2*¥0.107159220467172,2%0.070366047488108,2%0.030753241956117/7

FORMAT(1H1)

FORMAT(15X»*MIE SCATTERING — - ~ SIZE DISTRIBUTED*)
FORMAT(//18Xs*(INPUT)I*/20Xs*AVERAGE RADIUS=*3 F10.6/20X,3DB-WIDTH=*
1% OF DISTRIBUTION IN £ OF AVE.RADIUS®*/25X,*LEFT »*,F7.2,

2% X RIGHT =%,F7.2,% %%

2 /20Xs*NO. OF SAMPLE PDINTS FOR S.D. INTEGRATION N=#%,13)
FORMAT(20Xs *WAVELENGTH(MICRON)=2*,F10.655X, *RFMED®#5sF 1065

1 /20Xs *dAVENUMBER=*,E1245,5X, *AV.SIZE PARAMETER=%,E12.5)
FORMAT(20Xs #SPHERE INDEX=(%5F10.8s*%)~I(%sE11.,5s%)%}
FORMAT(/18X,#(QUTPUT)*/20Xs*AVERAGED TOTAL CROSS—-SECTION =k9E1245,
1/20Xs #AVERAGED ABSORPTION C~S (MICRON#%2)=s,E12.5

1/20X»*AVERAGED MEAN COS(THETA) =*,E12.5)

FORMAT(20Xs #AREA UNDER S.0. CURVE =#*,F3.5)

FORMAT(//27Xs #ANGLE* s 7Xs*#S e Lo VERT o« %9 6X,) *NORM.SIV(DEE*/)
FORMAT(25XsF7¢25s5XsE124595X2E12.5) )

FORMAT(25X»*NORMALIZED SCATTERED INTENSITY VERT. (08)%7
1 TOXs*NORMALIZATION DENGMINATOR =%,£12.5//%

PI=3.,14159265358979

[PUNCH=0Q

IRANGE=0

TOl(l)=0.0

JX=31

AJX=3,0

R=1,010

RFR=1,58

RFI=0.0 . .
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WYLENG=0,53

DO 90 N=1,15514
PDRL=1,0

PDRR=1,0

IF (N.NE.1) 63 TD 25
PORL=PDRR=0Q.D
ZI{1)=0,0.

WEI{1)=1,0

25 CONTINUE
RRFR=RFR/RFMED
RRFI=RF1/RFHED
WAVENO=2,0%PI*RFMED/WVLENG
SOKINV=(1.0/WAVEND)**2
C=1.0823922
DO 31 J=lsdX
TOI(J)SFLOAT(J=1}*AJIX+TD1(1)
SIVV1(J}=0.0
SIVVZ(J1=0.0

31 CONTINUE
DISSUM=0.0
CEXT=0.0
CSCAT=0.0

| AMU=0.0

f I=1

]312 NPIsN+I ‘

' I100D=(FLOAT(NPEI)/2.0-FLDAT(NPLI/2}1%3,0
IF (I0DD) 90s313,314

313  DRsR*2,%PDRL/100.0
G0 TO 315

314  DR=R#*2.%PDRR/100.0

1315 . RI=R+DR*ZI(I}/C

| SPeWAVEND*R]

: CALL DAMIE(SPsRRFRsRRFIsTD1»JXsQEXT»QSCATSCTBRASHELTRMX)
DISTUI)=(lo—ZI([)*%2)%x2
DISSUMSDBISSUM+DISTII)*WEI(I)
CEXT=CEXT+WEI(I)* (QEXT#PI#RI*42)4DIST(I)
CSCATSCSCAT+WEL(I) *{QSCAT#PI*RI**2)#DIST(I)
AMU=AMU+WEILTI)*DIST(I)*CTBRQS/QSCAT
IF(IRANGE.EQ.2) GO TO 33
DO 32 J=1,dX

32 SIVVI(J)«SIVVI(II+WEI(I)I*SQKINV*ELTRMX (2,45 1) *DISTLI)

k IF(IRANGE.EQ.L) GO TO 35

133 CONTINUE :

’ DO 34 J=1pJX
TD2(J)=180.0~TD1(J)

34 SIVVZ(J)I=SIVV2(JI)+WET(T) *SQKINVHELTRMX (2545 2) *DIST(I)

35 CONTINUE
IF {I.EQ.N) 6O TO 38
I=I+1
G0 TO 312

38 CONTINUE

ic DATA ARRANGEMENT

; IF(IRANGE.EQ.2) GO TO 52

i JNmJIX
D0 51 J=lyJdN
TO(J)=TDI(S)

SIVV{J)=SIVV1(J)/DISSUN
ARGmSIVV(J)/SIVV(1)

51 SIVYN(J)=10.%ALDGL0(ARG)

: XMAX=0,0

XMIN==56,0

YMAX=0,0

YMIN==90.0

IF (IRANGE.NE.2) GO TO 54

52 JN=JX
08 53 J=1,JN
TD(JI=TD2UJ)

SIVV(JIsSIVV2(J)/DISSUM



53

54

55

56

73

74

75

90
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ARG=SIVV(J)/SIVVIL)
SIVVN(J)=10.*%ALOGLO(ARG?

AXMAX=10.0
XMIN®~7,5

YMAX==~150,0
YMIN=-180.0
IF (IRANGE.NE.O) GO TO 56

JN#2%JX=1
JXMl=JX—-1

0Q 55

J=lp,JXM1

JAmJX+J
JBesyX~J
TD(JA)=TD2(J4B)
SIVV{JA)=SIVV2(JB)/DISSUM
ARG=SIVV(JA)/SIVVI(1)
SIVVN(JA)=10,#ALOGLO(ARG)
XMAX=2Q,0

XMIN=~56,0

YMAX=0,.,0
YMIN=-~180.0
CONTINUE
SPAV=WAVENQ*R
CEXT=CEXT/DISSUM
CSCAT=CSCAT/ODISSUM
CABS=CEXT=CSCAT
AMU=AMU/DISSUNM

* PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINTING DATA. TO AVOID,ADD 63 TO 71

PRINT
PRINT

11
12
13,
14,
15,
16,

RsPORL, PDRRN
WVLENG,RFMED, WAVENGsSPAY
RFRSRFI

CEXT»CABS,ANU

lo5s DISSUM

17
18,

CONTINUE
PLOTTING.

00 72

PRINT

(TD(J)»SIVV{JIDsSIVUN(J)sdmlsdn)

' TO AVOIDs ADD GO TO 73

J=1sJN

Y{J)==TDLJ)

X{J)=SIVVYNI{J)

PLOTTING WITH VARIABLE AXES

11

CALL PLOTA(XsJINsYsJN)
CALL PLOT3(1H*5X,Y5JIN)

CALL PLOT4(36536H

SCATTERING ANGLE***DEGREE)

PLOTTING WITH FIXED AXES
NS{1)=1
NS(2)=NS{3)=NS(4)=0
NS(5)=2

PRINT

11

CALL PLOT1(NS»351557513)
CALL PLOT2(IMAGE, XMAX»)XMINs YMAX, YMIN)
CALL PLOT3(1H#*sX5YsJN)

CALL PLOT4(31,31H4

PRINT

19,

SCATTERING ANGLE***DEGREZ)
SIvv(l)

PRINT 13, R,PDRL,PDRR,N
PRINT 15,
CONTINUE
IF (IPUNCH) 76576574

PUNCH 13, R,PDRL,PORR,N

PUNCH

15,

PUNCH 18,

PRINT

75

RFRsRFL

RFRARF1I
(TD(J)»SIVV(JI,SIVVN(S)sJml,IN)

FORMAT(1H1,10(/),20X,*XXXXX DATA ARE PUNCHED IN CARDS
CONTINUE
CONT INUE

sTQP
END

XXXXX*)
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SUBROUTINE DAMIE (XsRFRIRFISTHETD,JIX)QEXT,QSCATSCTBRASSELTRMX)
MODIFIED FOR CDC 6400 - D A CHRISTENSEN
REFRACTIVE INDEX RF=» CMPLX{RFRs—RFI)
MODIFIED FOR FORWARD/BACKWARD SELECTION APR. 1977
5 FORMAT{ 9Xs* THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN
1 90.0 DEGREES. IT IS *,F15.4)
6 FORMAT (// 9Xs* PLEASE READ COMMENTS.*//)
7 FORMAT(//7 9X,*THE VALUE OF THE ARGUMENT JX IS GREATER THAN 100%*)
8 FORMAT(// 9Xs* THE VALUE OF RFI « X IS GREATER THAN 80.0. IT IS#*,
1 Fl5.4)
COMMON IRANGE
REAL XsRX»RFRIRFILQEXTsQSCATHT(5),TA(4)»TB(2),TC(2)
REAL TD(2)s TE{2)sCTBRQS

AMIE
AMIE
AMIE

AMIE
AMIE
AMIE
AMLE
AMIE
AMIE

ANIE
AMIE

REAL ELTRMX(4510052)»PI(35100),TAU(35s100)sCSTHT(100)»SI2THT(100ANIE

1, THETD (100}
COMPLEX RF>RRFIRRFX» WMLy FNASFNBs TCLsTC2, WFN(2)5ACAP(2)
COMPLEX FNAP,FNBP

EQUIVALENCE (WFN{1),TACL)), (FNA,TB(1)),(FNB»TC(L))
EQUIVALENCE(FNAP,TD (1)), (FNBPSTE(1))
IF ( X .LE. 100 ) GO TO 20
WRITE(6,7)
WRITE(656)
CALL EXIT
20 RF = CMPLX{RFRs=RFI)
RRF = 1.0 /RF
RX = 1.0 /X
RRFX = RRF * RX
DO 30 J = 1,JX
IF ( THETD(J) .LT. 0.0 ) THETD(J) = .ABS(THETD(J))
IF ( THETD(J) .GT. 0.0 ) GO TO 23
CSTHT(J) = 1.0 »
SI2THT(J) = 0:0° - T T T T e
60 TO 30
23 IF { THETD(J) .GE. 90:0 ) GO TO 25
TC1) = { 3.14159265358979 % THETD(J})/180.0

CSTHT(J) = COS(T(1))
SI2THT(J)} = 1.0 - CSTHT(J)**2
GO TO 30

25 IF ( THETD(J) .GT. 90.0 ) 60 TO 28
CSTHT(J) = 0.0

SI2THT(J) = 1.0
GO 70 30
28 WRITE(6,5) THETD(J)
WRITE(656)
CALL EXIT

30 CONTINUE
00 35 J = lyJdX
PI(1sd) = 0.0
PI(2,J) = 1.0
TAU(L,Jd) = 0.0
TAUC2sd) = CSTHT(J}
35 CONTINUE
T(1) = COS(X)

T(2) = SIN(X)

WMl = CMPLX( T{1),-T(2))

WFN(L) = CHPLX(T(2),T(1))
WEN(2) = RX « WFN(1) - WMl

T(l) = RFI * X

IF ¢ T{1) +GT. 80.0 }) GO TO 40

T{(3) = 0.5 *  EXP(T(1))}
Tl4) = Q.25 /T(3)

TE1) = T(3) + T(4)

T(2) = T{3) - T{(4)

T(3) = T(2)%*2

T(2) = T(1) * T(2) ’ . .
TL1) = T(3)

T(3) = RFR * X

T(4) = SINIT(3))

T{3) = COS(T(3))

TEL) = T{1l) + T(4)=*=2

AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE

TAMTET

AMIE
AMIE
AMLE
AMIE
ANMIE
AMIE

AMIE

AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
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T(3) = T(3) * T(4)

ACAP(1) = CMPLX(T(3},T(2))/7(1)

63 TO 50

ACAP{1) = CMPLX( 0.0 ,1.0 )

WRITE(6,8) T(1)

WRITE(5,6) .

ACAP(2) = ~ RRFX + (1.0 J/J(RRFX = ACAP(L)))

TCl = ACAP(2) * RRF + RX

TC2 = ACAP(2) = RF + RX

FNA = (TCLl*TA(3) = TALLY)/(TCI*WFN(2) — WFN{1))
FN8 = ( TC2*TA(3) — TA(LI)/(TC2 * WFN(2) - WFN(1)}
FNAP = FNA

FNBP = FNB

T(1) = 1.50

TB(1) = T(1l) * TB(1)

TB(2) = T(1) * TB(2)

TC(1) = T{(1l) * TC(1l}

TC(2) = T{1) * TC(2)

IF {IRANGE.EQ.2) GO TO 602

00 601 J=l,dX

ELTRMX(1sJds1) = TB(1) * PI(2,J) + TC(1) #* TAU(2,J)
ELTRMX(25J,1) = TB(2) ¢ PI(2,J) + TC(2) * TAU(2,J)
ELTRMX(35J01) = TC(1) * PI{2,J4) + TB(1l) * TAU(2,4)
ELTRMX(4sd21) = TC(2) * PI(25Jd) + TB(2) * TAU(2,J)
CONTINUE

IF (IRANGE.EQ.l) GO TO 603

DO 60 J=l,JX

ELTRMX(15Jd52) = T3(1) * PI(25,J) = TC(1l)} * TAU(2,3) T
ELTRMX{2sJ52) = TBUL2) * PI(2,Jd) = TC(2) * TAU(24J)
ELTRMX(354s2) = TCLL) * PI(2,J) = TBI1) * TAU(2,J)
ELTRMX(42d,2) = TCL2) & PI(2,4) ~ TB(2) * TAU(2,4)
CONTINUE

CONTINUE

QEXT = 2.0 * ( TB(1) + TC(1))
QSCAT a(TB(1l)**2 + TB{2)4%2 + TC(1)#*%2 + TC(2)**2}/0.75
CTBRQS = 0.0

N =2

T{l) = 2Z%N -~ 1
T(2) = N ~ 1
T(3) = 2 *# N + 1

DO 70 J = 1,JX

PI(3,Jd) = (T(L)*PI(2,J)*CSTHTIJI-N*PL(15Jd))/T(2)

TAU(3,J) & CSTHT(JII*(PI(3,J)=PI(1sJ))=T(LI*SI2THT(J)I*PLL(254)+
1 Tau(l,4)

70 CONTINUE

ANl = WEN(1)

WEN(1) = WEN(2)

WEN(2) = TC(L)*RXAWFN(1) - WMl

ACAP(1) = ACAP{2)

ACAP(2) = =N # RRFX + (1.0 /(N#RRFX—ACAP(1)))

TCl = ACAP(2)%RRF + N#*RX .

TC2 = ACAP(2)*RF + N#RX

FNA = (TC1*TA(3)-TA(1)}/(TCI*WFN{2) = WEN(1))

FNB = (TC2%TA(3)-TA(1))/(TC2*WFN{2) — WEN(1))

T(5) = N I -

T(4) = T(i)I(T(;)*T(Z))
T(2) = (T{2)*(T(5) ¢ 1.0 ))/T(5)

CTBRQS = CTBRQS + T(2)«{(TD(1)*TB8(1) + TD(2)*TB(2) + TE(LI*TC(1) +

1 TEC(2)*TC(2)) + TL4&I*(TD(LI*TE(L) + TD(2)*TE(2))
QEXT = QEXT + T(3)*(T3(1)+TC{1)})}

TC4) = TBULl)*%2 + TB(2)#%%2 + TC{1)**2 + TC(2)¢*2
QSCAT = QSCAT + T(3) *T(4)

T(2) = N*(N+1)

TL1) = TU3)/7(2)

K = (N/2)%2

IF (IRANGE.EQ.2} GO TO 802

AMIE
AMIE
AMIE

AMIE

AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE
AMIE

AMIE
ANIE
AMIE
AMIE
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801

802

75

80
803

30

100

101

115

120
1121

122
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DO 801 J=lsJX

ELTRMX{1sJp L) sELTRMX(1sJp 1)+ T(LI*(TB(LI*PL(35J)+TCLL)*TAUL3,J))
ELTRMX(25ds 13mELTRMX (25 dp 134T (L)% (TB(2)%P1(3,J)+TC(2)*TAUL35J4))
ELTRMX(35JsL)mELTRMX(32ds1)«T(L)*(TC(LI*PL{3,J}+TB(LI+TAUL3,4 )
ELTRMX(4p Jo 1) wELTRMX (42 ds L) +T(L1)*(TCL2)*PI(35J)+TB(2)*TAUL3,J))
CONTINUE

IF (IRANGE.EQ.1) GO TO 803

DO 80 J=1,JX

IF ( K «EQs N ) GO TO 75
ELTRHX(I)J,Z)'ELTRHX(I:J;Z)+T(1)*(TB(l)*PI(3’J)-TC(l)*TAU(3pJ))
ELTRMX(25Js2)sELTRMX(25Js2)+T(L)#(TB(2)%PI(3,J)-TC(2)*TAU(35J))
ELTRMX(35Js2) sELTRMX (354920 +T{1I#(TC(L)I*PI(35J)~TB(L)+TAUL3,J))
ELTRMX (4, Js2) wELTRMX(42ds2)+T (1% (TC(2)%PL(3,J)-TB(2)*TAUC35J))
60 TO 80

ELTRMX(1sJs2) sELTRMX(15Js2)+T(LI*(~TB(1)}#PI(35J)+TCI{L)*TAU(35J]})
ELTRMX(25Js2) ELTRMX (2540204 T{1)*(~TB{2)%P1(3,J)+TCL{2)%TAU(35J))
ELTRMX(35J52)=ELTRMX(3,dp2)+T{L)*(=TC(L)#PI(3,J)+TBLLI*TAU(3,4))
ELTRMX{4sdp2)=ELTRMUX{4sds2)+T(LIx(-TC(2)*PI(3,J)+TB(2)*TAU(3,J))
CONTINUE

CONTINUE

IF( T(4) .LT. 1.0£-14 ) GO TO 100

N =N+ 1

00 90 4 = 154X

PIC1,4) = PI(2,4)

PI(2s4) = PL(3,4)

TAUL1,d) = TAU(2,J4)

TAU(2,4) = TAU(3,d)

CONTINUE

FNAP = FNA

FNBP = FNB

GO TO 65

CONTINUE

IF (IRANGE.EQ.2) GO 70O 121

K=l

DO 120 J=1,JX

DO 115 I = 1,4

T(I) = ELTRMX{I»JdsK)

CONTINUE -
ELTRMX(2,d5K) TCLY*%2 + T(2)**2

ELTRMX(1sJsK) T{(3)*%2 + T(4)**2

ELTRMX(35JsK) TC1L)RT(3) + T(2)*T{4)

ELTRMX (45 JsK) T(2)%T(3) ~ T(4)*xT(1)

CONTINUE

IF (IRANGE.EQ.l +DRe. KeEQ.2) GO TO 122

Kn2

G0 TO 101

CONTINUE

T(1) = 2.0 * RX#&%2

QEXT = QEXT * T{l)

QSCAT = GQSCAT *= T(1}

CTBRQS = 2,0 * CTBRQS * T(1l)

RETURN

END
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Name:
Born:
Father:
Mother:

Secondary
School:

College:

VITA

Koichi Shimizu
May 10, 1950, Otaru, Hokkaido, Japan
Masatoshi Shimizu

Aiko Shimizu

Choryo Senior High School, Otaru, Hokkaido, Japan
Degree

Hokkaido University B.Eng., 1973

University of Washington, Seattle M.S.E.E., 1976
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