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Abstract 

REMOTE SENSING OF r,lICROPARTICLES BY LASER SCATTERING 
FOR MEDICAL APPLICATIONS: APPROACH WITH TRANSPORT 

THEORY AND PICOSECOND OPTICAL RANGE-GATING 

By Koichi Shimizu 

Chairperson of the Supervi sory Committee: Professor Akira Ishimaru 
Electrical Engineering 

Three techniques were developed for the remote sensing of micro

particles by laser scattering. They were applied to the non-invasive 

probing of biological particles, namely bacteria in urine, cataracts 

in the eye, and platelets in blood, respectively. 

(1) The Fourier transform inversion technique determines the 

size distribution of tenuous scatterers from the forward scattering 

pattern. This technique consists of differentiating operations and 

Fourier transforms. It does not require matrix-inversion or an a-

priori knowledge of functional forms of the size distribution, and 

it can take advantage of other techniques in spectral analysis such 

as the Fast Fourier Transform or digital filtering. Susceptibility 

to noise was checked by adding the random noise to the scattered 

intensity pattern simulated by the Rayleigh-Debye approximation. 

Typical error for 10% noise was within a few percent for mean and 

standard deviation in the estimation of Gaussian distribution using 

1024 points FFT. Size distributions were determined for latex 

spheres with known sizes and bacteria in homogeneous and highly 
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aggregated conditions. A resolution comparable to the wavelength of 

the probing light was demonstrated. 

(2) The backward scattering pattern analysis technique deter

mines an average size and variance of tenuous scatterers from the 

backward scattering pattern. With an optical range-gating technique, 

scattering patterns could be measured in backward angles while eli

minating the extraneous scattering and corre~tions for the change of 

scattering volumes. Characteristic patterns for different sizes of 

scatterers were obtained with latex spheres with diameters less and 

more than the wavelength of the probing light. 

(3) The pulse backscattering technique evaluates the scattering 

and absorption characteristics of scatterers in a dense medium by 

means of backscattered pulses. Using the Kerr effect ultrafast shutter, 

the shapes of backscattered pulses were observed with a resolution of 

picoseconds. The general pulse shape is characterized by a rapid rise 

followed by a slow asymptotic decay. When the scatterer is absorbing 

the decay part suffers noticeable attenuation. The shapes and magni

tudes of the observed pulses were in excellent agreement with the 

theory. The feasibility for this technique to detect the aggregation 

of particles in a closed system was examined. 

Along with the development of the above techniques, the following 

results were obtained. 

(a) The scattering patterns calculated by the Rayleigh-Debye 

approximation are improved considerably, if the approximation is modi

fied to include the relative refractive index of the scatterers in 

the Fourier Transform kernel. 



(b) The equation of transfer was solved for the time-dependent 

specific intensity under the diffusion approximation and a closed 

fo.rm expression was obtained for the pulse beam wave incidence on a 

slab of dense media. This solution includes as its asymptotic cases, 

semi-infinite media, plane wave incidence and the point source. 

(c) Four phases of scattering were observed in the scattering 

patterns, in the graph of scattered intensity as a function of scat

terer density and in the visual observation of a collimated light beam 

in the scattering medium. They are single scattering, first order 

multiple scattering, multiple scattering and diffusion. According 

to this classification, the range of validity was clarified for the 

first order multiple scattering and diffusion approximations. 

(d) The ratio between the velocities of pulse propagation in 

diffuse and non-diffuse media, or the slowing rate of light velocity 

due to the diffusing propagation was measured to be 131. 
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Chapter I 

INTRODUCTION 

Remote sensing is generally defined as an acquisition of 

information about an object or phenomenon which is not in intimate 

contact with the sensing device. Radar and sonar are familiar 

examples. During the past decade, the rapid growth of technology 

has widened the horizon of applications of this methodology in 

various fields such as astronomy, meteorology, oceanography, etc. 

Among the remote sensing techniques, lidar (light detection and 

ranging) has become increasingly important due to its various advan

tages over the microwave radar. 

Following the principle of bioengineering, this technique, 

developed in the physical sciences, has been applied as a non-invasive 

diagnostic technique in biomedical sciences, only recently. It may 

answer the strong need for the efficient detection or quantitative 

assessment of biological microparticles in vivo, such as bacteria in 

body fluids, blood cells in whole blood, etc. Since these natural 

media have microparticles randomly distributed in time and space, they 

are called random media and analyzed in their statistical descriptions. 

The object of this dissertation is the development of the techniques 

which apply the lidar method to the remote sensing of biological 

microparticles in random media. 

The theory is mainly based on t\'IO concepts, namely transport 

theory and picosecond optical range-gating. Transport theory, also 
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called radiative transfer theory was initiated by Schuster in 1903. 

It deals with the transport of energy through the scattering medium 

rather than the propagation of the field given by Maxwell's equa

tions. The basic differential equation is called the equation of 

transfer which is equivalent to Boltzman's equation or Maxwell

Boltzmann collision equation. Generally in random media, it is 

assumed that the correlation between fields is negligible and that 

the addition of powers holds rather than the addition of fields. 

Therefore, the equation of transfer is solved to obtain a mathemati

cal description of the light scattering from biological random media. 

Another concept, picosecond optical range-gating, first reported 

by Duguay and Mattick (1971), is an optical ranging technique \vhich 

is capable of a distance resolution on the order of a millimeter 

(Bruckner, 1976). An ultrashort pulse of light, 5-10 psec in dura

tion, generated by a mode-locked laser (De~1aria, 1969) is directed 

toward the target of interest and the backscattered pulses are recor

ded by means of an ultrafast shutter (Duguay, 1969) coupled to a 

suitable detector. By judicious gating of the shutter, extraneous 

backscattering from foreground or background clutter, which would 

otherwise obscure the desired echo pulses, can be blocked from the 

detector. Thus, an object imbedded in or obscured by a highly 

scattering medium can be made visible. In this thesis, we take 
/ ' 

advantage of the two aspects of range-gating, namely the ultrafast 

sampling and the picosecond time-resolution. 

With these concepts, the following remote sensing techniques are 
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proposed, and their applicability is verified theoretically and 

experimentally. 

(1) Fourier transform inversion technique: This technique determines 

a size distribution of tenuous scatterers from the forward scat

tering pattern. This is applied to probe the condition of 

bacteria in their living environments such as urine, water, etc. 

(2) Backward scattering pattern analysis: With the range-gating 

technique, backward scattering patterns for tenuous media are 

measured and an average size of scatterers is estimated. This 

technique is applied to investigate the microstructure of 

cataracts. 

(3) Pulse backscattering from dense media: This technique probes a 

dense media with an ultrashort pulse of a picosecond duration. 

From the backscattered pulse, information on the scattering media 

can be obtained, such as scatterer density, scattering charac

teristics of the constituent scatterers, etc. This is applied 

to assess the platelet aggregation in blood. 

Organization of the Thesis 

According to the subject to be discussed, this thesis can be 

divided into two parts. Chapters II-IV deal with light scattering 

from tenuous media and Chapters V-VIII from dense media. 

Chapter II discusses the modification of Ray1eigh-Debye approxi

mation to extend its range of validity. It is shown that the 
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scattering patterns calculated by the Raleigh-Debye approximation 

are considerably improved by the modification. This modification 

widens the applicable range of the technique developed in the next 

chapter. 

Chapter III presents the Fourier transform inversion technique 

which determines the size-distribution of scatterers (apertures) 

from the scattering pattern (diffraction pattern) of a collection of 

scatterers. With simulated data from a known size-distribution, the 

technique is tested for accuracy, resolution and susceptibility to 

error in input data. Then, this technique is applied to latex spheres 

of known sizes and bacteria of different shapes. Its sensitivity to 

the aggregation of bacteria is investigated. 

Chapter IV deals with the measurement and analysis of backward 

scattering patterns. The experimental apparatus is described which 

enables the ultrafast sampling in a picosecond time-scale by the 

optical range-gating technique. The effectiveness of the picosecond 

sampling is shown in its noise-limiting capability and elimination of 

the correction for the observation geometry. The characteristic 

scattering patterns for different sizes of particles are measured and 

the applicability of this technique to the estimation of particle size 

is demonstrated. 

Chapter V presents a solution of the diffusion equation for beam 

wave incidence on a slab of dense random media. It is shown that this 

general solution includes the cases of semi-infinite media, plane wave 

incidence and the point source, as its asymptotic cases. Using these 
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solutions, the scattered pulse shape for the impulse incidence is 

calculated and analyzed. The results of this chapter give a theo

retical basis for Chapters VI, VII and VIII. 

Chapter VI discusses a classification of different types of 

scattering into four groups, namely single scattering, first order 

multiple scattering, multiple scattering and diffusion. These four 

phases are demonstrated in scattering patterns, graphs of scattered 

intensity as a function of scatterer density, and visual observations 

of a collimated beam in the scattering media. The range of validity 

is investigated for the first order multiple scattering approximation 

and diffusion approximation. 

Chapter VII discusses the measurement of light velocity in diffuse 

media. Off-axis backscattered pulse shapes are measured at different 

angles with tenuous and dense media. Pulse shapes from tenuous and 

dense media are analyzed. From the difference in the arriving-time 

of the pulse peak, the slowing rate of light velocity in dense media 

is obtained. and the theoretically predicted slowing rate 13: is 

verified. 

Chapter VIII presents a remote sensing technique for dense media 

by picosecond pulse-backscattering. The range-gating technique is 

formulated and receiving pulse shapes are calculated using the dif

fusion solutions obtained in Chapter V. Experimental facility is 

described and observed pulse shapes are analyzed. The agreement 

between theory and measurement is shown both in the shape and the 

magnitude of the pulse. Sensitivity for scatterer absorption and 
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aggregation is discussed. Finally~ the feasibility for the. remote 

sensing of dense media is shown, particularly for the detection of 

platelet aggregates in transfusion blood. 

Chapter IX summarizes the significant results of this thesis 

and indicates the areas to be further studied. 

This research falls into the broad field of light scattering 

studies and the results presented in this thesis can be applied to 

other purposes, which include the optical properties estimation for 

particles in a fluid or gaseous surrounding such as· microbial par

ticles, physiological particles, chemical particles, air pollutants, 

rain, fog, ice particles, etc. 



Chapter II 

~mDIFICATION OF RAYLEIGH-DEBYE APPROXH1ATION 

11.1. INTRODUCTION 

Rayleigh-Debye approximation, also called Rayleigh-Gans or Born 

approximation, has been used in many fields with practical advantages 

such as mathematical simplicity, applicability to any shape and struc

ture, etc. However, it is only valid under the following two conditions, 

i.e, the relative refractive index of the scatterer is close to 1 and 

the phase shift of the wave through the scatterer is much less than 1. 

See Eqs. (2-1) and (2-2). As these conditions are violated, the error 

of the approximation increases rapidly. The extensive study on the 

range of validity has been reported by Kerker (1969, p. 427). 

As can be seen in the derivation, the scattering pattern, 

(Eq. (2-4) also called a form factor) calculated by this approximation 

is independent of the refractive index of the scatterer, which is not 

true. This chapter discusses the modification of the Rayleigh-Debye 

approximation to. include the refractive index in the Fourier kernel 

of the form factor. The justification for this is given by two dif

ferent derivations. The improvement due to this modification is 

demonstrated by comparing the scattering patterns calculated by modi

fied approximation, regular approximation and Mie theory which is 

exact for spherical scatterers. This modification extends the valid 

range of the Fourier transform inversion technique presented in 

Chapter III. 
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IL2 THEORY 

In the Rayleigh-Debye approximation, it is assumed that· 1I 

each volume element (of a scatterer) gives Rayleigh scattering, and 

does so independently of the other volume elements. The waves scat-

tered in a given direction by all these elements interfere because of 

the different positions of the volume elements in space. 1I (van de 

Hulst, 1957,p. 86). Therefore, with the conditions 

1 nr - 1 1 « 1 

2koDlnr - 1 1 « 1 

(2-1) 

(2-2) 

the scattered intensity for perpendicular polarization is given by, 

(2-3) 

P (e) = (1 /V2) 1 f exp (iO) dV 12 (2-4) 

where nr is the relative refractive index of the scatterer, ko is 

the propagation constant of the surrounding medium of the scatterer. 

D is a typical dimension of the scatterer such as its diameter, V is 

the volume of the scatterer, R is the distance from the scatterer to 

the observation point, e is the scattering angle, and 0 is the 

phase delay of the volume element dV. The detailed discussion can be 

found elsewhere (Kerker, 1969, p. 415). pee) in Eq. (2-4) is called 

a form factor and represents the interference effect mentioned above. 

Since the scattering pattern or the angular distribution of scattered 

intensity is of interest, the following discussion is mainly 
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concentrated on this form factor pee) . 

Fig. 2-1 illustrates the phase delay o. TvJO wavelets are scat-
A A 

tered by the volume elements at 0 and 01
• i and 0 are unit vectors 

in the directions of propagation for incident wave and scattered wave, 

respectively. As shown in the figure, the difference in their path 

length is the distance B-O-C. Thus, the phase delay between the volume 

elements is given by 

o = k (i - a) • r (2-5) 

where Ii - ~I = 2 sin(e/2) (2-6) 

If the shape of the scatterer is similar to a sphere, the phase delay 

occurs mostly in the scatterer. Therefore, for the propagation 

constant k in Eq. (2-5), the k of the scatterer (nrko) is a better 

approximation than that of the surrounding medium (ko = 2~/A). Note 

that in the R-D approximation, the latter has been used with the con

dition Inr -11« l. 

This can also be shown in a different method of formulation of 

the R-D approximation. First we follow the formulation to make it 

clear where to modify it. Starting from Maxwell IS equations, the 
-scattered field Es at an observation point r , is given by 

where G (r,r') = exp (iklr - r' 1)/(4~lr - r' I) (2-8) o 

is the free space Green's function, £r(r l
) is the relative dielectric 

constant at the position r' within the scatterer, and E(r') is the 
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t 
A 

A • 
I 

Fig. 2-1 Geometry for Rayleigh-Debye scattering: 

--r
I 

Phase delay 0 

Fig. 2-2 Geometry for Ray1eigh-Debye scattering: 
Incident and scattered field 
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total electric field inside the scatterer. Assume that the phase term 
in the Green's function is approximated by 

(2-9) 

where r = Ro. Fig. 2-2 shm'ls the geometry. The field inside the 
scatterer is approximated by the incident field, i.e., 

(2-10) 

A 

where ei is the unit vector in the direction of polarization of the 
incident field. Then, we obtain the formula for the R-D approximation 

exp(ikoR) k~ {o x (0 x e.)} vp1/2(e) - - R 41T 1 (2-11) 

(2-12) 

Note that the propagation constant in Eq. (2-12) is that of the sur
rounding medium (ko). In the following derivation, it is modified to 
be that of the scatterer (nrko). 

To satisfy the condition Irl» Irl I in Eq. (2-9), the 
reference origin 0 must be located close to all the volume elements, 
most likely in the center for the sphere-like scatterers. Then, most 
of the phase difference kr' • 0 falls inside the scatterer. Thus, 
the phase of Green's function is better approximated by 
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k R - n k r' oro • 0 (2-13) 

In addition, the field inside the scatterer is better approximated with 

the propagation constant of the scatterer, i.e., 

(2-14) 

Therefore, the modified R-O approximation is given by 

exp(ikoR) k~" 1/2 
R 411" {- 0 x (0 x e i )} V P ( e) (2-11 ) 

(2-15) 

This modification may be well understood by comparison with other 

methods. In the regular R-O approximation, the incident and scattered 

wave are assumed to propagate with the constant ko to and from the 

scattering volume element, even in the scatterer. In the WKB approxi

mation, the propagation constant for the incident wave in the scat-

terer is nrko' and that of the scattered wave is ko While, in the 

modified R-O approximation, both of them are n k in the scatterer. r 0 
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11.3 RESULTS AND DISCUSSION 

Fig. 2-3 shows the scattering patterns or the form factors cal

culated by the modified R-D approximation (a), ~1ie theory (b), and 

the regular R-D approximation (c). Mie theory gives exact solutions 

for spherical scatterers. The scatterer in this case is a 1 ~m 

diameter dielectric sphere with the relative refractive index of 

1.60/1.33. This corresponds to a latex sphere suspended in water, 

and illuminated by He-Ne laser (n = 0.6328 ~m). This is the case of 

our experiment discussed in the next chapter. Although the conditions 

of the R-D approximation given in Eqs. (2-l)(2~2) are not satisfied 

(nr - 1 = 0.20, 2koD(n r - 1) ~ 5.3), Fig. 2-3(a) is very similar to 

Fig. 2-3(b), especially in the small angle region. Comparison between 

Figs. 2-3(a) and 2-3(c) shows the improvement due to the modification 

proposed here. Note the closeness of the scattering angles of extrema 

(lst minimum, 2nd maximum, etc.) \...nichare irrportant parameters for practi

cal applications, such as size estimation of scatterers (Kerker, 1969, 

p. 175, p. 344). 

Figs. 2-4 and 2-5 show scattering patterns calculated by the same 

theories as Fig. 2-3 but with different diameters and relative refrac

tive indices. They are 1 ~m and 1.60/1.0 for Fig. 2-4, and 2~m and 

1.60/1.33 for Fig. 2-5, respectively. These parameters are well beyond 

the range of validity of the R-D approximation, i.e., for Fig. 2-4, 

nr - 1 ~ 0.60,2kD(nr - 1) = 12. And for Fig. 2-5, nr - 1 ~ 0.20, 

2kD(n r - 1) = 11. In these cases, the scattering patterns of (a)ls 

are not similar to (b)'s as much as in the case of Fig. 2-3. However, 
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the improvement by the modification is still evident, especially in the 

small angle region and in the angular positions of extrema. Note the 

completely different patterns of (C)IS given by the regular R-D 

approximation. 

The~ror in a large angle region may be attributed to the refrac

tion and reflection effects at the boundary of the scatterer which 

were neglected in the R-D approximations, both regular and modified. 

Inclusion of these effects is not as simple as the modification made 

here. Up to here, we have not taken into account the size.distribution 

of the scatterers, which is common in practical applications particu

larly in the natural world. With the size distribution, the scattering 

pattern of the modified R-D approximation becomes very similar to that 

of the Mie theory. An example is shown in Fig. 2-6. 

In conclusion, the modification proposed in the previous section 

was proved to be effective~at least for the scattering pattern of the 

latex microspheres in water7 in the range of optical scattering. In 

order to justify the modification for general cases, further study 

is required. 
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Chapter III 

FOURIER TRANSFORM INVERSION TECHNIQUE: 

ESTIMATION OF SIZE DISTRIBUTION OF BACTERIA 

111.1 INTRODUCTION 

According to the terminology of mathematical physics, problems 

can be categorized into two groups, namely, direct problems and inverse 

problems. The former seeks the consequences of given causes, while 

the latter tries to obtain the unknown causes by means of observable 

consequences. In the field of optical scattering, the direct proble~· 

is to predict the propagation and scattering of light on the basis of 

a known constitution of sources or scatterers, while the inverse pro

blem is to deduce features of sources or scatterers from the scattered 

light. The process of obtaining the solution of an inverse problem is 

called inversion, and the technique to perform the inversion is called 

the inversion technique. This chapter deals with the inversion tech

nique which determines the size distribution of scatterers from a 

scattering pattern. 

Various techniques have been developed for the inverse scattering 

problems, but every technique has some disadvantages. Some need a 

large matrix-inversion, a judicious choice of parameters, a priori 

knowledge of scatterers, initial guess of the distribution, etc. 

(Ishimaru, 1978a, p. 508). Some techniques such as Backus-Gilbert 

technique do not require these but use involved mathematics. 
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Using the Mellin transform, Shifrin has developed an inversion 

technique for Rayleigh-Debye scattering, which does not have the 

above disadvantages. (Shifrin, 1965, p. 131.) This technique is simi

lar to the one developed by Schmidt for the small angle X-ray scat

tering (Schmidt, 1965, p. 169). Recently, Fymat has also reported an 

inversion technique for Rayleigh-Debye scattering using the Bateman

Titchmarsh-Fox integral transform (Fymat, 1979). All these techniques 

are based on the invertibility of the special mathematical form of the 

Rayleigh-Debye approximation. Therefore, their applicability is 

restricted by the conditions of the Rayleigh-Debye approximation 

(Shifrin, 1966). 

In this chapter, an inversion technique is developed with a com

pletely different derivation from those mentioned above. This technique 

is general and applicable to one, two, and three dimensional scatterings, 

such as the diffraction of slits and apertures, as well as the scat

tering of particles. The inversion formula for the three dimensional 

case is shown to reduce to the formula obtained by Schmidt (1965). It 

is also shown that the integral transform in the inversion formula can 

be converted to a Fourier transform, which facilitates the inversion 

process rather than using the special transforms mentioned above. 

The idea of this technique is as follows. The scattering pattern 

of a single scatterer is approximately proportional to the Fourier 

"transform of the auto-correlation of the dielectric constant of the 

scatterer. The auto-correlation function has discontinuities at the 

boundary of the scatterer. Therefore, transforming and differentiating 
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operations on the scattering pattern yield delta-functions at the 

boundary. Since the linear addition holds for the scattered intensity 

of randomly distributed scatterers, the operations turn the addition 

into the convolution of the delta-function and the size-distribution 

function. This technique is applied to one-, two- and three-dimensional 

cases using an appropriate combination of linear operations and trans

forms, such as Fourier, Hankel and spherical-Bessel transforms. The 

spherical-Bessel transform can be converted to Fourier transform. As 

can be seen -in its derivation, this technique does not require matrix

inversion or a priori knowledge of functional forms of the size distri

bution, and it can take advantage of other techniques in spectral 

analysis such as the Fast Fourier Transform or digital filtering 

technique. Since the 3-dimensional case of this technique is based on 

the Rayleigh-Debye approximation, its range of validity is limited oy 

the conditions of the R-D approximation. However, it is shown that 

the valid range is extended considerably if the modification discussed 

in Chapter II is taken into account. 

Bacteria count in urine is now routine for clinical microbiolo

gists, urologists and obstetricians. The current technique consists 

of the processes of dilution, incubation (-24 hours), colony count and 

identification by susceptibility to different agents. This technique 

is time consuming, expensive, and also likely to introduce errors 

through manual processes. Many attempts have been made to improve and 

automate the processes. However, none of them seems to have been 

widely accepted. Our ultimate goal is the development of a rapid 

automated technique which identifies and counts bacteria in urine. 
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This technique will allow the mass-screening of urine samples and 

could also be applied to the general microbiological problems, such 

as the detection of micro-organisms in water. 

In recent years, the usefulness of differential light scat

tering technique has been recognized in biological research, parti

cularly in cytology and microbiology. However, its application to the 

clinical practice has been restricted by the problems commonly asso

ciated with natural particles, namely their size distribution, aggre

gation and existence of impurities. In urine, there are many kinds of 

particles in addition to the bacteria of interest, i.e., other kinds 

of bacteria, cells, cell fragments, crystals and other impurities. 

The technique presented in this chapter can count the bacteria 

of interest exclusively separated from others by their sizes. 
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II I. 2 THEORY 

111.2.1 Inversion for Size Distribution Estimation 

If the locations and sizes of scatterers are randomly distributed, 

the correlation between the scattered fields from individual scat-

terers can be neglected. Therefore, the total scattered intensity 

I(e,A) is given by the sum of the intensity rather than the field 

(Ishimaru, 1978a, pp. 36,504), i.e., 

00 

I(e,A) = f I(e,A,D) n(D) dO 
o 

(3-1) 

where I(e,A,D) is the scattered. intensity from the scatterer with the typi

cal dimension 0, such as the diameter. e is the scattering angle 

and A is the wavelength of the incident light. n(D) is the size 

distribution of scatterers.or n(D) dO is the number of scatterers 

per unit volume having the dimensions between 0 and O+dD. The 

inverse problem is to obtain the size distribution n(D) from the 

measurements I(e,A) using the known function I(e,A,D). 

111.2.2 Scattered Field 

In some scattering approximations, the scattered field is given 

by the Fourier transform of the field at the scatterer, namely 

Fraunhofer diffraction (Goodman, 1968, p. 61) and Rayleigh-Debye scat

tering (Ishimaru, 1978a, p. 22). 

(a) l-dimension, such as slits or rectangular apertures 

(3-2) 
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(b) 2-dimension, such as holes 

(3-3) 

for circular symmetry 

00 

E(k~) = C3 £ E(p') Jo(kpP')p'dp', - B [E(p')] (3-4) 

(c) 3-dimension, such as particles 
_ 00 ik • rl 

E(ks ) = C4ffJ E(r') e s dr ' (3-5) 
-00 

for spherical symmetry 

(3-6) 

where k = kx/z, k = ky/z, k = kp/z, k = 2nn/A x y p 

A 

k = ki' = k(i - 0), I U;! = 2 sin(e/2} s s ~ 

i and 0 are unit vectors in the direction 

of incidence and observation, 0 is the o 
scattering angle, and Cl "'" Cs are Fig. 3-1 Geometry of 's 
constants. See Fig. 3-1. 

In this chapter, the coordinates at the scatterer and at the 

observation point are distinguished by a prime (I) such as Xl and 

x respectively. In the cases of diffraction from the slits and 

apertures, n is the refractive index of the medium in which wave 

travels such as air or vo/ater. However, for the Rayleigh-Debye scat-

tering, n is proved to be the refractive index of the scatterers. 
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It is discussed in Section 111.5.4 and Chapter II. The operators 

in Eqs. (3-2), (3-4), (3-6) are defined below. 

111.2.3 Generalized Fourier Transform 

(a) Fourier Transform 

F(k) = ('f(x)e ikX dx:: F[f(x)] 
-00 

_00 

(b) Fourier-Bessel Transform (Hankel Transform) 

00 

F(k) = fo f(p) Jm(kp) pdp == $[f(p)] 

(c) Spherical Bessel Transform 

00 

F(k) = f f(r) j (kr) r 2dr == S [f(r)] 
o m 

f(r) = .£ Joo F(k) j (kr) k2 dk == S-l[F(k)] 
1T 0 m 

(d) Generally, they can be written 

F(k) = f f(r) eik • r dr= F[F(k)] 
n 

- - -1 
f(r) = (21T)-n J F(k)e- ik . r dk == F [f(r)] 

n 

(Kraut, 1967, p. 213) 

(3-7) 

(3-8) 

(3-9) 

(3-10) 

(3-11 ) 

(3-12) 

( 3-l3) 

.(3-14) 
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111.2.4 Inversion Technique 

Using Eq. (3-13), the scattered intensity is given as a Fourier 

Transform of an autocorrelation function RE(ro) of the field at 

the scatterer; that is 

-
I(ks ) = I F[E(r')]12 = F[RE(rd)] 

where RE(rd) = I E(rl ) E*(rl - rd) drl ' 
n 

(3-15) 

The field at the discrete scatterers (e.g., holes, particles) 

has discontinuities at the boundary of the scatterers, such as a rec

tangular function. Thus its autocorrelation function also has discon

tinuities at the points corresponding to the boundary or the size of 

the scatterers. By applying a proper linear operation to the autocor

relation function, we can develop a delta function at the boundary. 

The delta function brings the unknown size-distribution-function out 

of the integral, thus giving a solution to the inverse problem, i.e., 

00 

I(ks ) = ~ I(ks'O) nCO) dO 

-1 _ 00 

F [I(ks )] = ~ RE(rd,O) nCO) dO 

-1 _ 00 

L[ F [I(ks )] ] = fa 0(0 - rd) nCO) dO = nerd) (3-16) 

The detailed procedures are as follows: 
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(a) l-dimension 

E(xl,a) = rect (xl,a) ={6 Ixl < a 
elsewhere 

-2a < x < 0 

o $ x ~ 2a: 

el se\'Jhere 

:~ RE(x,a)1 ~ o(x - 2a) ?where the region x > 0 is 
x x > 0 

considered to eliminate another delta-function at x = 0 . 

Therefore, 

( 3-17) 

(b) 2-dimension (circular symmetry) 

E(p' ,a} = eire (p' ,a) = I: o ::;; pi ::;; a 

pi > a 

RE(Pd,a) = 12a 2 
( e:s -

1 
" 

- all - aZ ) o s: Pd ::s; 2a 

Pd > 2a 
::: A(Pd,2a) 
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~ o(p - 2a) 

Therefore approximately, 

p > 0 
cc n(~) 

(c) 3-dimension (spherical symmetry) 

E{rl,a) = sphr (rl,a) = 

RE{rd,a) = rd - 2a)2 

0 

r > 0 

Therefore 

~l~ s-l [I(k
r
)] ar r ar2 

I ~ 
(rd + 4a)/( 

6 s\'f.. 

cc o(r - 2a) 

o s; p ::; 2a 

p > 2a 

(3-18) 

o :s:: rl :s:: a 

rl > a 

o s; rd s; 2a 

rd > 2a 

(3-19) 

See Appendix III.A for the derivation. This formula was obtained by 

others for the small angle X-ray scattering problems (Schmidt, 1965). 

Noting that I(kr ) is an even function of kr' the spherical-Bessel 

transform in Eq. (3-19) can be converted into the regular Fourier 
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transform, i.e., 

a 1 32 2i (3-20) ar r ar2 r 

In numerical calculation, the Eq. (3-20) is more convenient with the 

advantages of the Fast Fourier Transform.technique than Eq. (3-19), 

which involves the evaluation of an infinite integral. 

111.2.5 Elimination of Differentiation 

By interchanging the linear operation and the transform, we can 

eliminate the differential operation which sometimes causes instabi-

1ity problems in numerical calculations: 

(3-21) 

r > 0 

= -1 4k2 k4 + i (2k 3 
_ 4k)} I(k)] 

F [ { (~ - 2r2) rr r S (3-22) 
r > 0 

where i = ~ and kr was replaced by k for simplification. 

Again in Eq. (3-22), the spherical-Bessel transform was converted into 

the regular Fourier transform. 

See Appendix III.B for the proof of Eq. (3-22). 

111.2.6 An Example of Inversion 

As an example, we can demonstrate the inversion using Eq. (3-21). 
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The scattering pattern of a single slit with the width 2a is given 

by, 

(Goodman, 1968, p. 63) 

and 

Hence, 

i . e. , 

and 

Substituting this into Eq. (3-1), we obtain the size distribution, 

00 

I{kx) = fo I{kx,a) n{a) da 

00 

«f o(x - 2a) n(a) da = n(~) 
x > 0 0 
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I I I . 3 ~1ETHOD 

111.3.1 Problems in the Inversion Technigue 

The Fourier Transform in the inversion technique presented in 

the previous section 111.2 requires the scattered intensity I(kr ) 

to be continuous between kr = 0 and ~,where kr = 2k s;n(0/2). 

However, in our experimental system, the scattered intensity was 

measured at about 50 discrete angles between 8 = 5° - 70°, which 

corresponds to kr = 1.15 ~ 15.2 for A = 0.6328 ~m. The discrete

ness and the small number of data points causes an lIaliasingll problem 

of the transformed function, and the finiteness of the range kr 

causes the 1I1eakagell problem (Brigham, 1974, pp. 83, 105). In 

addition, the differential operation tends to exaggerate various errors, 

such as numerical and measurement noises. 

111.3.2 Countermeasures 

To overcome these problems, the following measures were taken. 

(a) An FFT was used which provides efficient transforms and avoids 

the aliasing (IMSL, 1978). 

(b) Applying a cubic spline interpolation (1MSL, 1978) to the 

measured data, the input function 1(kr ) was sampled at a closer 

interval in kr . With the interpolation we can take a specific 

number of sample points (2n) which makes the FFT more efficient. 

(c) A digital filter (Blackman Window) was applied to the input func

tion to moderate the leakage problem. (Oppenheim, 1975, p.'242). 

(d) Since the noises mentioned above tend to have high-frequency 
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components, the Eq. (3-20) was used instead of Eq. (3-22). The 

latter exaggerates the noise and makes the following transforma

tion erroneous. In our method based on Eq. (3-20), we know 

beforehand if the function to be differentiated is monotonically 

increasing or decreasing. Therefore, each time after the first 

order derivative was applied, the sign of the differentiated 

function was checked and improper parts were set to zero. In 

this way, we can discard a part of the leakage as well as the 

noises. 

The outline of the algorithm is as follows. An example of 

the program is shown in Appendix P. 

1. Read in measured data 1(8). 

2. Interpolate I(kr ) at 2M points, where kr = 2k sin(8/2) . 

3. Apply FFT to krI(kr ), i.e., F-l[krI(kr)]. 

4. Calculate a spherical Bessel transform, i.e., 

S -l[I(k )] = 2i F -l[k I(k )] 
r r r r 

and take a real part. 

5. Differentiate it with respect to r to get 

a 
ar 

6. Take the negative parts and set the positive parts zero, 

because 

00 

~ S -l[I(k )] = 21 f (r2 - 4a2 ) rect(r,2a) n(a) da < 0 . 
d'r r 0 
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7. Differentiate it again, divide by r , and take the positive 

parts, because 

00 

= f rect(r,2a) n(a) da > a . 
o 

8. Differentiate it, take the negative parts, and discard the 

huge value at the origin, thus getting 

ll~ 
ar r ar2 
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111.4 EXPERIMENTS 

111.4.1 Scattering Pattern 

The scattered intensity I(kr ) defined in previous sections was 

measured as a function of a scattering angle 0, and is called an 

"(angular) scattering pattern," where kr = 2k sin(0/2). In our 

experiments, the scattering patterns were obtained by measuring the 

angular intensity distribution of a perpendicularly polarized component 

of the scattered light with respect to the scattering plane. The inci

dent light was assumed to be a perpendicularly polarized plane wave. 

Fig. 3-2 illustrates the scattering pattern measurement schemati-

cally. 

o 

CONE OF 
RECEPTION 

o 0 

o 0 
o 0 o 

BACTERIAL 
SOLUTION 

LASER 
LIGHT 

DETECTOR 

1(9) 

Fig. 3-2 Schematic diagram of light scattering measurement 
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111.4.2 Samples 

Experiments were conducted with latex spheres and bacteria. In 

the measurement, the concentration of scatterers was kept low (optical 

distance < 0.1) and a detector with a very narrow cone of reception 

(0.3°) was used to minimize multiple scattering effects and to attain 

high angular resolution. 

Sample solutions of spherical particles were prepared by diluting 

a concentrated solution of latex spheres (10 volume percent) with 

0.01% detergent water. The detergent, sodium dodecyl sulfate, was 

added to double distilled and deionized water as surfactant to prevent 

aggregation of particles. 

As sample solutions of bacteria, Staphylococcus aureus (ATCC 

25923) and Escherichia coli (ATCC 25922) were suspended separately in 

isotonic saline solutions (0.85%) and were killed by filtered formalin 

solution (30%). The concentrations of bacteria in sample solutions 

were approximately 106/cm3. This is one of the clinically significant 

ranges of concentrations for the examinations of urine. 

111.4.3 Measurement 

Light intensities were measured by changing the angular position 

of a detector over 5° to 70° from the direction of incident light. 

The measurement whi ch covers a wi de range of 1 i ght i ntens i ty ( '" 50 db) 

was attained by the combination of high intensity light source (laser), 

sensitive detector (PMT) and attenuators (neutral density filters). 

Measured data were plotted in a scattering pattern after the correction 

for the effects of the glass-liquid interface, geometrical factors 
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of the experimental system, and the scattering caused by the background 

solution of the scatterers. 

In these corrections, the theory of radiative transfer \'las appl ied 

successfuly (Shimizu. 1976}, rather than the conventional sinG

correction (V = Vo/sinG). which corrects only the change of the scat

tering volume V with respect to the scattering angle G . 

Experiments were conducted several times and the results showed 

excellent reproducibility. 

111.4.4 Experimental Facility 

Fig. 3-3 shows a schematic diagram of our experimental set-up. 

The principal optical and electronic system was developed by 

Dr. J. Holcho. 

Particles suspended in a solution are contained in a cylindrical 

scattering cell (S.C.). One end of the cell is flat glass and the 

other end is hemispherical glass. A beam of He-Ne laser light (A = 

632.8 nm) is mechanically chopped by a chopper (CHO~) for a phase-lock 

technique. The beam is shifted from the center line of the scattering 

cell so that the part of the beam which illuminates the particles is 

brought within the view range of a detector (D3). The detector which 

has a very narrow angle of acceptance (0.3°) transmits the scattered 

. light to a photomultiplier (PMT) through fiber optics (F.O.). The 

signal is amplified by the lock-in amplifier (lIA). which is a phase 

responsive amplifier with a narrow effective bandwidth. in order to 

reduce the noise. An auxiliary beam which is generated at a beam 

splitter (BS) is directed by the mirror (M) toward a transmittance 
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cuvette (T.C.) and a detector (02' acceptance angle 0.1°) for a tur

bidity measurement. The scattering signal (1(8)) and the transmittance 

signal (T) are sent to a mini-computer (POP-12). In the computer, the 

signals are normalized for changes in the incident intensity (N) 

sampled through a detector (01). 

The computer samples the signals in time, calculates simple sta

tistics (mean, median, standard deviation, etc.) and displays the 

information in real time. The median is less affected by impulse-type 

noise than the mean. The computer stores all the data obtained for 

further processes, such as plotting, noise extraction, parameters 

estimation, etc. It also monitors automatic measurements and controls 

their mechanisms, which involves controlling an integration time for 

the lock-in amplifier, sampling frequency, thickness of the scattering 

cell, and x-v plotter. 

LASER BS CHOP. 
S.C. 

N T 1(8) 

MINI-COMPUTER 

Fig. 3-3 Schematic diagram of experimental system 
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More detailed discussions of the experimental system, method, 

and materials are given in (Shimizu, 1976), (r101cho, 1975). 
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III.S RESULTS AND DISCUSSION 

III.S.l Advantage of the Inversion Technique 

The effectiveness of the proposed technique is investigated using 

the simulated data calculated with a known size distribution. Figs. 

3-4 and 3-S show the advantage of the inversion technique over the 

empirical curve-fitting technique. 

Figs. 3-4{a) and 3-S{a) are the sampled scattering patterns cal

culated by the Rayleigh-Debye approximation with the size distribution 

shown in the upper right corners of the figures. The scattering pat

terns appear to be very similar despite the different size distributions. 

Without a priori knowledge, it is difficult or time-consuming to find 

such size distributions by the regular curve-fitting technique. 

Figs. 3-4(b) and 3-S{b) show the size distributions estimated by 

the inversion technique proposed here. The noisy outline is due to 

the discreteness of the sampled scattering pattern (number of samples 

Ns = 64) and the finiteness of the scattering angle (0 = 0 ~ 60° or 

kr = 0 ,..., k where k = 27m/A). Al though the shapes of the estimated 

size distributions are not as smooth as the given ones, the distinc

tion of the two different distributions is well recovered. Note that 

this technique does not require any a priori knowledge. The accuracy 

of this technique can be seen in the relative heights of the two peaks 

in Fig. 3-S(b). They agree well with those of the given distribution. 
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III.5.2 Resolution 

The accuracy of the proposed techni que \'Ias shown above with the 

Gaussian distribution. Another important factor in inversion problems 

is resolution--how closely we can recover the detailed shape of the 

given distribution. Since the core of this technique is the Fast 

Fourier Transform, the frequency and the range in one domain corres

ponds to the range and the frequency in the transformed domain. In 

other words, with the fixed range of the scattering angle, the more 

frequent sampling in the scattering angle gives the distribution esti

mated in the wider range of scatterer's size. On the contrary, 'IJith 

a fixed rate of sampling, if the scattering pattern is sampled in a 

wider range of the scattering angle, the estimated size distribution 

contains higher frequency components, that is, more resolution is 

attained. 

In order to examine the resolution of our technique, a rectangu

lar function was chosen as the given function to be estimated. 

Although such a distribution rarely appears in the natural world, 

we can check with this function the recovery of the wide range of 

frequency components, i.e., flat top, sharp edge, etc. Fig. 3-6(a) 

and (b) show the estimated distributions using the calculated scat

tering pattern sampled in e = 0° -- 60° (kr = 0 ,." k) and e = 0°-

180° (kr = 0 - 2k), respectively. The sampling rate is the same for 

both cases (~kr = k/64). 

As expected, the data at larger angles improves the resolution, 

giving better recovery for the higher frequency components. The 
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distortion by ripple which is due to the discrete sampling in the 

finite range, is reduced in the latter case. It should be'noted also 

that the location of the estimated curve in the size-axis is not 

affected much by the expansion of the sampling range. 

III.5.3 Noise Analysis, ,,- . -" -... ,- ... ..,.~. " - '~'. . .. ~. _ .. -"' .. 

The determination of particle size distribution is an ill-posed 

problem (Franklin, 1970), (Ishimaru, 1978a, p. 504), which means the 

small error in the measured data cuases the large error in the esti

mation resulting in instability or divergence. In this section, the 

effect of the measurement error on the estimation by our technique 

is investigated. To simulate the error or noise in measurements, a 

random number weighted by a given factor is added to the calculated 

scattering pattern. 

Figs. 3-7""""3-11 show the calculated scattering patterns with 

the noise added and the estimated size distributions. The weighting 

factors for the random number are 0% (noise free), 5%, 10%, 30% and 

50%, respectively. The given distribution is inlayed in Fig. 3-7. The 

mean and the standard deviation of the estimated distribution are shown 

in each figure. As can be seen, this technique is fairly stable in 

relation to the random additive noise. Note the accuracy in the case 

of 10% noise, which is typical in many practical situations. The 

estimation errors are within a fe\'1 % for the mean and the standard 

deviation of the estimated distributions. 

The cause of the noisy peaks at 0.4"" 0.5 ]Jm is not fully under-

stood. Since they appear in the error-free case too, they may be 
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attributed to the noise originated in the process of inversion, such 

as the discrete periodic sampling, Truncation errors in computation, 

etc. The 50% error induces another peak with a pointed top at the 

smaller size (~0.8 ~m) than the true peak. 

111.5.4 Latex Spheres 

This technique is applied to the measured data obtained from the 

scatterers with known sizes. Fig. 3-12 show the measured scattering 

pattern and the estimated size distribution of the latex microspheres 

with a radius of 0.5055 ~m. Two well-defined peaks are obtained at 

- 0.5 ~m and ~ 0.35 ~m. The latter with the characteristic pointed 

top may be considered as the erroneous estimate discussed in the pre

vious section. This result shows the resolution or the minimum sizes 

to be determined is comparable to the wavelength of the probing light 

(A = 0.6328 ~m). 

Fig. 3-13 is the case for the latex spheres with a radius of 

1.01 ~m. Now the true peak at ~l ~m is separated from the erro

neous one at AJ 0.6 ~m. The standard deviation of the true peak 

(~4% of the mean) is larger than the manufacturer's claim (-0.7%) 

which was measured in the electronmicroscopy. This tendency of the 

estimation of wide distribution may be attributed to the following. 

As can be seen in Fig. 2-3 in the previous chapter, the exact scat

tering pattern (b) appears as if the size distribution of scatterers 

were slightly wider than the scattering pattern (a) which .is calcu

lated by the Rayleigh-Debye approximation. That is, from the standard 

of the Rayleigh-Debye approximation, the size distribution looks wider 
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than the true one. Since this inversion technique is based on the 

Rayleigh-debye approximation, the estimated distribution can be 

wider than the true distribution. It should be also noted that in 

optical scattering measurements, the wider distribution has been 

reported by others with various methods of measurements (Kratohvil, 

1965), (Cooke, 1973),(Shimizu, 1978). 

The Rayleigh-Debye approximation which this inversion technique 

is based on is the modified one discussed in Chapter II. Note that 

the refractive index of the latex spheres (.-v 1.6 for A = 0.6328 11m) 

is beyond the range of validity of the Ray1eigh-Debye approximation. 

If the technique is based on the regular Rayleigh-Debye approximation, 

the estimated size distribution is shifted by the ratio of refractive 

indices of the scatterers and the surrounding medium (1.6/1.33). This 

is shown in Fig. 3-14. 

111.5.5 Bacteria 

Finally, this technique is applied to estimate the size distribu

tion of bacteria. Fig. 3-15 shows the measured scattering pattern 

and estimated size distribution for Staphylococcus aureus. This is 

a spherical bacteria \vith average radius of 0.4""0.5 llm (Cohen, 1972, 

p. 5). Under the microscope, they appear mostly in singlets with 

uniform size. Some doublets are observed too, but not many higher 

mu1tiplets. Their photographs are given elsewhere (Shimizu, 1976). 

The estimated distribution shows these characteristics well. Note 

the small but evident distribution at 'V 0.9 ~m which is considered 

to be the distribution of the doublets. The left peak with the pointed 
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top might be the erroneous peak discussed above. Fig. 3-16 shows 

the estimated size distribution for the large radius using the same 

data as in the case of Fig. 3-15. No significant distribution appears 

except for the predominant peak at 0.4 ~ 0.5 11m and the secondary peak 

at A.; 0.9 11m. 

Fig. 3-17 shows the results for Escherichia coli. This is rod

shape or prolate spheroidal bacteria with the minor and major axis of 

""' 0.5 11m and 2 "'-'311m respectively (Holfgang, 1972, p. 27), (Hyatt, 

1972). As shown elsewhere (Shimizu, 1976), the shape of the scattering 

pattern of the prolate spheroidal particles is similar to that of 

spheres with the radius equal to the minor axis of the spheroids. 

See Appendix III.C for more discussion. Thus, the slightly wider 

peak at 0.45 - 0.6 11m shown in Fig. 3-17(b) is reasonable. This is 

confirmed in microscopy. See the reference (Shimizu, 1976) for de

tailed discussion and for their micrographs. 

111.5.6 Aggregated Bacteria 

To examine the sensitivity of this technique to the change in the 

condition of scatterers, dye chemicals are added to the sample solu

tion and part of the bacteria were aggregated. See the references 

(Shimizu, 1978, 1976) for the procedures and their appearances under 

microscope. 

Figs. 3-18, 3-19 and 3-20 show the measured scattering patterns 

and the estimated size distributions for the Staphylococcus aureus, 

with no chemical, with safranine, and with methylene blue added, 

respectively. (a)·s of the figures are size distributions in large 
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scale with the scattering patterns inlayed and {b)'s are those in 

small scale. 

The former ones show the major and the secondary peaks for sin

glets and doublets. As discussed elsewhere (Shimizu s 1978, 1976), 

scattering patterns contain the information of the single scatterer, 

even if the characteristic pattern of the single scatterer is degraded 

considerably by the aggregation of the scatterers. Figs. 3-l9{a) and 

3-20{a) show the effectiveness of this technique in extracting the 

information from the degraded scattering pattern. 

Figs. 3-l9{b) and 3-20(b) show interesting periodic structures. 

Comparing them with Fig. 3-l8{b), they are considered to be the distri

bution of the multiplets, i.e, doublets, triplets, ... etc. We can 

see the degree of aggregation increases in Figs. 3-18(b), 3-19(b) and 

3-20{b). 
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CHAPTER IV 

BACKHARD SCATTERING PATTERN ANALYSIS VJITH RANGE-GATING TECHNIQUE 

IV.l INTRODUCTION 

During the past few decades, the usefulness of scattering pattern 

analysis for the size estimation of scatterers has been recognized and 

various applications have been devised (Kerker, 1969, p. 311). However, 

as was di scussi on in Section II!. 1, there are many areas 1 eft for fur

ther progress, which include the facilitation of the backward scatteri~ 

pattern analysis. 

In Chapter III, we discussed an inversion technique which deter

mines the size distribution of scatterers from the scattering pattern 

in the forward angles. In practice, hovJever, backward scattering 

pattern ( 0 = 90 0 
- l80 0

) is often preferable to the forward scatter

ing pattern ( 0 = 00 
- gOO) due to the geometrical restrictions of the 

object such as an eye, atmosphere at high altitude, ocean, stars, etc. 

Although it is useful, the measurement of backscattering has its ovm 

difficulties. They are, for example, the low-signal level, specular 

. reflections, susceptibility to extraneous or spurious scatterings, 

etc. The ultrafast sampling capability of the optical range-gating 

technique is applied to overcome these difficulties and utilize the 

advantages of the backward scattering pattern analysis. 

As discussed in detail in Chapter I, the optical range-gating 

technique is a technique whereby the separation between scattering or 

reflecting objects can be measured at a distance, with a resolution 
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of the order of a millimeter (Duguay, 1971), (Bruckner. 1976). If 

the scatterers are cataract particles in an eye, a variety of back

scattered pulses will be observed. The refractive index changes 

characteristic of the various tissue layers give rise to specularly 

reflected pulses. 

Cataracts and other opacities consist of microscopic random 

fluctuations in the index of refraction of the lens tissue, with 

dimensions on the order of the wavelength of light. The intensity 

of light scattered at a given angle by these fluctuations is a func

tion of the mean size of the scattering inhomogeneities and the shape 

and width of the size distribution. By application of r1ie scattering 

theory the size parameters of the scattering particles in the cataract 

or other opacity can be determined (Kerker, 1969, p. 311). The pico

second gating technique allows one to observe the scattering from only 

the desired depth in the eye while rejecting light scattered by fore

ground or background tissue. 

In this chapter, the application of the range-gating technique 

to the backward scattering pattern measurement is discussed with a 

view toward the remote sensing of the cataract microstructure. This 

technique has been successfully applied to the investigation of 

microwave induced cataracts (Bruckner, 1978a, 1978b). 
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IV.2 THEORY 

IV.2.1 Range-Gating for Tenuous Medium 

The integral equation formulation for the equation of transfer 

has been obtained by (Ishimaru, 1978a, p. 161). For pulse propaga-

tion problems in a tenuous medium, it can be modified so as to include 

the time dependence, i.e., 

-POtS 
Ii(ro,s)e 

s -POt(s-sl) 
f dsle 
o 

s - sl 
)(I(rl,s';t- C ) 

(4-1) 

(4-2) 

(4-3) 

where I, Iri and Id are the total (specific) intensity, the reduced 

incident intensity and diffuse intensity, respectively. They are func

tions of the position r, direction of the unit vector s, and time t 

Ii(ro's) is the incident intensity at the point of incidence ro' P 

is the number density of scatterers, 0t is the total cross section, 

s is the distance along the detection line, dn' is the elementary solid 

angle in the direction 5', C is the velocity of light in the medium, 

and f(6,i) is the scattering amplitude vector when a wave is incident 

and scattered in the direction of unit vectors i and 0 . 

Note that the inclusion of the time-dependence here is different 

from what is to be discussed in the later chapter (Chapter V) for the 

dense medium. Here, since the medium is tenuous, it is assumed that 
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the pulse propagates without the significant change in its spectral 

composition. In other words, the incident pulse propagates with the 

attenuation due to absorption and scattering but not with the change 

in the shape such as pulse broadening and tailing. Throughout this 

thesis, the equation of transfer for each case is distinguished by 

the terms IItime-dependentli and IItwo-frequency,1I respectively. 

Fig. 4-1 shows the geometry of the problem. An incident light 

propagates in the z-direction and the light scattered is observed 

by the detector in the backward direction at the angle e. Since 

the detector is designed to have a very narrow receiving pattern, the 

received signal is proportional to the specific intensity Id . 

If the incident wave is a plane wave impulse, the reduced inci-

dent intensity is given by 

(4-4) 

where Fi is the flux density. According to the first order multiple 

scattering approximation, the total intensity in Eq. (4-3) is approxi

mated by Iri . Then we get the diffuse intensity 

Id(~,§;t) = F plf(§,2)12 
i 1 + cose (4-5) 

The range-gating shutter is synchonrized so that it samples the 

light intensity scattered at the crossing point of the propagation path 

of the incident pulse and the line (actually the cone) of acceptance 

of the detector. The signal intensity we receive is given by the 
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convolution of the diffuse intensity Id and the function of the 

shutter opening time. Assuming that the sampling time of the shutter 

is the delta function at to' we get the receiving intensity 

Irec(r,s) = fo~ I (r 5·t)o(t - t )dt = F. p lf (s,z)12 d " 0 1 1 + cose 

If the range-gating is not applied, or the shutter is kept open, 

the receiving intensity becomes 

(4-7) 

where td = dlc , the time when the incident pulse leaves the slab of 

scatterers. 

VI. 2. 2 Scattering Pattern Measurement with Range-Gating 

Fig. 4-2 illustrates the geometry of the measurement system. A 

beam of an incident pulse impinges on a slab of tenuous scatterers 

with the thickness d. The incident pulse is approximated by a rec

tangular parallelopiped with the beamwidth 2a and the pulse length 

2b. Then, the reduced incident intensity is given by 

- po Z 
= F. rect(x,a) rect(z - ct,b) e t 0(5 - z) 

1 
(4-8) 

where rect (x,a) = 1 for Ixl ~ a and 0 for Ixl > a. By the first 

order multiple scattering approximation, we get the diffuse intensity 
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s 
Id(r,s;t) = Fi Plf(s,z)12 ~ dS l rect(x1,a)rect(zl + s - sl 

(4-9) 

where Zo is the sampling position. As can be seen in Fig. 4-2, 

Eq. (4-9) holds only when the propagating pulse is in the view of the 

detector. That duration is, from the geometry: 

Zo + 1 ) where t - (1 o - c: cose 

Otherwise, Id(r,s;t) = 0 . 

t s; t + llt o 

II t = ~ 1 : cose 
c Slne 

(4-10) 

Therefore, when the range-gating is not used or the shutter is 

kept open, the receiving intensity is 

t + llt 
co 0 

Irec(r,s) = f Id(r,s;t)dt = f Id(r,$;t)dt 
o t - llt o 

(4-11 ) 

This same equation also applies to the range-gated case, if the time 

duration [to - llt, to + lltJ is considered as the gating time. In the 

range-gated case, the shutter is synchornized so that the sampling time 
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Zo + 1 ) 
to = c: (1 cose and 2~t is the shutter open period. Usually, 

~t « a(l + cose)/c sine. Thus, the received intensity is given by 

the same equation for both the range-gated and the non-range-gated 

cases, but with the different definitions for the parameter ~t. 

That is, 

(4-12) 

where ~t = a(l + cose)/c sine for the non-range-gated case and ~t 

is half the shutter open period for the range gated case. The former 

is typically 20 ~ 100 psec for e = 5°,v 30° and the latter is 5 .-v 10 

psec. 

Since pat(l + c;se)b «1 and patc ~t « 1 

medium. Eq. (4-12) can be approximated by 

I (-A). = ~ 1- (A A) 12 - POtcto 
rec r,s Fi cose 4bp f S,Z e 

for the tenuous 

(4-13) 

where sinh x ~ x for Ixl« 1. Here, If(5,z)12 = 0d(e) is the 

differential cross section or the scattering pattern of the scatterers. 

Therefore, with the correction for the term ~t/cose, the scattering 

pattern is obtained by measuring the signal intensity varying the angle 

of the detector e. It should be noted that for the measurements of 

e = 2° ~ 30°, the effect of the correction factor is large in the 
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non-range-gated case (~t/cose = a(l + cose)/(c sine cose) = 57.3 a/c 

~ 4.31 a/c) but little in the range-gated case (1.00 ~t rvl. 15 ~t). 
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IV.3 EXPERH1ENTS 

IV. 3. 1 Experimental Facility 

The experimental apparatus is illustrated schematically in 

Fig. 4-3. The principal parts of the system were designed by Dr. A. P. 

Bruckner. An outline of its operation is as follows. A mode-locked 

Nd:glass laser generates a train of horizontally polarized infrared 

pulses (A = 1.06 ~m), each of -10 psec duration and carrying a peak 

power density of up to -500 MW/cm2. Frequency doubling occurs in a 

KDP crystal adjusted to yield -0.1% conversion efficiency. This 

limits the energy of the resulting green pulse train to -1 mJ. The 

green pulses (0.53 ~m) are separated from the infrared pulses by a 

dichroic beam splitter, DBS. The vertically polarized green pulses 

are directed toward the scatterers contained in the scattering 

cuvette, SC. Filter GF absorbs residual infrared and neutral density 

filter NFl reduces the intensity to the desired level. Lens Ll 

(f.l. 20 cm) focuses the green beam to a point in front of the SC 

such that the beam diverges slightly to a 2 mm spot size at the SC. 

An array of fiber-optic light guides FO s mounted in a goniometer, 

collects the light scattered from the scatterers at several selected 

angles to the incident illuminating beam. The scattered light is 

coupled into the individual fibers and directed to the ultrafast Kerr 

shutter, SHUT. A part of the incident beam is sampled by a beam 

splitter, BS1, and directed by a mirror Ml toward one of the light 

guides to provide a reference signal of the incident power. Using 
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three neutral density filters NFl' NF2 and NF3, the intensities of 

incident and reference beams can be controlled appropriately. The 

lens L2(f.l. 3.9 cm) focuses the reference beam on the translucent 

diffuser D placed in front of the reference fiber. They minimize 

the error in measuring the reference signal due to a spatial fluctu

ation of the reference beam. The output of all the fibers are fed to 

the ultrafast shutter SHUT. 

I The shutter is driven by the vertically polarized infrared pulses 

generated by the laser. These pulses, after passing through KDP, DBS 

and A/2, traverse a variable optical delay line, PR1-PR3 to equalize 

the infrared and green pathlengths and thus assure proper gating syn

chronization. A half-wave retardation plate A/2 rotates the polari

zation of the infrared pulses into the vertical plane. Lenses L3 

(f.1. 20 cm) and L4(f.l.-5.3 cm) collimate the- pulses to -2 mm 

diameter in the shutter cell. The filter IRF prevents stray light 

from coming in the shutter. The shutter consists of a rectangular 

quartz cell containing carbon disulfide (CS2) placed between two 

crossed po1arizers. The electric field associated with each infrared 

pulse induces a narrow zone of birefringence in theCS, which makes a 

narrow transparent zone through the crossed po1arizers. This trans

parent zone travels across the lines of sight of the fiber-optics at 

the speed of light. Thus, the shutter produces a streak record of the 

light pulses incident at right angles to the infrared path. 

The shortest fiber is 50 cm long and the lengths of the remaining 

fibers are staggered by 5.8 mm, such that the arrival of a scattered 
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pulse from a given location in the scattering medium coincides with 

the arrival of the infrared gating pulse at the appropriate location 

along the shutter. This synchronization is attained by adjusting the 

movable prism PR2 to vary the delay of the infrared gating pulse. 

The shutter output is detected and processed by the low-light

level video system LLL, which includes relay lens REL.L, image inten

sifier IMAG.INT., CCTV camera and so on. The output of LLL is recorded 

on polaroid film. Fig. 4-4 is an example of the recorded signal. Each 

peak is the gated signal from the corresponding optic fiber. The 

heights of the peaks represent the incident (-Ref) and scattered 

intensities (-8i ) at the corresponding scattering angle. 

IV.3.2 Specifications of Apparatus 

(a) Optical Bench 

All the components shown in Fig. 4-3 are mounted on a 2'x4' 

stainless steel honeycomb table manufactured by Newport Research Corp. 

(b) Laser System 

As a source of the infrared pulses, Nd:glass laser system (Apollo 

Laser, Inc., Model 42) is used. The water-cooled laser head contains 

a 6" long helical flashlamp which pumps a 1/2" dia x 8" long brewster

cut, O~."ens-I11inois type ED-2 Nd:Glass rod. Coolant circulation is 

accomplished by a Neslab RTE-4 refrigerated circulator. The resonant 

cavity consists of a 35%R flat output reflector and a 4.65 m radius 

concave 99%R rear reflector, spaced approximately 70 crn apart. Mode

locking is accomplished by Eastman 9860 dye in contact with the rear 
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Fig.4-4 Typical data format: Each peak is the gated signal 
from the corresponding fiber optic. The target in 
this case is a white diffusing reflector which serves 
as a calibration standard. Unequal signal amplitudes 
result from inequalities in fiber optic coupling 
coefficients. This picture is used to normalize all 
other scattering data.; A = ·0.53 m, 61 = 178.25°, 

M = -1.75° . 
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reflector. Dye thickness is 1 mm. A temperature controlled dye 

pumping system circulates the dye through the dye cell. This flowing 

contacted dye configuration produces the most reproducible output and 

prolongs the useful life of the dye. 

As delivered, the laser had the dye cell at the front (output) 

reflector. However, in this configuration the mode-locking was highly 

irreproducible. The 1.06 ~m output of the laser consists of a train 

of 50-100 pulses, each of 10-20 psec duration, spaced at 4.6 nsec 

intervals. The peak power density per pulse is of the order of 300-500 

r·1H/cm2 • 

(c) Fiber Optic Light Guides 

The fibers are multimode clad quartz, with 100 ~m core diameter 

and 0.14 numerical aperture. They are protected in stainless steel 

hypodermic tubing. Input and output couplers are brass cylinders 

supporting coupling lenses of 4 mm diameter and 21 mm focal length. 

The input couplers are mounted on a goniometer as a detector array and 

observe a scattering volume at 15 cm from the array. The angular sepa

ration of the detectors are 1.83°. The output couplers feed the light 

signal to the ultrafast shutter. In later experiments the number of 

the light guides was decreased from 9 to 6 by eliminating the guides 

with poor performance. The observable scattering angle extends from 

178° to 150° by rotating the goniometer in which the detector array 

was mounted. 

(d) Ultrafast Shutter 

The Kerr shutter assembly consists of the CS2 cell between crossed 
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polarizers put in a 2.7511 x 2.75 11 
X 111 black painted steel box. The 

C52 is contained in a 50 mm pathlength quartz spectrophotometric cell 

which has been annealed to minimize residual stress birefringence in 

the wa 11 s . A mask is interposed between the fi ber-opti c output 

couplers and the quartz cell. It has a series of vertical slots, with 

2 mm widths and 4 mm heights, through which the signals to be gated 

must pass. Its purpose is to improve the temporal gating resolution 

of each fiber output by decreasing the horizontal aperture of the 

pulses to be gated. 

The peak transmission factor is approximately proportional to the 

square of the infrared intensity, and has been measured to be-l%, \."ith 

an on-off contrast ratio of> 1000 in the present case. The output 

couplers of the fiber-optic light guides are arranged on 5.2 mm centers 

at the shutter; thus the sampling interval between adjacent fibers is 

,.., 28 psec. 

The sampling time resolution of the ultrafast shutter is governed 

by the duration and transverse dimension of the infrared gating pulse 

(Bradley, 1974) and by the apertures of the fiber-optic output lenses 

in the direction parallel to the IR path. The convolution of the bire

fringent zone induced by a 2 mm dia, 10 psec gating pulse with the 2 mm 

effective aperture of each output coupler results in a sampling time 

of ~ 15 psec per signal. This permits a ranging resolution of ~ 1.7 mm 

in an aqueous medium, i.e., only light scattered within a volume 

element ~ 1.7 mm long is transmitted by the shutter. Pulse broadening 

in the fibers is well under 10 psec (5unak, 1974) and does not 
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significantly affect this resolution. 

(e) low-light-level Video System 

A schematic diagram of the III system is sho~n in Fig. 4-5. The 

output of the shutter is relayed by a 135 mm f.l. lems to a three

stage, 18 mm RCA 4550 image intensifier tube. The intensifier output 

is imaged by a Te1emation TMC-1100 video camera equmpped with an RCA 

4532A silicon vidicon tube. The video signal is ~cessed by a con

trol unit built in-house. An image of the gated s;iigma1s, \'1ith a 

superimposed rectangular frame of variable heightt anm width, appears 

on a CCTV monitor. The intensity profile of ead!ll1iv'! line within the 

frame is displayed on an oscilloscope. The vid~ $~~stem is operated 

in the single-shot mode, in which only a single sw~p of the vidicon 

and di sp 1 ay osci 11 oscope occurs. A tri gger outptWt. p,wl se from the 

control unit fires the laser at the start of the Tidicon sweep. The 

dynamic range of this detector system is greater thaD lHlO. This is 

not high by present standards, but has proved to beade~ate for our 

purpose. 

{f} Scattering Cell 

As scatterers, an aqueous suspension of latex. sphel"\es are con

tained in glass spectrophotometric cells. The cells of two types of 

geometry are used. One type is a vertical cylinder with 28.6 mm inter

nal diameter and 30 mm height. Hith this cell a collimated beam 

impinges upon the curved side wall of the cylinder. Its incidence 

is normal and the beamwidth (..,. .... 2.5mm) is much smaller than the radius 

of curvature of the wall (14.3 mm). Thus the refraction and the 

focusing effect of the incident beam is negligible. As for the 
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scattering angles, due to the circular circumference, the correction 

for the refraction at the air-glass-liquid interfaces is not neces

sary, either. Therefore, this cell is used for the scattering pattern 

measurements discussed in Chapters IV and VI. 

Another type of the cell is a standard flat window horizontal 

cylinder with 20 mm internal diameter and 50 mm pathlength. An inci

dent wave impinges normally upon the flat end of the cylinder. 

Although it needs the correction for the refraction of the scattering 

angles, the simple geometry makes the analysis easier, particularly 

for the dense medium. It also enables the plane wave incidence. Thus, 

this cell is used for the experiments in Chapters VII and VIII. 

IV.3.3 Tuning of System 

The "tuning"of the system consists of adjusting the path lengths 

of the IR and green beams such that the IR gating pulses arrive in the 

shutter at the proper time to sequentially gate the scattered green 

pulses emerging from the fiber optics. A white diffusely reflecting 

plane target was placed 15 cm from the detector array and normal to 

. the incident light path. The relative signal delays of the light 

guides were fine-tuned by moving the output couplers toward or away 

from the shutter in small increments until the gated signal from each 

fiber was maximized. The IR pulse delay was adjusted by means of the 

movable prism, PR2 ' shown in Fig. 4-3. To avoid saturation of the 

image intensifier, the incident train of green pulses was attenuated 

by a factor of 10- 3 by means of neutral density fi 1 ters. 
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IV.3.4 Calibration of System 

The syste~ is calibrated with the same plane diffuse target. 

Fig. 4-4 shows a typical result from a calibration test. The first 

eight peaks from the right are the gated signals from the corres

ponding fiber-optics. The ninth peak on the extreme left is the sig

nal from the reference fiber. The unequal amplitudes of the signals 

from the collecting fibers are primarily a result of inequalities in 

the fiber-optic coupling coefficients. These data, corrected for 

Lambert's law, are used to normalize the angular scattering data 

obtained with other scattering media. The method of the normaliza

tion is described quantitatively in a later section (IV.3.7). 

IV.3.S Linearity of System Response 

The linearity of the overall detection system, including the 

shutter, was tested by varying the intensity of the green pulses inci

dent on the plane diffuse target by means of neutral density filters. 

Both with and without range-gating, the response to the signals from 

each fiber-optic was found to be essentially linear over a two order 

of magnitude range below the saturation level of the vidicon tube. 

Departures from linearity below this range are not severe. 

IV.3.6 Turbidity r1easurement 

In order to assure the correct dilution of the sample solutions 

of the scatterers, the turbidity of each sample Nas measured. The 

procedures and the principle of the measurement are given in Sections 

VI.2.3 and VI.3.4. 
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IV.3.7 Method of Normalization 

As can be seen in the recorded signals shown in Fig. 4-4, the 

overall sensitivity of each signal channel is not uniform over the 

channels. To correct the nonuniformity, the following normaliza

tion method was employed. Fig. 4-6 illustrates the parameters neces

sary for the derivation. The heights of the recorded peaks for the 

signal and reference channels are given by 

i = 1, 2, 3 ... 8 (4-14) 

(4-15) 

where Cl is a constant, Is and 10 are the scattered and origi

nal intensity respectively, e is the scattering angle, a is the 

attenuation coefficient of the light guide system, k is the reflec

tion coefficient of the beam splitter, and NF3 is the attenuation 

factor of the neutral density filter in the reference channel. The 

subscripts i and r represent the i-th channel and the reference 

channel. 

The incident intensity linc impinging on the scatterers is 

related to the original intensity 10 by, 

where NF2 is the attenuation factor of the neutral density filter 

between the beam splitter and the scatterers. 
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Substituting Eq.(4-16) into Eq.(4-1S), relative scattered inten-

sity can be \'1ritten 

( 4-17) 

Since the direct measurement of k and a'S above is not as easy 

as that of the His and NF's, the following two-step-normalization pro

cess was developed. 

First, the denominator of Eq.(4-17) is obtained by measuring the 

scattered intensity from a \'/hite, diffusely reflecting plate. Assuming 

the plate is a uniform diffuser (Keitz, 1971, p. 106), the scattered 

intensity is given by Lambert's law, 

(4-18) 

where C2 is a constant. 

Substitution of Eq.(4-18) in Eq.(4-17) gives the denominator of Eq. 

It is called a channel attenuation ratio, CAR, i.e., 

(4-19) 

After determining the CAR, the relative scattered intensity from 

the sample scatterers is obtained in terms of the ratio of the recorded 

peaks' heights Hi/Hr' ratio of the neutral density filter NF2/NF3 , 

and the (CAR)i 
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;=1,2,3 ... 8 (4-20) 



IV. 4 

IV. 4.1 

RESULTS AND DISCUSSION 

Background Scattering 

86 

Prior to the scattering experiments with the particles 

the cell being used was filled with distilled water only, and the sys

tem was tested with this target to check on possible spurious back

ground signals. 

Fig 4-7(a) and (b) show the signals from the background solution 

with and without range-gating, respectively. See Section IV.3.1 for 

the interpretation of the recorded signal. They show the effectiveness 

of the ultrafast sampling technique to suppress the spurious scatterings. 

Note that the sensitivity for the range-gated case is 100 times as high 

as the non-range-gated case. The signals of observable intensity are 

confined in the angles near to the backward normal (180°). They may 

be attributed to the discontinuities of the refractive index at the 

air-glass-water interfaces. The specular reflection was eliminated 

already by tilting the scattering cell before the measurements. 

The measured data presented in the subsequent discussions are 

those from which this background scattering has been subtracted. For 

most of the cases, the background signal is negligible compared with 

the scattered intensity from the particles. 

IV.4.2 Backward Scattering Pattern 

A representative set of angular scattering results obtained with 

particles of diameters 0.481 ~m, 2.02 ~m and 3.2 ~m is shown in Figs. 

4-8, 4-9 and 4-10, respectively. The particle concentrations 
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investigated in each case extend to considerably higher values than 

plotted in the figures, hO\1lever only those are shown which retain the 

characteristic scattering patterns. The data obtained at higher con

centrations are presented in Chapter VI. The graphs in the figures 

display the relative scattered intensity for vertical polarization 

as a function of the scattering angle for the indicated concentrations. 

The intensity scale is referenced to the unattenuated signal at the 

reference fiber. The scale in each case is relative and arbitrary 

and no comparisons between the intensities for different sizes is to 

be made. Each set of experimental points is the average of 3 to 5 

shots of the laser. The standard deviation in intensity is approxi

mately 10% for each point, while the uncertainty in scattering angle 

is ± 0.7°. 

The solid curves superimposed on the data in each figure corres

ponds to the best-fit Mie theory modified for the size distribution 

of scatterers (Shimizu, 1978). This fit was obtained by assuming a 

Gaussian size distribution with a standard deviation a, in the 

diameter d, of 0.37%, 7.0% and 5.9% for the 0.481, 2.02 and 3.20 ~m 

latex spheres. The aid provided by the manufacturer is 0.37%, 

0.67% and 5.9% respectively. The parameter m is the ratio of the 

refractive index of the particles to that of the water at 1 = 0.53 pm. 

In spite of the difficulties of backward scattering measurements 

menti oned before, the general agreement bebJeen the meas urements and 

the Mie calculations are good. It should be emphasized that no spe

cial precautions had to be taken to minimize stray light during the 
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above experiments. The combination of ultrafast sampling and the 

sharply pointed receiving pattern of the detector block out all 

signals not originating in the region of interest. The effective

ness of this temporal and spatial noise-limiting function is further 

demonstrated in the next section. 

In conclusion, these results suggest the applicability of this 

technique to the estimation of an average size of scatterers from the 

backward scattering pattern. 

IV.4.3 Suppression of Spurious Scattering 

To examine the effect of the range-gating, the scattering pattern 

measurements discussed above were repeated with the shutter kept open 

continuously by a quarter-wave plate to simulate the conditions of 

continuous wave (CW). Since, however, the incident wave is still a 

pulse, this non-range-gating case is called "quasi-CHI! case. In this 

case, considerable difficulty was experienced with stray light, espe

cially at lower concentrations and at the angles close to the bach/ard 

normal. 

A set of results for the quasi-CW case with 3.2 vm particles is 

shown in Fig. 4-11. The geometrical factor discussed in Section IV.2.2 

was corrected already. It is seen by comparison with the range-gated 

case of Fig. 4-10 that the experimental data for the two different 

cases do not correlate with each other and that the non-range-gated 

case does not agree with ~1i e theory. Thi s di screpancy is found to be 

attributed to the spurious reflections within the scattering cell. 
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In the range-gated case, only light within the desired focal 

volume at the selected depth in the scattering medium is sampled. 

In the non-range-gated case, since the shutter is open continuously, 

the light reflected at the far wall of the cell is forward scattered 

and this IIfor\'/ard scattered ref1ection ll is picked up by the collection 

optics. Thus the observed results are a superposition of direct back

scattering and indirect forward scattering. Since the reflectivity at 

the far It/all is .-v4% (air-glass interface) the spurious forward scat

tering is only a few % of \1hat it would be under direct illumination. 

However, since forward scattering cross sections are much greater than 

backscattering cross-sections, the forward scattering from the reflec

ted light is sufficient to seriously distort the backscattering data. 

In Fig. 4-11, is shown a corrected theoretical Mie scattering 

curve which takes this effect into account, i.e., backscattering + 4% 

fOr\</ard scattering. It can be seen that the agreement with the experi

mental results is much better than if only backscattering is assumed. 

IV.4.4 Reduction of Multiple Scattering Effect 

The ultrafast sampling of the scattered pusles also has the 

benefit of reducing some of the effects of multiple scattering. At 

a given observation angle, light which is scattered more than once 

travels a path-length different from that of singly scattered light. 

For a low number of scatterings~ the multiple scattered light can 

have a path-length less than or greater than singly scattered light. 

If the number of scatterings is large, the path length will in general 

tend to be greater than that for single scattering. Thus, multiple 
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scattered light arrives at the shutter either early or late for 

sampling and is consequently attenuated. The shorter the sampling 

time, the more effective is this discrimination against multiple 

scattered signals. 

A comparison is made with the results of non-range-gated case. 

Fig. 4-12, 4-13, and 4-14 show the behavior of relative scattered 

intensity at certain selected angles as a function of particle con

centration for 0.481 ~m, 2.02 ~m, and 3.2 ~rn particles, respectively, 

for both the range-gated and non-range-gated cases. For the 0.481 ~m 

particles, 10% solid density corresponds to a particle concentration 

of 1.64 x 10 12 crn- 3 , for the 2.02 ~m particles to 2.26 x 10 10 cm- 3 
, 

and for the 3.2 ~m particles to 5.605 x 109 crn- 3
• In each case the 

solid line represents linear behavior corresponding to single scat

tering theory. Deviations from linearity are caused by rnultile scat

tering. It should be noted that significant deviation from linear 

behavior occurs at nearly an order of magnitude lower concentration in 

the non-range-gated case, attesting to the usefulness of range-gating 

in the suppression of multiple scattering. At shorter pulse durations 

this effect would be considerably more pronounced. With our present 

equipment, however, we are not able to achieve sampling times under 

15 psec. 

The decrease in intensity at higher particle concentration is due 

to the attenuation of the incident beam and the scattered signal along 

their propagation paths. This has been analyzed theoretically in 

Section IV.2 as the first order multiple scattering. The results of 
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the calculation are shown in Fig. 4-15, compared to experimental 

results for 0.481 ~m particles at an angle of 169°. The open circles 

represent the range-gated data while the crosses represent the non

range-gated (i.e., quasi-CW) data. The solid circles are pseudo

theoretical points calculated using measured values of turbidity as 

an attenuation factor for the single scattering extrapolation. See 

Sections VI.3.1 and VI.3.4 for the detailed discussions on the turbi

dity measurements. 

As can be seen in the figure, the range-gated data fit the theo

retical curve more closely than the non-range-gated data, showing 

that range-gating does suppress some of the higher order effects of 

multiple scattering. From another point of view, the valid range of 

the first order multiple scattering approximation is expanded by the 

range-gating technique. 

The open and solid circles coincide almost exactly even at the 

concentration of 10-2% by weight, where the theoretical curve fails 

to fit. The difference between the theoretical curve and the solid 

circles is due to the assumption of constant turbidity of the former 

and decreasing turbidity of the latter caused by multiple scattering. 

This result suggests that the first order multiple scattering approxi

mation is still valid at this concentration-range by simply including 

the multiple scattering effect in one of the parameters which is 

measured as the turbidity. 
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IV.4.5 Simplification of Geometric Correction 

The advantage of the range-gating technique in simplifying the 

geometrical corrections is demonstrated. The correction factors for 

the change of the scattering volume was obtained in Section IV.2.2 

as a function of the scattering angle e. They are (1 + cose)/ 

(sine cose) for the non-range-gated case and l/cose for range-

gated case. When e is small, the former reduces to the conventional 

"sine-correction" and the latter to the correction-free. 

This advantage is illustrated in Fig. 4-16 which shows the 

scattered intensities measured as a function of the particle concen

trations at the angles of e = 1.83°, 11.0°, 20.2° and 29.3°. 

Fig. 4-16(a), (b) and (c) corresponds to the cases of non-range

gating without the sine-correction, non-range-gating with sine

correction and range-gating with no correction. They show that the 

correction is not required at these angles if the range-gating is 

applied. 
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(a) 

(b) 

Fig.4-7 Suppression of background scattering: 
recorded signals (a) with range-gating ( xlOO ), 
(b) without range-gating 
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Chapter V 

SOLUTION OF DIFFUSION EQUATION FOR BEA~1 WAVE 

INCIDENCE ON DENSE RANDO~1 ~1EDIA 

V. 1 . INTRODUCTION 

There has been an increasing interest in the propagation and 

scattering characteristics of a short optical pulse in a random 

medium. The practical application ranges widely in various fields 

such as meteorology, astronomy and biology. 

Ishimaru (1975), Hong (1976) (1977) and Sreenivasiah (1976) 

obtained general formulations for 1ine-of-sight pulse propagation in 

randomly distributed scatterers as well as turbulence, and considered 

optical pulse propagation in fog and clouds. These and other studies 

(Liu, 1975), (Uscinski, 1974), (Erhukumov, 1973), (Bucher, 1973) VJere 

directed to the study of 1ine-of-sight propagation of a pulse under 

the forward scattering assumption which is applicable for tenuous 

media and large scatterers compared with the wavelength. 

Although CW studies in dense media have been reported (Ishimaru, 

1978a, p. 174)(Reynolds, 1976), very few attempts have been made to 

treat the problem of backscattering of a short optical pulse from a 

dense distribution of scatterers. Recently, Ishimaru (1978b) derived 

the diffusion equation for pulse propagation by applying the diffusion 

approximation to the two-frequency equation of transfer. He also 

obtained the solution of the diffusion equation for the point source 

and plane wave cases. 
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In the preceding chapters (Chapters II-IV), we dealt with the 

remote-sensing technique for a tenuous medium. In general, they are 

applicable only when the single scattering or the first order multiple 

scattering approximation is valid, which corresponds to scatterer 

volume density considerably smaller than 0.1%. If the volume density 

is much greater than 1%, a diffusion approximation must be used 

(Ishimaru, 1978a, p. 175). The range of these approximations will 

be discussed in detail in Chapter VI. 

In this chapter we derive the beam \'/ave solution to the diffusion 

equation, and analyze the scattered pulse shape from dense media. 

Also, the combination of the first order multiple scattering and 

diffusion approximations is attempted. A new parameter, diffusion 

optical distance is defined and its usefulness is demonstrated. The 

range of validity of the diffusion approximation is examined as well. 
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V.2 THEORY 

V. 2. 1 Diffusion Equation for Pulse Propagation 

The two-frequency equation of transfer (Ishimaru, 1978b) is 

given by 

+ £(r,s) (5-1) 

(5-2) 

where I(r,s,wl ,w2) and £ (r,s,wl ,w2
) are two-frequency specific 

intensity and source function at the position r in the direction of 
... 

the unit vector s at frequencies w, and w2' f,(o,i) and f2(6,i) 

are scattering amplitudes at wl and w2 respectively when a wave is 
A 

incident and scattered in the directions of the unit vectors i and 

o , dn ' is the elementary solid angle in the direction SI, p is 

the number density, kl = wl/c, k2 = w2/c and c is the velocity of 

light. The scalar variable s represents a distance in space. 

The specific intensity I can be expressed as a sum of the reduced 

incident intensity Iri and the diffuse intensity Id . 
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(5-3) 

(5-4) 

(5-5) 

The diffusion approximation is given by the first two terms of 

the series expansion of Id in terms of the scattering angle, i.e., 

A 

• S (5-6) 

where the average intensity Ud and the flux vector Fd are defined 

by 

(5-7) 

(5-8) 

-
Fd can be related to Ud as 

- (-) L1.1T (-) + _1_ J (- ,.) A Fd r = - -3-' - grad Ud r e: • r,s s dQ 
a tr a tr 41T n 

(5-8 1 
) 
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Applying the diffusion approximation to the equation of transfer 

given in Eq. (5-4), we obtain the diffusion equation for the average 

i ntens ity. 

(v2 - q2)Ud = 437T { - po at J I .(r,s)dQ + div J £ .(r,s)s dQ 
s r 47T r1 47T r1 

Where q2 = 3 

and 

- atr J s(r,s)dQ + div f E(r,s)s dQ } (5-9) 
47T 4n 

aaatr ' 

° = (1 - ~) tr 

0a' os' 0t and 0tr shown above are two-frequency-absorption, 

~scattering, -total and -transport cross sections of the scatterer. 

They are functions of wl and w2. If wl = w2' they become the 

usual cross sections of the particle at the frequency W = wl = w2 

~ is a mean cosine of the scattering angle 8 = COS-l(S • $1) and 

is given by 
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The boundary condition for the diffusion equation is given by 

= a (5-10) 

where Q,(rs ) = (f £ . 5 dn)/at ; rs is a position on the 
47T rl r 

surface of boundary and n is a unit vector normally directed into 

the region containing scatterers. Note this boundary condition is 

approximate (Ishimaru, 1978a, p. 179). 

In the following sections, solutions of the diffusion equation 

are given in terms of the average intensity Ud(r). Once Ud(r) is 

found, the flux Fd(r) can be calculated from Eq. (5-8') and the 

specific intensity Id(r,s) can be approximated by Eq. (5-6). 

Another type of approximation for Id(r,s) is given in a later 

section (V.2.8). 

V.2.2 Solution for Beam Wave Incidence 

Fig. 5-1 shows the geometry of the problem. A collimated beam 

wave is normally incident upon a slab of dense random medium. Con-. 

sidering the axial symmetry of the geometry, a cylindrical coordinate 

system (r,¢,z) is employed. 

From Eq. (5-3), we get the two-frequency reduced incident 

intensity. 

(5-11 ) 

where F (r) is the function of intensity variation in the transo 
verse plane, at = POt - iKd ' r = rr + ZZ, rand z are unit vectors 
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in the radial and z directions. In the following discussion, F (r) 
o 

is assumed to be Gaussian, i.e., 

(5-12) 

where w is an e- 1 half beam width. 

Substituting Eqs. (5-11) and (5-12) in Eqs. (5-5) and (5-9), the 

problem is formulated in the following boundary value problem. 

(v2 - q2) Ud(r) = - Qo(r) (5-13) 

a - Q1(r) 
Ud(r) - h az Ud(r) + 2n = 0 at z = 0 (5-14) 

at z = d (5-15) 

where q2 = 3aaatr , h = 2/3atr , d is the thickness of the slab of 

scatterers, 

(5-16), 

and 

(5-17) . 
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This can be solved by the Green's function method, i.e., 

(5-18) 

where (5-19) 

at z = 0 (5-20) 

at z = d (5-21) 

The solution G(r,r') can be written as a sum of the particular solution 

Gp(r,r ' ) and the homogeneous solution Gh(r,r ' ). They correspond to 

the primary ""ave or the lIincident wave ll and the secondary wave or lithe 

scattered wave, II respectively (Ishimaru, 1974, p. 505). 

(5-22) 

G (r,r ' ) - 1 fooJo(Ar) J (Arl) e-y1z - zll AdA 
p - 41T 0 0 Y 

(5-23) 

00 

Gh(r,r ' ) = d7f fo Jo(Ar) Jo(\r ' ) { gl (A)e-YZ 

+ 92(A)eYZ } A~A (5-24) 

where Y = (A2 + q2)1/2. Eqs. (5-23) and (5-24) are obtained from 

the Green's function for the Helmholtz equation, simplified for the 

axial symmetry (Kraut, 1967, p. 386). The coefficient functions 

91(A) and g2(A) are determined by applying the boundary conditions 
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Eqs. (5-20) and (5-21). They are 

Rearranging them for future convenience, the Green1s function is 

given by 

G(r,z;r l ,Zl) - 41T 

where 

fOO AdA J (Ar) J (Arl) {e-Y!z-zl I 
o Y 0 0 

+ a ey(z-zl) 
"'22 

(5-25) 

(5-26) 

Finally, substitution of Eq. (5-26) into Eq. (5-18) yields the solu

tion for the original boundary value problem (Eqs. (5-13) ~ (5-15)), 

i . e. , 

(5-27) 



"3 

911 (e-Yz-Yd-ad -Yz) 912 (-yz+Yd-ad -Yz) -e + e -e y+a y-a 

(5-28) 

() yz-yd-ad -YZ (-yz-yd-ad -Yz) ( -Yz+yd-ad 
B z = e - e + 9" e - e + 912 e 

-Yz) + 9 (yz+Yd-ad YZ) + (yz-Yd-ad eYz ) - e 21 e - e g22 e - (5-29) 

where a = at = pat - iKd ,Co and C, are defined in Eqs. (5-16) 

and (5-17). 

V.2.3 Beam Wave Incidence on Semi-Infinite Medium 

If we take the infinite limit of the slab thickness (d + 00) 

in Eqs. (5-28) and (5-29), we get the solution for a semi-infinite 

med i urn, i. e. , 
w2 

co 2 - -1.. 2 C C, 
= J AdA J (Ar) ~ e 4 { ~ A (z) + B ( ) } o Y 0 2 2 00 41Th 00 z 

-az Yz az _e __ -_e __ + e- + hv - , A (z) = ' 
00 Y - a Y + a hy +: 1 

B (z) = - 2hy e-YZ 
co hy + 1 

-yZ e 
y + a 

(5-30) 

(5-31) 

(5-32) 
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Note that the solution is simplified considerably when the effect from 

the backwall is eliminated. 

If we replace the boundary condition~ Eq. (5-l5)~ by 

at Z = 0:> (5-33) 

and solve the boundary value problem (Eqs. (5-13), (5-14) and (5-33))~ 

we get the same solution as above. The agreement was confirmed. See 

Fig. 5-2. 

V.2.4 Plane Wave Incidence on Slab of Medium 

A plane wave can be considered to be a beam wave with an infinite 

beam width. Therefore, the solution for plane wave incidence is ob

tained by taking an infinite limit of the beam width (w + 0:» in 

Eq. (5-27). Since 

w2 
00 2 -4 1.. 2 

lim f f(A) ~ e AdA = f(O) 
w-+oo 0 

(5-34) 

Eq. (5-27) becomes 

(5-35) 

where Ap(Z) and Bp(Z) are given by replacing all the y'S by q's 

in Eqs. (5-28) and (5-29) respectively. This solution agrees with the 

one obtained by Ishimaru (1978b), who set up the diffusion equation 

and boundary conditions for the plane wave and solved it. It is out-

lined in Section VIII.2.2. 
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Note that in Eq. (5-35), the r-dependence, and the integral 

appea ri ng in Eq. (5-27) vlere removed. 

V.2.5 Plane Have Incidence on Semi-Infinite t1edium 

In the same way as the previous section (w + 00), the solution 

for beam wave incidence on a semi-infinite medium (Eqs. (5-30) ~ 

(5-32» reduce to the solution for the plane wave incidence, i.e., 

Ud(z) 

Apoo(z) 

1 Co 
= - { - A (z) q 2 poo 

-aZ -qz e e + = q - a 

= - 2hq 
hq + 1 

-qz e 

Cl 
+ 41Th BpJZ) } (5-36) 

-aZ hg - 1 -qz e + e 
q + a hq + 1 q + a (5-37) 

(5-38) 

The same results are obtained by taking an infinite limit of the slab 

thickness (d + 00) in Eq. (5-35), or starting from the diffusion equa

tion with an appropriate boundary condition such as Eq. (5-33). These 

agreements were confirmed. See. Fig. 5-2. 

V.2.6 Point Source in the Medium 

Another asymptotic case of the beam wave incidence is a point 

source. He take a zero limit of the beam width (w+O) in the beam 

wave sol ution for a semi -infinite medium (Eq. (5-30», \'Jhile keeping 

the total incident energy constant ( 1TW2 = canst.). Then, we get 
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where 

00 

C3 = ~ exp{-f2/w2)2nr dr = nW2 = const. 

and A, B are given in Eqs. (5-31), (5-32). 
00 00 

For the dense random media, the optical distance is much larger than 

unity (putz » 1), and e-az is negligible if it is compared with 

e-YZ ~ Then, Eq. (5-39) can be written in the following form: 

00 

Ud{r,z) = C f AdA J (Ar) f{Y) e-YZ 
3 0 Y 0 

(5-40) 

where f{y) = (atr + ~at)A'{z) + ~B'(Z) and using Eqs. (5-31) and 

(5 -32) 

-aZ -Yz -az -YZ 2 -yz 
A (z) = e - e + e + e e 

00 Y - a Y + a hy + 1 y + a 

~ ( - 1 + 1 _ 2 1) e -I'Z !J. A I (z) e - Y z 
y - a y + a hy + 1 y + a = 

Boo{z) = - 2hy -YZ ~_ B'(z)e-YZ hy + 1 e 

The integral in Eq. (5-40) is evaluated by the method of steepest 

descents (saddle point technique), giving 

( 5-41) 

(5-42) 

(5-43) 

where R = {r2 + z2)1/2. Detailed discussion is given in Appendix V.~ 
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Finally, the beam wave solution, Eq. (5-30) reduces to 

(5-44) 

where 

(5-45) 

Ishimaru (1978b) solved the following diffusion equation for a point 

source in the scatterers, 

(5-46) 

and obtained 

(5-47) 

On the z-axis or r = 0 and R = z, Eq. (5-44) agrees with Eq. (5-47) 

at least in the spatial dependence. 

V.2.7 Impulse Response 

The output power in time domain can be expressed 

00 

P{t) = f P. (t') G(t - t') dt' ln (5-48) 
-00 

where Pin(t) is the input power and G(t) is the response due to 

the delta function input power or Pin(t) = o(t). G(t) is called the 

impulse response. 



119 

In the previous sections, the solutions of the diffusion equa-

tion were presented in terms of the two-frequency average intensity 

Ud(r;wl ,w2) in the frequency domain. It is defined by 

It has been shown that the impulse response G(t} is given by the 

Fourier transform of the two-frequency mutual coherence function 

fo(wd}' i.e., 

00 

G( t} - 1 J - 27T 
_00 

(5-50) 

where fo(wd) is the mutual coherence function which represents the 

correlation function between the output fields due to the time-

harmonic inputs at two different frequencies Wo + wl and Wo + w2 

evaluated at the same time t and at the same point r, and 

Wd = wl - w2 (Ishimaru, 1978a, p. 96, p. 3]3). 

Since 

(5-51) 

we get the impulse response as a Fourier transform of the Ud, i.e., 

oc> _ -iwdt 
= J Ud(r;wd) e dWd (5-52) 

-00 

As can be seen in Eqs. (5-52) and (5-49), the impulse response 

Gl(t) represents the signal averaged over all directions. Thus, it 
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is applicable when the receiving pattern of the detector is isotropic 

(no directivity) or the directivity of the incoming signal is sharply 

peaked to be confined in the receiving pattern of the detector. In 

practice, these conditions are not always easy to satisfy. In fact, 

our system uses the detector with a very narrm'ily peaked receiving 

pattern to obtain the directional information of the (diffusely) 

scattered intensity. Therefore, in the following analysis, the impulse 

response G(t) refers to the G2(t) which is given as the Fourier 

transform of the specific intensity Id, i.e., 

00 

G(t) = G2(r,s;t) = J (5-53) 
_00 

The specific j.ntensities to be used for the analyses in the later 

sections are listed below. They are obtained by substituting the 

each solution Ud for semi-infinite media into Eqs. (5-6), (5-8 1
). 

(1) Beam wave incidence 

incident flux: 

where Fo is the flux at r = 0, r is the radial distance in 

cylindrical coordinate system (r,e,z), and w is the e-1 half 

beam width. 
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+ r . 

w2 

+ Z • s loco AdA J
O 

(Ar)\,/2 e - 4P 

A 

- Z • 

1 3(atr + ~a) 
=---:=--- { . 
2y + 3atr 2(y + a} 

Previous sections (V.2. 1, V.2.2) should be consulted for the 

definitions of parameters. 

(2) Plane wave incidence 

incident flux: F(wl'w2) = Fo (const.) 

3 ~q - a tr = F po (2 - 35 • z) - 4n 0 s (2q + 3atr}(q + a) 

(3) Quasi-spherical wave (point source at the boundary) 

3 e-qR 
= - 4n Etot [atr 4nR f(cos~) 

e -qR A A A 

+ 4nR2 {(qR + l)f(cos~)R • S + sin~ f'(cos~)~ • s}] 

where 

(5-54) 

(5-55) 

(5-56) 
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d 2 3x2 + C, 
f'(x) = dx f(x) = pas a:

r 
{ (x + C

2
)(x2 - C

3
) 

x(x2 + Cl )(3x2 + 2C2x - C3) 
(x + C2)2 {x2 - C3)2 } 

C3 = (a/q)2 and the spherical coordinate system (R,8,~) 

was used. ~ = 90° at the boundary. 

(4) Point source in the medium 

V.2.8 Improvement for Plane Wave Backscattering 

(5-57) 

As will be discussed in the next section, the diffusion solution 

is not applicable for the scattering from the region near the boundary 

of the scattering medium. Since, in this region, optical distance is 

not high enough to satisfy the conditions of diffusion, the first order 

multiple scattering (FOMS) is taken into account. Note that this 

approach is not a simple addition of the solution for the FOMS to that 

of the diffusion equation. 
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We start from the two-frequency equation of transfer for the 

diffuse intensity Id(r,s;wl ,w2), i.e., 

Definitions of parameters are given in Section V.2.l. 

(5-58) 

The equation of transfer is formulated into the integral equation 

as 

(5-59) 

where Ii is the incident intensity at the incidence point 

s is the distance from ro in the direction S , a = POt - iKd and 

To this point, no approximation has been made. 

If the unknovm total intensity I(rl ,5) in the integrand is 

approximated by the reduced incident intensity Iri ' we get the ordi

nal FOMS approximation (Ishimaru, 1978a, p. 169). Here instead, we 

approximate the I(rl,s) by the Iri plus the diffusion solution 

-Id, i.e., 
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(5-60) 

-Comparing Eqs. (5-59) and (5-60)s if Id = Id the solution is exact. 

In other words s the accuracy of this approach depends on that of the 

diffusion solution. For convenience in further calculations s the 

solution Id is written as a sum of the Idl and Id2 which repre-

-sents the contributions from Iri and Id respectively, i.e., 

(5-61) 

(5-62) 

After these general formulations, we consider the geometry of our 

problem shown in Fig. 5-1. A beam of a pulse with the intensity I. 
1 

is incident normally on the slab of scattering medium with the 

thickness d, i.~.s 
r2 

I i (ro's;w
l

,w
2

) = Fo e- W2o(S - z) (5-64) 

where r = rr + zz. From Eq. (5-59) the reduced incident intensity 

is given by 
y'!2 

I ( ~ ) = Fo e - W2 e-az r(s~ _ ZA) ri r,s ;wl ,w2 u (5-65) 
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Substituting Eq. (5-65) in (5-62) we have 

d r2 

I dl (r,z,s;wl ,w2) J -aZ 
Fa 

- w2 pat (~ ~) -aZ dZl = e 1 e __ p s,z e 1 

z 4n 

The backscattering (5 = - z) from the semi-infinite medium 

(d = 00) observed at the boundary (z = 0) is therefore given by 
r2 

A - w2 pOb 1 
Idl (r,0,-z;wl ,w2) = Fa e 4~ 2a 

where 0b is the backscattering cross section defined by 

where 0d(o,i) is the differential cross section. 

(5-66) 

In the backscattering case, Id2 also reduces to the simpler 

expression. The term in the bracket {.} of Eq. (5-63) becomes 

where f p {s,s')dQ' = 4~os/ot ' 
4~ 

J p(S,SI)S· s'dQ' = - 4TI~os/ot ' 
4TI 

Therefore, for the semi-infinite medium 

( 5-67} 
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Finally, substitution of Eqs. (5-66) and (5-67) to (5-61) yields·the 

solution to the equation of transfer which includes the effects of 
" •• ' .. ; of. :' ~:~:.:."'~~'¥~ ~~ .~:~::-;"~:~ 

the FOMS and diffusion. 

In the case of plane wave incidence, it is given by 

. ." . ~ .~. 

~q + ct tr 
2ctct } ] (5-6~ 

tr .. ~. 

V.2.9 Sign of Diffusion Solutions at Time-Origin 

As mentioned before, the diffusion approximation is not valid. 

for the scattering from the region close to the boundary of the scat

tering medium. This corresponds to the uncertainty of the· impulSe 

response near the time origin. In fact, the diffusion solutions can 

be negative near t = O. Therefore, by checking the behavior of the 

diffusion solutions at the time origin, we can obtain the conditions 

in which the diffusion solutions should not be used. 

According to the initial value theorem of the Laplace transform, 

lim f(t) = lim sF(s) (5-69) 
t+O+ s~ 

where the function F(s) is the Laplace transform of the function 

f(t). Defining a new variable 

s == - i (5-70) 
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we have 

lim (Ut/spOtr) = lim (1 + 0t/sOtr) = 1 
S+oo S+oo 

lim (ua/spOtr) = lim (1 + 0a/sOtr) = 1 
S+oo S+oo 

lim (utrlspOtr) = lim (1 + lIs) = 1 
$+00 S+oo 

1/2 
lim(q/spOtr} = lim {3(1 +oa/sOtr}(l + lIs}} = I3i 
S+oo s+oo 

1 im (Y/spotr) = 1 im b .. 2 + q2 I spotr = /3 
s+oo s+oo 

Thus, applying this theorem to the specific intensity for the beam 

wave incidence on the semi-infinite medium given in Eq. (5-54), 

we get 

lim G(t) = lim s Id(s} 
t+o+ s+oo 

_(Z}2 
= - l F ~ e 13 ]J - 1 (2 3 Z • s) (5-71) 

41T 0 0tr ( 2 13 + 3) ( 13- + l) -

Therefore, the impulse response at t = 0+ is positive, when 

o < ]J < l/rT and 
A A 

Z • S < 2/3 

and 
A A 

Z • S > 2/3 
( 5-72) 

11 /3 < ]J < 1 

The interpretation of this result is as follows. The former 

condition implies that diffusion cannot be expected in the large 

angles (8 > 48.2°) unless the scattering pattern of each constituent 



128 

particle is fairly isotropic (0 < ~ < 1/13:). The latter condition 

implies that if the scattering pattern is peaked in the forward 

angles (1/13: < ~<l), diffusion cannot be expected in the large 

angles (8 > 48.2°). Thus, the impulse response based on the diffu-

sion approximation is not valid near the time-origin, if the above 

conditions are not satisfied. It should be emphasized that the above 

conditions do not guarantee the validity of the solution even if they 

are satisfied. They just show the conditions under which the solution 

is not reliable. 

The same method is applied to the point source case given in 

Eq. (5-57): 

lim G(t) = lim s Id(s) = 00 

t-+o+ 5-+00 

(5-73) 

where 

lim s(s + 1) exp {-/3s(s + 1) R} 
s-+oo 

= l' [ex1{/3s(s+1) R J- 1 
1m s s + 1) 

5-+ co 

1 
= 1 im [ s (s + 1) 1 ( ) 2 J- 1 {l + /3s(s + 1) R + 2T 3s s + 1 R + ... } 

s-+oo 

This result is reasonable, since in the case of the point source, the 

time origin of the scattered wave corresponds to the spatial origin 

where the source is concentrated in a point. 

As expected from the similarity in the geometry, the results for 

the plane wave and the quasi-spherical wave are the same as those for 

the beam wave given in Eq. (5-71) and the point source, Eq. (5-73), 
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respectively. 

There is an interesting equivalence seen in the derivation of 

Eq. (5-71) to that of Eq. (5-55). Note the similarity in the final 

forms shown in Eqs. (5-71) and (5-55). This is attributed to the 

following. As can be seen in the definition given in Eq. (5-70), an 

increase in s corresponds to an increase in the frequency wd ' 

and a decrease in the wavelength A. A decrease in A is equiva

lent to a relative increase in the beam width w of the incident 

wave. Thus, taking the infinite limit in s corresponds to the same 

limit in w which reduces the diffusion solution for the beam wave 

incidence to that for the plane wave incidence. It is shown in 

Section V.2.4. 

V.2.l0 Diffusion Optical Distance 

The "optical distance" (Ishimaru, 1978a, p. 157) or the "optical 

thickness" (Chandrasekhar, 1950, p. 9) has been defined as 

(5-74) 

where p, at and ds is the particle concentration, the total cross 

section and the distance element. If the scattering medium is homo

geneous and the ItlaVe travels in the z direction, it becomes 

T = pat Z (5-75) 

This parameter represents the attenuation characteristics of the 

medium due to scattering and absorption, i.e., 
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where I(z) is the intensity at the position z and 10 is the 

incident intensity. 

(5-76) 

As can be seen in the following definition, the transport cross 

section 0tr includes the effect of the unisotropic scattering, and 

therefore represents the scattering characteristic of the diffusive 

media better than other cross sections. 

(5-77) 

where ~ is the average cosine of the scattering angle. p = 0 and 

1 corresponds to isotropic and purely forward scattering~ respectively. 

Using 0tr' a new parameter is defined and called a IIdiffusion optical 

distance ll
: 

'd = f POtr ds = POtrZ for homogeneous media (5-78) 

In the following analysis with diffusive media, parameters and func

tions are normalized by POtr or POtrCmed where Cmed is the 

group velocity of light in the scattering medium. 

It is demonstrated in later sections (V.4.l, VIII.4.3) that 

diffusive scattering depends mostly on 'd and that the choice of 

the above normalization constant is appropriate. It is also verified 

experimentally in Section VIII.4.3. 



131 

V.3 NU~1ERICAL ANALYSIS 

The theoretical discussions presented in the previous section 

(V.2) are examined by numerical analysis. The diffusion solutions in 

the time domain or the impulse responses are calculated and their 

pulse-shapes are analyzed. The values of parameters are chosen within 

a practical range. Most of them are those used in the experiments 

which are discussed in subsequent chapters. The calculations are 

made with 16 digits precision. 

The outline of the algorithm developed for this analysis is as 

follows. 

1. Initiate the program, i.e., read the given parameters, calculate 

necessary constants, etc. 

2. Set the frequency in a given range, wi (i = 1, 2, ... N) 

3. Calculate the spectrum of the specific intensity Id(wi)' If 

numerical integrations are involved such as in the beam wave 

case, check the convergence of the integration. If necessary, 

apply the tapering window on the high-frequency tail to prevent 

the leakage phenomena in the following FFT. 

4. Take Fourier transform of the spectrum by the Fast Fourier 

Transform technique. 

5. Output the results in graphs. 



132 

V.4 RESULTS AND DISCUSSION 

V.4.l Diffusion Solution for Beam ~lave Incidence 

Fig. 5-3 shows the impulse response of a semi-infinite diffusive 

medium calculated by Eqs. (5-53) and (5-54). This is the intensity 

profile of the scattered signal in time, where the incident wave is 

assumed to be a beam of an impulse whose dimension is longitudinally 

infinitesimal and laterally Gaussian. The abscissa is the time nor

malized by (POtrCmed)-l and the ordinate is the intensity of the 

impulse response normalized by POtrCmed' where p, 0tr and Cmed 
are the particles concentration, the transport cross section and the 

group velocity of light in the medium, respectively. As to the choice 

of this normalization constant, more discussion is given elsewhere 

(V.2.l0, V.4.2, VIII.4.3). The time-origin is defined as the instant 

when the incident impulse passes the first boundary of the scattering 

medium. Through this chapter, impulse responses are presented in a 

linear scale unless otherwise specified. 

We can see in Fig. 5-3, the typical characteristics of the 

impulse response of the diffuse media, namely the rapid rise and slow 

asymptotic decay. As mentioned before, the diffusion approximation is 

not valid for the scattering from the region near the boundary of the 

scattering medium. This corresponds to the uncertainty of the impulse 

response in the normalized time t l ~ 1. The part of the asymptotic 

decay, however, should be reliable. In the following analysis, this 

part is referred to as a "diffusion tail" due to its origin. 



133 

Fig. 5-4 is the same impulse response as Fig. 5-3~ plotted in 

dB . Its linear decrease impl i es that the asymptotic decay can be 

approximated by exp(-CTd)~ where C is a constant and Td is the 

diffusion optical distance defined in Section V.2.l0. 

V.4.2 Effect of Observation Geometry 

The geometry of observation is illustrated in Fig. 5-5. The 

backward scattered pulse for the beam wave incidence is observed at 

the radial distance r and at the scattering angle e. 

Fig. 5-6 shows the effect of the radial distance r. As r 

increases, the scattered intensity is rapidly attenuated~ but pulse 

broadening does not occur~ at least in the range examined. The pulse 

keeps its relative shape as it is attenuated. 

Fig. 5-7 shows the effect of the observation angle e. Again~ as 

e increases the magnitude of the pulse decreases, but the relative 

shape of the pulse is preserved. The angular dependence of the magni

tude seems to be (1 + cose)/2. According to Lambert's cosine law~ 

the dependence would be cose if the medium is an ideal diffuse 

reflector. 

V.4.3 Effect of Scatterers 

Fig. 5-8 shows the effect of the sizes of scatterers. They are 

latex spheres with 0.481 ~m, 5.7 ~m and 45.4 ~m diameters. Their 

relative refractive indices to water are 1.59/1.33 for A = 0.53 ~m. 

Average cosines ~ which represent the degree of anisotropy are 

0.85~ 0.90 and 0.93 respectively. Their concentrations are set in 
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10% by weight or 1.64 x 10 12 cm- 3
, 9.87 x 108 cm- 3

, and 1.95 x 106 

-3 cm 

The curve of 45.4 ~m spheres shows the highest magnitude and the 

fastest decay in the diffusion tail due to the large v or high 

anisotropy. Except for these points, there is no significant dif

ference observed among their shapes. 

Fig. 5-9 shows the effect of the absorption of scatterers. The 

absorption" is characterized in terms of the ratio of scattering and 

total extinction or the albedo, Wo = 0s/Ot. Now, the shape of the 

impulse response changes significantly for the different wo. The 

pulse \'iidth (HJHr1) for absorbing scatterers (wo = 0.85) is ...,60% 

of that for non-absorbing scatterers (wo = 1.0). This is due to the 

suppression of the diffusion tail caused by the absorption of the 

scatterers. This effect is demonstrated experimentally in a later 

chapter (VIII.4.2). The separation in the starting points of the 

rising part of the impulse response is not fully understood. It may 

take more time for the absorbing scatterers to start the diffusion. 

Except for the above case of absorption, the curves presented in 

this and previous sections show general and common features. This can 

be attributed to the proper choice of the normalization constant 

POtrC discussed in Section V.2.l0. If we use a different kind of 

normalization constant such as POtC, pOsc, etc., the curves appear to 

be very different for different situations. Therefore, these results 

suggest the possibility of the universal curve which is applicable 
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to a variety of physical situations. 

V.4.4 Comparison of Different Solutions 

In Section V.2, diffusion solutions were obtained for different 

types of incident waves, namely the beam wave, plane wave and point 

source cases. The beam wave solution reduces precisely to the plane 

wave solution by taking the infinite limit of the beam width. By 

taking the zero limit, the beam wave solution reduces to a solution 

similar to that of the point source, but is not exact. This asymp

totic solution is called a "quasi-spherical wave" solution. Fig. 

5-10 illustrates these concepts. 

In this section, the impulse responses calculated by these solu

tions are analyzed. They are the plane wave, beam wave, and quasi

spherical wave incidences on semi-infinite media calculated by Eqs. 

(5-55), (5-54) and (5-56) respectively, and the point source by 

Eq. (5-57). They are shown in Figs. 5-11, 5-12, 5-13 and 5-14 

respectively. The impulse responses were calculated for two sizes of 

scatterers, namely 2.02 llm and 45.4 llm in diameter. These two sizes 

correspond to the diameters of the spherical equivalents of a RBC 

and a platelet aggregate which are used in our applications (Ishimaru, 

1976). In the point source case, the analysis with the average inten

sity Ud is sometimes more practical than with the specific intensity 

Id . However, no significant difference is found in the impulse 

responses calculated from Ud and Id by Eqs. (5-47) and (5-57). 

Comparing Figs. 5-11 ~ 5-14, first we note the difference in 

time scales. In the case of 2.02 llm spheres, the difference amounts 
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to four orders of magnitude between the plane wave case and point 

source cases. The quasi-spherical wave case lies in between and close 

to the point source case. The same argument applies for the 45.4 ~m 

spheres as well, although the difference is a little smaller. This 

may be attributed to the dimensional difference of the diffusion model. 

In the plane wave case, the diffusion is considered in only one dimen-
/ 

sion, while in the point source case it is in three dimensions. Thus, 

in the latter case, photons are supposed to suffer more collisions 

against the scatterers than the former case and the effect of diffusion 

appears enhanced. The result of quasi-spherical wave is also reason

able if we consider the similarity in the geometry of the source point. 

V.4.5 Diffusion Tales 

By comparing the two curves for 2.02 pm and 45.4 ~m spheres in 

Figs. 5-11 ~ 5-14, we can see the following. In the plane wave case, 

there is no difference between the diffusion tales of the two curves. 

While for the point source, the diffusion tale for the 2.02 ~m 

spheres develops three orders of magnitude larger than that of the 

45.4 ~m spheres. This three orders of magnitude difference can be 

seen in the quasi-spherical wave case as well. Although the dif

ference is verysmall, the larger tail for 2.02 ~m spheres appears in 

the beam wave case, which is otherwise almost identical to that of 

the plane wave. This is reasonable, since the beam wave case is 

categorized between the plane wave and the quasi-spherical wave cases, 

and is closer to the former in the dimension of diffusion discussed 

above. 



137 

These differences in the diffusion tails are attributed to the 

difference in the degree of diffusivity which is represented by the 

diffusion optical distance Td = pcrtrz. The larger the Td is, the 

more diffusion occurs resulting in the larger diffusion tale. The 

Td's per unit distance (pcrtr ) for 2.02 ~m spheres and the 45.4 ~m 
-1 -1 spheres are 204 cm and 5.39 cm respectively, where the density 

is 10% by weight for both cases. 

Based on these theoretical analyses we can conclude the following 

points which will be useful for the practical applications. The aggre-

gation of platelets in dense medium can be detected by observing the 

changes in the diffusion tales of the scattered pulses. This is con

firmed experimentally in Chapter VIII. Note that in the above analysis, 

the fractional weight of the scatterers were kept constant (lO%) for 

2.02 ~m spheres and 45.4 ~m spheres, thus simulating the condition of 

aggregation in which the size of each scatterer grows large but the 

fractional weight does not change. 

Furthermore, the above analysis shows that in the detection of 

aggregation, a point source or a narrow beam incidence is more 

effective than the wide wave incidence, such as the plane wave. 

V.4.6 Inclusion of First Order Multiple Scattering 

Fig. 5-15 shows backscattered (lBOO) impulse responses for the 

plane wave incidence. Fig. 5-15(a) is calculated by the diffusion 

solution for the plane wave incidence given in Eq. (5-55) and 

Fig. 5-15(b} is by the improved solution Eq. {5-6B} obtained in 

Section V.2.B. 
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They look almost identical but a closer look reveals an improve-

ment near the origin. A magnified view of this region is inlayed in 

the same figure. There is a peak originated by the first order mul

tiple scattering (FO~1S). Since the For~S is attenuated rapidly in a 

short optical distance, it looks like an impulse. The peak shown is 

that of the 45.4 ~m spheres. The one for 2.02 ~m spheres is too small 

to see. The effect of the FOMS peak is shown in Table 5-1 in terms 

of the areas of the peak normalized by the area under the impulse 

response curve. The area in the time domain corresponds to the value 

of the spectrum at the frequency origin. The method of the calculation 

is shown in Table 5-1, where Idl and Id2 are the specific inten

sities due to the FOMS and the diffusion discussed in Section V.2.8, 

respectively. As can be seen in the table, the effect of FOMS is 

negligible for small latex spheres, but it becomes comparable to that 

of diffusion in the cases of 3.20 ~m and larger spheres. This is 

demonstrated in experiments discussed in Section VIII.4.1. 

Another difference between Figs. 5-l5(a) and (b) is the separa-

tion of the rising points apearing in the latter. This is to be 

( -1 ) expected since the 45.4 ~m spheres are less diffusive POtr = 5.39 em 

( -1) than the 2.02 ~m spheres POtr = 204 cm ,because it takes more 

time for the former to start the diffusion. 
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~ Fig.5-6 Effect of radial distance (r) of detector : 

.C-J a.... • from the top, r = 0.1, 1.0, 1.5, e = 1500~ 
(f) 0 beam width W = 1.0, 2.02 l-Imcp spheres 
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Fig.5-7 Effect of observation angle (e) of detector 
from the top e = 180°, 150°, 120°, 90°, 
2.02 ~m~ spheres, r = 1.0, W = 1.0 
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Fig.5-9 Effect of absorption of scatterers : 2.02 ~m¢ spheres, 

Wo = as / at = albedo, e = 150°, r = 1.0, W = 1.0 
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Fig.5-11 Impulse responses of plane wave incidence on 

semi-infinite medium: 45.4 ~m¢ and 2.02 ~m¢ 
spheres, e = 150° 
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Fig.5-12 Impulse responses of beam wave incidence on 

semi-infinite medium : 45.4 ~m¢ and 2.02 ~m¢ 
spheres, e = 150°, r = 1.0, W = 1.0 
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( a) 
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(b) 
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Impulse responses of quasi-spherical wave incidence 
on semi-infinite medium: r = 1.0, ~ = 90°, 
e = 150°, (a) 45.4 ~m~ spheres, (b) 2.02 ~m~ 



I 

I 

0) 146 .0 
CL-
(J)0 

(a) W 
0:::: 

W 
(J)w 
...Jo 
::J -CLo 
E ...... 

• 
E 
0:::: 00 
DC? 
'2:0 

o 

C?~------~~==~=======T=======r=== o 

• 
! CL 

(J) 

IS) .... -o 

W 
0::::

0 
w.-: 
(J)o 
...J 
::J 
CL 
E ...... 

l/) 
.0 Eo 

0:::: 
D 
'2: 

o o 

0.00 10.00 20.00 30.00 40.00 

NORMALIZED TIME *101 

o~------~--------~------~--------~---
0.00 10.00 20.00 30.00 40.00 

NORMALIZED TIME *104 

Fig.5-l4 Impulse responses of point source at the origin 
r = 1.0, (a) 45.4 ~m~ spheres, (b) 2.02 ~m~ 



\ 
\ 

0 
• ('f) 

0-. 
(1)0 

W 
~ 

W 
(1)0 
-.IN 
:::l • 
0- 0 

E 
1-4 

• 
E 
~o 
D~ 
zo 

0 
0 . 
0 

o o 

(a) 147 

0.00 5.00 10.00 15.00 20.00 

NORMALIZED TIME 

o~------~r-------~--------T-------~----
0.00 5.00 10.00 15.00 20.00 

NORMALIZED TIME 

Fig.5-15 Inclusion of first order multiple scattering effect 
(a) diffusion only, (b) modified to include FOMS . 
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dia. std. dev. a
b as 

mean 

(11m) (%) 2 (11m ) 2 (11m) 

0.481 0.374 0.0176 0.186 0.849 9.94E-3 

2.02 0.668 0.253 7.96 0.886 3.29E-3 

3.20 5.94 11.3 20.1 0.871 5.86E-2 

5.7 26.3 88.4 59.4 0.890 1.54E-1 

5.7 abs. 26.3 85.2 59.4 0.891 1.48E-1 

45.4 19.6 3945. 3428. 0.928 1.18E-1 

Table 5-1 

Effect of First Order Multiple Scattering Relative to Diffusion 

( since 

Id(w=O) = f: Id(t) e
iwt 

dt Iw=o = I: Id(t) dt 

= energy of the pulse, 

Idl(w=O) / Id2 (w=O) gives the energy ratio between 

the scattered signals due to FOMS and diffusion, 

where 

Idl (w=O) / Id2 (w=0) = °b / (_7_ + p) 
60

S 
6 2 

for 0a = 0 • 

'I 
I 
I 
! 
i 

~ / 



Chapter VI 

FOUR PHASES OF SCATTERING 

VI.l INTRODUCTION 

Although light scattering is an old subject dating back to the 

study of the blue color of the sky in the late nineteenth century, 

there is no exact solution available which describes the propagation 

and scattering through the entire spectrum of scatterer densities. 

Various theories and approximations have been developed for each 

specific density region and have been used successfully (Ishimaru, 

1978a, p. 69) (Ishimaru, 1977). However, the boundaries of their 

valid range are not always clear. 

In Chapter V, the solutions to the diffusion equation were ob

tained for different geometries. Their behavior at time-origin could 

give some idea on the inapplicable range but a more rigorous analysis 

is required to determine the range of validity. 

In this chapter, one method is p.roposed to classify the different 

types of scattering according to the scatterer density. The justifi

cation for this classification is shown in scattering patterns, the 

graphs of scattered intensity as a function of scatterers density, and 

visual observations of collimated light beam in the scattering medium. 

Based on these results, the correlation between measurement and theory 

is investigated on the first order multiple scattering and diffusion 

approximations. 
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VI.2 THEORY 

VI.2.1 p-dependence of Tenuous Medium 

Assume that a plane wave impulse is incident on a slab of scat-

terers and that the scattered intensity is range-gated in the impulse 

shuttering time o(t - to)' The received intensity was obtained in 

Eq. (4-6), which is 

(6-1) 

where p is the number density of the scatterers. See Fig. 6-1 and 

Section IV.2.1 for the definitions of other parameters. Considering 

p as an independent variable, Eq. (6-1) has a maximum at 

(6-2) 

When range-gating is not applied, or the shutter is kept open, the 

received intensity is given by Eq. (4-7), which is 

(6-3) 

This equation shows the p-dependence in the form of the function 

f(x) = 1 - exp(- x) . 

If \lIe take account of the fi niteness of the beam wi dth, pul se 

length and the range-gating shutter open period, the received inten-

sity is given by Eq. (4-12),which is 



151 

8 
./ 

~~ //~ 
~ / S 

// r 

z=O z=d 

Fig.6-1 Geometry of the problem 

x 

2b 
I-t 

A 

Z 

1 
// 

------~------~~~--~~------_+--------~ Z 

20 

z=O z=d 

Fig.6-2 Geometry of measurement system 



152 

Irec(r
-,sA) = Fi -PO"tcto 1 ) ----'--,I;-'--T~::.L.L.---r e sin h {p O"t (1 + --1"\ b} 

cOSQ 

(6-4) 

As was shown in Chapter IV, Eq. (6-4) applies to both the range-gated 

case and the non-range-gated case with the different definitions of 

~t. That is, ~t is half the shutter open period for the range-gated 

case and ~t = a(l + cose)/c sine for the non-range-gated case. See 

Fig. 6-2 and Section IV.2.2 for the definitions of parameters. 

Eq. (6-4) has a maximum at 

1 to + ~t 
Pmax = 20" c ~t 1n (t - ~t) 

t 0 
(6-5) 

where the following approximation is made use of 

since PO"tb« 1 for the tenuous medium. If the sampling point Zo 

is not close to the front surface of the slab (z = 0), the sampling 

time to is much larger than the shutter open period ~t (to » ~t). 

Then the natural-log in Eq. (6-5) is approximated by 

t + ~t 
1 n ( t o _ ~t ) = 

o 
ln (1 + 2 ~t ) ~ 2 ~t 2~t 

t - ~t t - ~t ~ t o 0 0 
(6-6) 

and Eq. (6-5) reduces to Eq. (6-2) which \'/as obtained above for the 

impulse-incident and impulse-shuttering case. 
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VI. 2.2 p-dependence of Dense ~edium 

With dense media, the narrow beam incidence can be approximated 

by a point source located at the impinging point of the incident 

beam. The solution of the diffusion equation for the point source 

case was given in the previous chapter, i.e., 

(6-7} 

-See Chapter V for the definitions of parameters. The intensity at r 

due to a delta function input pulse at the origin is called the impulse 

response G(t). It is given by the Fourier transform of the two-

frequency mutual coherence function which is proportional to the 

average intensity Ud (Ishimaru, 1978b), i.e., 

G(t) = J 

- 3 e-bt{ao(t t)+OI(t-t) 
- 8nRc 0 0 

for t ~ to. G(t) = 0 for t < to 

= a + poac, to = 13 RIc, 11 and 12 are modified Bessel functions, 

and Z = a(t2 _ t 2 )1/2 . 
o 

(6-8) 
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With the range-gating synchronized at the time t l , the 

received intensity is approximately proportional to G(tl ), if the 

input pulse and the gating time are short enough to be considered as 

an impulse. Note that, without range-gating, the received intensity 
00 

is proportional to f G(t)dt which is a constant. 
a 

To examine the p -dependence of the impulse response G(t) , 

Eq. (6-8) can be rewritten as 

3/2 G(t) = A p exp(- BP) for t > to (6-9) 

where 

3 t. 
A = __ 0 

8nRc (2n) 1/2 

B = 1 cr (1 - ~)c { t - (t2 - t 2)1/2} + cr ct 2 s 0 a 

eX 
and the asymptotic form In(x) - (2nx)1/2 was used. Calculating 

ddt G(t) = 0 , we obtain the number density p at which G(t) has a 

maximum 

(6-10) 

Since t - (t2 - t2)1/2 ~ t2/2t for t» t or ct» 13 R, 
o 0 0 

Eq. (6-10) is simplified for the non-absorbing case (oa = 0) as 

2ct 
P max = cr (1 - iJ) R2 

s 

\<lhere c is the velocity of light, t is the sampling time of the 
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range-gating shutter, and R is the distance of the observation point 

from the source point at the origin. 

If we start from Eq. (5-44) which was obtaine~ by taking the zero 

limit of the beam width (w+o) in the solution foll'" Ibxeiwm wave inci-

dence, we get a similar result 

VI.2.3 Normalization for Turbidity Measurement 

Although we use matched spectrophotometric ce]]s to contain the 

sample solution, the matching is not perfect. In aa~]·tion, the output 

power of the light source (He-Ne laser) fluctuates; afuurring experiments. 

To overcome these problems, the following normaliZ'4.tiiaoon technique is 

developed. 

First, we measure the transmission of the sus;wernd]~ medium of 

the scatterers in two cells. Here, the scatterers ~r.e ]~tex micro-

spheres and the suspending medium is the water with ~~ctant. 

Their transmissions are given by 

(6-13) 

where T{w,a,tl ) is the transmission of the water (w) in the cell 

(a) at the time (tl ), T{w,b,tl ) is the same for the cell (b), 

I{tl ) is the incident light intensity at t" cra and crb are 
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,~f:.~~:.:_·~~;~:r'i·~:~l·~.ttenuation constants of the cell s a and b respectively and 
.. '~ .. ~.:~_ .. Jf ~~;;:~~_;;·-.::1;~~·r , , 
<c;~~~:Y';"':-~~(flf'-fS' the turbidity of the water at t l . 

• 1 -.-'.-

Next, the content of the cell b is replaced by the solution 

of scatterers. Their transmissions become 

(6-14) 

where T s (t2) is the turbidity of the scatterers at the time t 2 . 

The ratio of above quantities yields 

(6-15) 

Finally, we obtain the desired turbidity, free from those problems 

mentioned above. 

T(s,b,t2)/T(w,a,t2) 
= - ln { T(w,b,t

l
)/T(w,a,t

1
) } 

Hith this technique, the turbidity measurements can be calibrated 

over different scatterers as well as over the different times. 

(6-16) 
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VI.3 EXPERIMENTS 

VI. 3.1 Experimental Facility 

The range-gating system described in Section IV.3.1 was used. 

In addition, a turbidity measurement system was developed. Fig. 6-3 

is a schematic diagram of the system. A beam of He-Ne laser light 

(A = 0.6328 ~m) is mechanically chopped by the chopper (CHOP) for 

the phase-lock technique. The chopping signal (C) is sent to the 

lock-in amplifier (LIA). The lateral and angular position of the 

beam is finely controlled by the beam manipulator (BEA~1 ~1AN) which 

consists of three mirrors actuated by four micrometers. (I'~olcho, 

1975). Intensity of the incident beam is adjusted by two attenuators. 

They are the variable neutral density filter (NFl) and the calibrated 

neutral density filter (NF2). By the combination of these two, the 

signal intensity is kept under the saturation level of the detector 

and at the same time the measurable range of the lock-in amplifier is 

expanded. After passing through the scatterers contained in a spec

trophotometric cell (SC), the transmitted light is received by the 

detector (DET). The detector has a very narrow angle of acceptance 

(_0.1°) attained by a focusing lens and a field stop pinhole. The 

electrical signal from the detector is -sent to the lock-in amplifier, 

LIA. It is a phase responsive amplifier with a narrow effective 

bandwidth. It suppresses various noises by the phase-lock technique 

and through signal averaging. 
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Fig.6-3 Schematic diagram of turbidity measurement 
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VI.3.2 Backward Scattering Pattern Measurement 

Fig. 6-4 illustrates the measurement of the scattering pattern 

of backward angles. See Section IV.3 for the detailed discussion. 

The scattered intensity is measured at the scattering angle e = 

1.83°~ 29.7° with and without range-gating. The method of the 

measurement follows the same as that in Section IV.3 except for the 

concentration of the scatterers. Here, the concentration is varied 
-4 from 10 % to 10% in weight, which spans from very tenuous to dense 

cases. 30% solution is available only for the spheres with 2.02 ~m 

diameter. 

The scattering volume observed by the detecting system is a 

lmm diameter cylinder with the length of 2mm in the range-gated 

case and about 5 ~ 30mm for e = 30° ~ 5° in the non-range-gated 

case. 

While changing the concentration of the scatterers from tenuous 

to dense, the conditions of experiments are kept the same, including 

the synchronization time of the range-gating shutter. Thu$, when the 

scattering medium becomes dense or diffusive, it results in measuring 

the tailing part of the scattered pulse where our theory is supposed 

to be more accurate than near the peak. 

VI.3.3 p-dependence Measurement 

By the normalization method described in Section IV.3.6, the 

scattered intensity can be calibrated over the different measurements. 

Therefore, the scattering patterns obtained above for different con

centrations give us the p-dependence of the scattered intensity, as 
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well. It should be noted again that the measured intensity of the 

dense medium is not the peak value of the scattered pulse. 

VI.3.4 Turbidity ~1easurement 

In every experiment, the turbidity of the scattering sample is 

measured, to provide the parameters necessary for the theoretical 

calculations and to insure that the dilution of the sample solution 

is done properly. 

The short-term stability of the laser within each measurement 

(...-a few min.) was fairly good. The long-term instability of the 

laser and the mismatch among the spectrophotometric cells are cali

brated by the normalization technique described in Section VI.2.3. 

After the normalization, the turbidity of the scatterers is obtained 

by subtracting the turbidity of the background which is mostly that 

of the suspending medium. 
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VI.4 RESULTS AND DISCUSSION 

VI.4.1 Backward Scattering Patterns of Tenuous and Dense Media 

Fig. 6~5, 6-6 and 6-7 show the backward scattering patterns of 

latex spheres with 0.481 ~m, 2.02 ~m and 3.20 ~m diameters, respec

tively. The concentrations of the scatterers vary from 10-4% to 

10% by weight. 30% wt. solution was available only for 2.02 ~m 

spheres. Each data point is the average of 3--7 shots of the laser. 

The standard deviation is within 10% of the average, and uncertainty 

in the scattering angle is ±0.7°. 

Each figure shows an interesting transition in the shapes of the 

patterns as the concentration changes. According to the shape, we 

can classify the concentrations into four groups. Following the 

terminology used by Ishimaru (l978a, p. 69), they are referred to as 

"single scattering,1I IIfirst order multiple scattering (For'1S),1I 

IImultiple scattering ll and IIdiffusion ll regions. Fig. 6-8 illustrates 

the concept. As can be seen in the Figs. 6-5, 6-6 and 6-7, the border 

of each region is not necessarily clear, but the difference in the 

patterns is evident. A further justification for this classification 

is given in the next section. 

In the single scattering region, the curves show the patterns 

characteristic to each size of scatterers. Detailed discussions on 

the characteristic patterns are given in Chapter IV. The concentra

tion of scatterers is 10-4% ~10-3% by weight. The optical distance 

per unit distance (pat) is 0.02 -- 0.2 cm- 1
• Since the single 
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scattering approximation is valid in this range, the patterns closely 

follow the calculations obtained from Mie theory. 

In the FOHS region, the patterns become smoothed. However, they 

still carry the vestiges of the characteristic patterns buried in the 

smoothed curves. Thus, they are considered as the single-scattering 

patterns smoothed by the multiple scattering effect. The concentration 

of scatterers is 10- 3% _10-2% by weight and POt is 0.2--- 2.0 cm- l
• 

In the multiple scattering region, the patterns are more smoothed 

and the vestiges of the characteristic patterns disappear. They have 

lost the distinction between the different sizes of scatterers. This 

loss of identity marks the dividing point of this region from the FO~lS 

region. The dividing point is shown clearly in an alternate way of 

presenting the scattered intensity, which is discussed in the next 

section. 

This strong smoothing is attributed to the multiple scattering 

effect which, by the randomness of the scatterers in both position and 

movement, cancels the orientational effect of each scatterer. Thus, 

the patterns in this region are characterized by the flat shape or 

an isotropic scattering. The concentration of scatterers is lO-2~ 

1% and POt is 2.0....., 200. 

In the diffusion region, the scattering patterns start peaking 

up in the small angles. (Hereafter in this chapter, the small angle 

refers to the angle close to the backward normal.) This phenomena 

can be explained in the following way. In a dense medium, incident 

light is attenuated rapidly due to scattering and absorption as it 
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diffuses. Therefore, when the incident beam is narrow, the light 

diffuses as if from a point source at the impinging point of the 

incident beam. Then the scattered intensity is proportional to -2 
r 

where r is the radial distance measured from the impinging point. 

Since r is proportional to the observation angle 0 if 0 is 

small, the scattered intensity is proportional to 0-
2 

which 

explains the peaking phenomena in the small angles of the scattering 

pattern. However, if the point source approximation mentioned above 

is valid, the scattered intensity received should be much smaller, 

especially in the larger angles. This may be due to the propagation 

of light through the air-glass-v"ater interfaces or in the glass wall. 

The scattering pattern of 10% wt. and 30% wt. concentrations 

show an interesting local minimum and maximum at ~170° and ~165° 

respectively. These correspond to the existence of concentric dark 

and bright bands around the incident beam. In fact, they can be 

observed with the naked eye when a beam of continuous wave laser is 

incident on a dense medium. The dark band can be seen also on the 

side of the scattering cell. Their appearance is shown in Fig. 6-9, 

where a beam of a He-Ne laser incident on the face of the scattering 

cell. They are compared with the case of 1% solution. 

VI. 4.2 Four Phases of Scattering 

Fig. 6-10 shows the scattered intensity as a function of the 

scatterers density (p) with the different focal depths (f.d.) of the 

receiver. The curves in the figure are the measurements with latex 
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spheres (2.02 ~m dial at a fixed scattering angle (0 = ""11°). Here, 

the classification proposed in the previous section is clearly shown. 

See Fig. 6-11 also in the following discussion. 

From the left, the linearly rising part of the curves corresponds 

to the single scattering region «D, p = 10-4
% ""'10- 3% wt.). In this 

region, scattered intensity is proportional to the density of the 

scatterers and the curve is close to the straight line with a slope 

of 1. As the density increases, the curve separates from the linear 

increase, reaches a maximum, and decreases. This is due to the attenu-

ation of incident light and scattered light along their propagation 

paths. Thus, this part corresponds to the FOMS region (~, p = 
- 3 -2 ) 1 0 % "" 1 0 % wt. . As can be seen in the figure, the deeper the focal 

depth is (the longer is the propagation path), the more attenuation 

is suffered by the scattered intensity. In the lower two cases 

(f.d. = 1.04 cm and 1.43 cm), the scattered intensity went down below 

the level of measurement noise. The upper two curves (f.d. = 0.497 cm 

and 1.04 cm) were obtained with the old facility (Bruckner, 1978a), 

the lowest measurable level of which is one order of magnitude 

higher than the present facility (Shimizu, 1979). 

As the density increases, the scattered intensity becomes obser

vable again. Now, multiple scattering becomes predominant and the 

light observed does not follow the same path as in the previous case. 

The photons are scattered back and forth between the scatterers and 

lose their original directionality. Thus, they reach the receiver 

through various paths. Since the more scatterers send more photons 
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to the receiver through this mechanism, the received intensity 

increases almost linearly as the density of scatterers increases. 

This part corresponds to the multiple scattering region (@' p = 
-1 ) 10 .I"J 1 % wt. . 

As the density of scatterers increases further, the light starts 

diffusing. Since photons encounter many scatterers in a short dis-

tance, the scattering becomes isotropic and as a whole~ light propagates 

in a diffusing manner. In this phase, the light is attenuated rapidly 

due to the many scattering as it propagates. Thus, it results in the 

decrease of the received intensity as the density of scatterers 

increases. This part corresponds to the diffusion region. (~, 

p > 1% wt.). The difference of the scattering can be observed in a 

visual observation with naked eyes. Their appearances are shown in 

Fig. 6-11. 

VI. 4.3 P-Dependence of Dense Media 

Figs. 6-12, 6-13, and 6-14 show the p-dependence of the scattered 

intensity for latex spheres with 0.481, 2.02 and 3.20 pm diameters, 

respectively. Each figure consists of a measurement with range-gating 

(a), theoretical calculations (b), and measurement without range-gating 

(c). Each data point is the average of 3~ 7 shot of the laser. The 

standard deviation is within 10% of the average. 

First, we compare the measurements with range-gating for different 

sizes of scatterers, i.e., Figs. 6-l2(a), 6-13(a) and 6-14(a). In the 

single scattering and the FOMS regions, the curves appear different 

for different sizes of scatterers, while in the multiple scattering 
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and the diffusion regions, they are much similar. This is attributed 

to the following. In the latter regions, the multiple scattering 

averages out the characteristics of microscopic scattering from each 

particle, and the macroscopic scattering from a collection of par

ticles becomes similar. While in the former regions, the difference 

in the microscopic scattering appears also in the macroscopic scat

tering. 

Next, a comparison is made between the cases with and without 

range-gating, i.e., (a)'s and (C)IS in Figs. 6-12~ 6-]3 and 6-14. 

The non-range-gated case corresponds to the quasi-tw ~ase discussed 

before (IV.4.3). The incident wave is a pulse but the range-gating 

shutter is kept open by the quarter-wave plate. Thus, the measured 

intensity is the time-integration of the received pulse intensity. 

The difference in the magnitude of the curves for different 

receiving angles (1.83°, 11.0°, 20.2° and 29.3°) is much larger in 

the non-range-gated case than the range-gated case. Note that in 

Figs. 6-13(c) and 6-l4(c), the curves for 8 = 1.83° were shifted 

down by the amount shown in the captions. The difference is more 

evident in the lower density (p < 10-2% wt.) than in the higher 

one. This di,fference is attributed to the change in the scattering 

volume as the receiving angle 8 changes. (~l/sine). With 

range-gating, a constant scattering volume is sampled regardless of 

the receiving angle, thus eliminating the factor l/sine. Detailed 

discussion on this effect of range-gating is given in Section IV.4.S. 

Hhen the density of scatterers is high, the scattering volume is 
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located along the boundary and the change in the scattering volume 

(l/cose) is negligible if the receiving angle e is small. Thus, 

little difference can be seen between the cases with and without 

range-gating. 

Lastly, the measurements with range-gating and theoretical cal

culations are compared, i.e., (a)ls and (b)ls in Figs. 6-12,6-13 

and 6-14. The theoretical curves in the low density region 

(p < 10-
2% wt.) were calculated by Eq. (6-4) and those in the high 

density region (p > 10-2% wt.) by Eq. (6-9). The equations are based 

on the FOMS approximation and the diffusion solution for a point 

source, respectively. The point source solution was chosen on consi-

deration of the beam vddth (lmm radius) and the radial distance of the 

observation points (0.46, 2.7, 5.0 and 7.3 mm for 1.83°, 11.0°, 

20.2°, and 29.3°). Since, in the low density region, there is little 

difference among the curves for different angles (almost within the 

thickness of the line), only the one for e = 11° was shown. The 

vertical position of the calculated curve in the low density region 

was adjusted so that its maximum coincide with the center of the 

maxima of measurements for e = 11.0° and 20,2°. The vertical posi-

tions of the calculated curves in the high density region were 

adjusted so that the center of maxima for e = 11.0° and 20.2° 

coincides with that of the measurement. Therefore, the relative 

magnitude between the curves of low density and high density region 

is not exact. However, in the high density region, the relative mag-

nitude among the curves of different observation angles is. exact. 
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The theoretical calculations and the measurements agree well in 

the low density region. More discussion is given in Section IV.4.4. 

In the high density region, the agreement between theory and measure

ment is poor in the location of maxima and the attenuation of scat

tered intensity in higher density. 

The locations of maxima in the low density region and the high 

density region are given in Tables 6-1 and 6-2. The theoretical values 

were obtained by Eqs. (6-5) and (6-11) based on the FOMS approximation 

and the diffusion solution for a point source, respectively. In 

Table 6-1, the agreement between the theory and the measurement is 

very good. In Table 6-2, the calculated values are consistently 

larger than those measured, however, the difference is within an 

order of magnitude. Note the agreement in large angles. This dis

crepancy in the small angles can be attributed to the impropriety of 

the point source assumption. 

Fig. 6-15 shows the diffusion solutions for a point source and 

for a plane wave incidence along with the measurements observed at an 

angle 0 = 11°. All three curves were normalized by their peak values. 

As expected, the peak of the measurement lies between the two solutions 

which are two asymptotic cases of the beam wave solution. See 

Sections V.2.4 and V.2.6 for the detailed discussions. As a whole, 

the measurement follows the plane wave solution better than the point 

source solution. This corresponds to the similarity of the impulse 

responses between the beam wave case and the plane wave case discussed 

in Section V.4.4. Note their agreement in the slope of the curve at 
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~lO% wt. density. 

Although the plane wave solution describes well the density

dependence at each receiving angle independently, it cannot show the 

effect of the radial distance of the observation point which is a 

function of the receiving angle in our geometry. Therefore, in 

Figs. 6-12, 6-13 and 6-14, the point source solutions are compared 

against measurement to see the general behavior of the scattered 

intensity for different receiving angles. The curves calculated for 

the different angles by the plane wave solution, lie very close 

each other, while by the point source solution, they lie more 

separated than the measurements. This suggests again that our 

experiment falls in between these two extreme cases. 
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Fig.6-6 Backward scattering patterns of 2.02 ~m¢ latex spheres 
particle concentrations in weight %, (a) 0.0001, 
(b) 0.0003, (c) 0.001, (d) 0.003, (e) 0.01, (f) 0.03, 
(g) 0.1, (h) 0.3, (i) 1.0, (j) 10.0, (k) 30.0 
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5.5. 

------ . .---- ..... ---
FOMS ----.......... ---
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" " ~ 
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~ 
DlFF. .. 

\' 
Fig.6-8 Concept of four phases of scattering : 

single scattering (S.S.), first order multiple 
scattering (FOMS), multiple scattering (M.S.), 
diffusion (OIFF.) 
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(a) (e) 

(b) (d) 

Fig.6-9 Dark and bright bands on dense solution of latex spheres: 
collimated beam of He-Ne laser on 2.02 ~m$ spheres, 
(a) frontal view of 10 % solution, attenuation of incident 
beam NO = 2.3, f 16, 1/60 sec. (b) side view of 10 % sol. 
NO = 0, f 16, 1/15 sec. (c) frontal view of 1 % solution, 
NO = 2.3, f 16, 1/60 sec. (d) side view of 1 % sol. 
NO = 1.0, f 16, 1/8 sec. 
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10.0 f.d. = 0.50 em 

1.0 

O.I~----~----~----~----~----L-----L---~ 
-I 

10 

DENSITY (% wt.) 

Fig.6-10 Four phases of scattering: Scattered intensity vs. 
scatterer density with different focal depths, 
CD single scattering, ® first order multiple 
scattering, Q) multiple scattering, ® diffusion 
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(a) (b) 

( c) (d) 

Fig.6-11 Visual observation of different phases of scattering: 
collimated He-Ne laser impinged on aqueous solutions 
of 2.02 ~m¢ latex spheres, (a) particle concentration 
p = 0.001 % wt., f 16, 1/8 sec, (b) P = 0.01 % wt. 
f 16, 1/60 sec, (c) P = 0.03 % wt., f 16, 1/8 sec, 
(d) P = 0.1 % wt., f 16, 1/15 sec. See Fig.6-9 for 
the cases of 1 % and 10 % solutions. 
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dia. _ .. I std. dev. ·calculated measured crt 
mean Pmax Pmax 

(]Jm) ( % ) ( ]Jri) (cm -3) -3 (cm ) 

0.481 0.374 0.186 1.89E8 1.64E8 

2.02 0.668 7.96 4.41E6 6.78E6 

3.20 5.94 20.1 1.74E6 2.80E6 

Table 6-1 

Maxima of Scattered Intensity for Tenuous r·1edia 

1 

where 

to + flt 
1n (t - flt ) o 

cflt = 3 (mm)s c to = 28.6 (mm) • 

/ 
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Ca 1 cul ated Pmax 

dia. average radial distance r = 1.43 e( cm) 

(l,lm) 0.137 0.320 0.503 0.640 

0.481 1.09E12 1. 99E11 8.05E10 4.97E10 

2.02 3.36ElO 6.16E9 2.49E9 1.54E9 

3/20 1.18E10 2.15E9 8.92E8 5.39E8 

. 2tc 
P -~---max - 2 ( -) 

r a 1-}l s 

where tc = 2.86 (em) 

Measured Pmax 

dia. radial distance of observation (cm) 

(}lm) .046-.23 .23-.41 .41-.59 .55- .73 

0.481 1. 64E11 4.92E10 8.20E10 3.28E10 

2.02 6.78E9 2.26E9 2.26E9 1.13E9 

3.20 2.81E9 5.61E8 5.61E8 2.81E8 

Table 6-2 

Maxima of Scattered Intensity for Dense Media 
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Chapter VII 

MEASUREMENT OF LIGHT VELOCITY IN DIFFUSE MEDIA 

VII. 1 INTRODUCTION 

Measurement of light velocity is an old and new subject. 

Starting from Galileo's attempt, it has been a significant area in 

physical science (Froome, 1969). The accuracy of measurement has 

been steadily improved with the progress of science and technology 

(Halliday, 1960, p. 1001). The accuracy can be used as an indicator 

to show the accelerated growth of today's science. Almost a century 

has passed after the theory of relativity was verified and still 

active studies are being conducted on the velocity of light. 

However, it is rather surprising that (as far as we know) no 

report has been found on the slowing rate of light velocity in dif

fuse media. Just recently, Ishimaru theoretically predicted that 

light is slowed down to l/y(f of the case without scatterers. In 

order to measure such a large velocity as light, \'Je must use a long 

base line or measure a small time interval. The measurement using 

a reflector on the lunar surface is an example of the former. The 

picosecond resolution of the range-gating technique enables the 

latter. 

In Chapter VI, ~e discussed the different phases of scattering 

along with the analysis on the correlation between theory and 

measurement. Based on the analysis, in this chapter, scattering 
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models are constructed for our observation geometry with tenuous 

and dense media. According to the models, the slowing rate of the 

light velocity in diffuse media is obtained by measuring the difference 

in arrival-time of pulses scattered from tenuous and dense media. The 

slowing rate measured is shown to be very close to the predicted 

value, ~. 
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VI!. 2 THEORY 

VII.2.1 Received Pulse Shape for Dense and Tenuous Media 

The intensity profile of the scattered pulse through the range

gating shutter is given by the following convolution: 

00 

Irec(t) = f Id(t l ) S(t - tl) dt l (7-1) 
-0) 

where Id(t) is the diffuse intensity and S(t) is the transmission 

of the range-gating shutter. As was seen in Section VI.2.2, S(t) is 

approximated by the rectangular function with th:= \>Iidth fit ( "" 10 

psec) . 

Thus \'Je have 

t+lIt 
Irec(t) = f 

·t-At 
(7-2) 

If the time-scale of the Id(t) is much larger than lit, the received 

intensity profile Irec(t) approximates the scattered pulse shape 

Id(t). 

Id(t) for dense medium was obtained in Chapter V, which was char

acterized by the sharp rise and slow decay. Here, Id(t) for tenuous 

medium is obtained from the geometry of the system. See Fig. 7-1. 

Beams with diameter a and b represent those of the incident pulse 

and the receiving cone of the detector, respectively. The range

gated scattered intensity is proportional to the overlapping volume 

between the scattering volume ABID1C and the sampling volume (shown 

by a dark rectangle box in Fig. 7-1). As the sampling volume is 
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Geometry of range-gated scattering volume in tenuous medium : 
incident laser beam with beamwidth a, and receiving pattern 
with thickness b, scattering angle or observation angle e 
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moved along the receiving cone, full overlap occurs in the region 

BC-B'C ' while in AB-A'B' and CD-C'D' the overlap is partial. 

The lengths of each region are 

AB = CD = b/tane 

BC = a/sine - b/tane 

where e is the scattering angle. 

Therefore, Id(t) for tenuous medium can be approximated by the 

trapezoid with the following parallel sides. The top side is given by 

BC/c = (stne - tabne )/c (7-3) 

and bottom side is 

AD/c = (~ + _b_ )/c 
Slnetane (7-4) 

where c is the group velocity of light in the medium which suspends 

the scatterers. 

VII.2.2 Velocity of Light in Diffusive r1edia 

The diffusion equation for the point source located at the 

origin was given in Eq. (5-46) which is 

It can be transformed into the time domain, yielding· 

(7-5) 
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where 02 is the diffusion coefficient and is given by 

02 = cl d/3, ld = {p(atr + aa}}-l and ld is the diffusion mean free 

path (Morse, 1953, p. 178). Po is the total energy radiated at the 

origin and is given by 

(7-7) 

Eq. (7-6) shows lithe propagation and diffusion characteristics of a 

pulse wave. The second term shO\'1s the propagation with the velocity 

of c/v:r-, which is consistent with the diffusion phenomena. The 

third term sho\'ls the diffusion and the fourth tenn indicates the 

absorption. II (Ishimaru, 1978b). 

In the following sections, this II s10wed down speed of light" is 

measured. 
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VII. 3 EXPERn1ENTS 

VII.3.1 Experimental Facility 

The range-gating system described in Section IV.3.1 was used. 

As discussed in Section IV.3.2(f), the scattering cell of the horizon

tal cylindar replaces the vertical one. See. Fig. 7-2. 

VII.3.2 Scattered Pulse Shape ~1easurement for Tenuous and Dense 

~1edium 

Since the pathlength of the infrared gating pulse determines the 

sampling time of the scattered intensity, we can measure the scat

tered intensities as a function of time by changing the IR pathlength 

(dashed line in Fig. 7-2). Thus by scanning the prism PR2, we can 

trace the intensity profile of the scattered pulse in time. As can be 

seen in Fig. 7-1, in the case of tenuous media, this operation corres

ponds to sampling different depths along the path of the scattered 

light toward the detector. This is where the term "range-gating" 

comes from. In other \'lOrds, the pulse shape obtained represents the 

spatial profile of the scattered intensity as well as the temporal 

profile. In the case of dense medium, it represents only the 

temporal profile. 

Note that as shown in Eq. (7-1), the profiles mentioned above 

are the convolutions of the scattered intensity and the transmission 

of the range-gating shutter. 

Since the reference signal is available as described in Section 

IV.3.1, we can compare the magnitudes of the scattered pulses between 
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the tenuous and dense media cases. The measurements are conducted at 

the scattering angle e = 2.76°~ 21.6 0 and with the concentration 
_4 

P = 10 % ~10% by weight. 

VII.3.3 t1easurement of Light Velocity in Diffusive Media 

Fig. 7-3 illustrates the measurement. When the medium is tenuous, 

the incident light-pulse travels along the path Ll and the light 

scattered at an angle e travels back to the detector along the path 

L2 . The light traveled in any other path can be eliminated by the 

narrow receiving pattern of the detector and the range-gating tech-

nique. The traveling time of the pulse is given by 

(7-8) 

where va = c/n is the group velocity of light in the tenuous medium 

and n is the refractive index of the medium. 

When the medium is very dense, the light received by the detec-

tor is predominantly the one which diffused the shortest distance 

L3 along the boundary. In the medium with high pat, a small 

increase in pathlength attenuates the light considerably. 

Although the direction of the propagation along the boundary 

does not coincide with the acceptance angle of the detector, the almost 

isotropic scattering of the diffusion phenomena allows us to measure 

the diffused intensity. In the dense medium, the pulse shape changes 

as it propagates such as pulse broadening and tailing. The diffusion 

time tb is defined as the period taken for the peak of the pulse to 

reach the detector. It is given by 
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(7-9) 

where vb is the velocity of interest at which the peak of the pulse 

propagates. 

As was seen in the previous section (VII.3.2), the intensity 

profile of the scattered pulse can be obtained by changing the path-

length of the infrared range-gating pulse. Therefore, we can deter

mine the IR pathlength at which the scattered intensity reaches the 

peak value. Two such pathlengths are measured, one for a tenuous 

medium (la) and another for a dense medium (lb)' The difference 

in these pathlengths corresponds to the time difference between ta 

and t b , i.e., 

(7-10) 

where vIR is the velocity of the infrared gating pulse lI/hich travels 

in the air. Therefore, by measuring the difference in the IR path

lengths, ld = la - lb we can obtain the velocity of light in the 

diffuse medium, i.e., 

(7-11) 

Noting that va = c/n and VIR = c, the factor of the slowing down 

by diffusion is given by 

(7-12) 
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As was discussed in Section VII.2.l, the intensity proflle 

observed is not the scattered pulse itself. It is the convolution of 

the scattered pulse and the gating-pulse. Their pulse width can be 

comparable sometimes. However, it should be noted that while the 

convolution broadens the pulse shape, it does not change the relative 

position of the two pulse-peaks between the cases of tenuous and 

dense media. 
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VII.4 RESULTS AND DISCUSSION 

VII.4.1 Shapes of Scattered Pulses 

Figs. 7-4(a) ~ (j) show the intensity profile of the received 

signals measured as a function of time. Each figure consists of a set 

of pulses with different scatterer densities which range from 10-4% 

to 10% by weight. A log-scale was used for the ordinate to present 

the results of tenuous and dense media in the same graph. Each data 

point is the average of 3-7 shots of the laser. The standard devia

tion in intensity is within 10% of the average value, while the 

uncertainty in the temporal location is ±O.017 psec. The time origin 

(t = 0) was defined as the instance at which the peak of the incident 

pulse passes the boundary of the scattering medium. It was obtained 

by subtracting the time duration t = (Ll + L2)/v from the center 

time of the trapezoidal pulse shape measured in the case of tenuous 

media, See Fig. 7-3 and Section VII.2.1 for the definitions of para

meters and more discussions. The center times of the trapezoids were 

very stable and no fluctuation was observed in the measurement. At 

the top of each figure are shown the two calculated arriving-times of 

the pulse peak. The calculations are based on the assumptions of the 

regular group velocity of light in the medium and the slowed-down 

velocity due to the diffusion discussed in Section VII.2.2. Thus, 

the left and right marks correspond to t = L3/v and t = 13 L3/v , 

respectively. At the bottom of each figure, are shown the two time

durations which correspond to the parallel sides of the trapezoid 

calculated by Eqs. (7-5) and (7-6). 
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As was discussed in Section VII.2.l, the difference in the 

received pulse shape is evident between the tenuous and dense media. 

They are characterized by the trapezoides in the former case, and the 

rapid rise and the slow asymptotic decay in the latter case. 

An interesting transition in their shapes can be seen as the 

scattering angle (0 in Fig. 7-3) changes or equivalently the radial 

distance (L3) of the observation point changes. First, the transition 

in the bottom tvlO curves is studied, which are the measurements with 

the tenuous media. The measured widths of the parallel sides of the 

trapezoidal curves are well correlated to the theoretical calculations. 

The slightly wider sides of the measurement are due to the finite width 

of the sampling volume or the finite shutter open duration. Note that 

the decrease in the lateral sides of the trapezoids is steeper if they 

were shown in a linear scale. 

Next, the transition in the pulse shapes for dense media is 

studied. The pulses are shown in the top three curves for ,0 = 2.76°~ 

8.25° and in the top two curves for 0 = 16.4°AJ 21.6°. There is no 

significant reason for not measuring the third curves for the latter 

angle range. They were not particularly necessary for the light 

velocity measurement which was the major purpose at the beginning. 

The characteristic shapes predicted theoreticall'y in Chapter V 

are verified. Fig. 7-5 shows the comparison between theory and 

measurement at different observation angles (0 = 4.13°, 8.25°) with 

different densities (0 = 1%, 10% wt.). The theoretical curves are 

obtained by applying the formula of range-gating, Eqs. (8-5)(8-6) to 
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the diffusion solution for the beam wave case, Eq. (5-54). The 

agreement is good except for the low intensity parts where the mea

surements are less accurate due to the 10\'1 signal to noise ratio, 

dark current of the detector, etc. 

In addition to the agreement in the general shape, the theory 

well describes the inversion of the pulse peak positions for the 10% 

V/t. and 1% wt. cases when the receiving angle changes from e = 4.13 ° 

to 0 = 8.25°. The inversion"can be better understood in Fig. 6-13(a). 

At the angles close to the backward normal, the scattered intensity 

increases as the scatterers density increases, while at other angles 

the intensity decreases in the higher density. 

Concerning the curves for dense media in Figs. 7-4(a) /V (j), 

some points listed below are not fully understood. (1) A pulse

broadening is observed only for 10% \,/t. and 1% wt. densities at the 

smaller angles 0 = 4.13° J'V 8.25°. No noticeable broadening appears 

in other conditions. (2) The relative positions of two pulse peaks 

for 10% wt. and 1% wt. densities are again reversed at 0 = 16.4° rv 

21.6°. (3) In the larger angles (0 = 16.4° ~ 21.6°), the arriving

time of the pulse peak for 1% wt. density is consistently later than 

that for 10% wt. density. 

These results imply that in the large angle region the diffusion 

mechanism may be different from the ones we have analyzed so far. The 

computer program based on the diffusion solution for the beam wave 

incidence, fails to calculate a reasonable impulse response for the 

conditions equivalent to the measurements in this range. Difficulties 



199 

in explaining the behavior of the scattered intensity in the large 

angle region were also encountered in the analysis of the backward 

scattering patterns in Section VI.4.1 

VII.4.2 Velocity of Light in Diffuse Medium 

The table 7-1 shows the result of the light velocity measurement 

described in Section VII.2.2. In the table, e s L3, Ll + L2, ld and 

a are the scattering angle, the radial distance of the observation 

points the propagation path of the light pulse when the medium is 

tenuous, the difference in the pathlength of the IR shutter-activating 

pulse and the slowing rate of the light velocity which is of ultimate 

interest. See Fig. 7-3 for the illustration. 

Since the propagation distance L3 for the diffuse light is 

short in the first five angles, the results are not as accurate as 

the latter five angles. However, four data out of five show a greater 

slowing rate than 13:. According to the small sampling theory using 

the Student's t distribution, the 99% confidence interval for all 

ten data and the last five data are 1.85 ± 0.35 and 1.75 ± 0.081, 

respectively. Although this is not the direct measurement of the light 

velocity such as the transmitting velocity, and the number of data is 

not many, the results evidently show the slowing phenomena and the 

slowing rate obtained is very close to the theoretically predicted 

va 1 ue, 13. See Fi g. 7 -6. 

Regardless of diffusion, light propagates slower in the material 

of the particles (n = 1.59 for A = 0.53 ~m) than the suspending medium 

(water, n = 1.33). However, the slowing rate due to the higher 
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refractive index of the particle material would be 1.19, even if all 

the spaces are filled with the material, or the packing factor H = 1. 

The particle densities used in these experiments were much less, 

H ~ 0.1. Therefore, at least with statistical significance, we can 

conclude that the velocity of light in a diffuse medium is decreased 

by the factor 1/13: from its group velocity in the suspending medium 

of the scatterers. 

As can be seen in Figs. 7-4(a) ~ (j), the rising periods of the 

pulses are well correlated to those calculated which are shown at the 

top of each figure as the widths of the blO arriving-times. The more 

rapid rise for the shorter L3 can be seen. Note the sharp rise in 

the log-scale of the ordinate. 



1000 I H 

>
I-
~ 

V'l 
Z 
LLJ 

100 

~ 10 
~ 

Cl 
LLJ 
c:: 
LLJ 
l
I-

~ 1 
V'l 

LLJ 
:> 
1-4 

I
ex: 
--I 

~ 0.1 

10 
( a) 

, 

K ~. 
I ill ~ 

I \ , 
C!l \ 

I \ e. 

rh \. '~'~P (% wt.) 
b ".. '. 10 \ 0- __ 

0'0 1. a 
'0 

"O--n,. 

"'0 O. 1 

10-3 

fo- - ----0- ~ 4 fjll'" - -.i ,'S>_0 10-

/ Ir---------l 
~ 

.. 
-100 o 100 200 300 

TIM E (psec) 
-. - --_ .. _-_ ... ----

100 

10 

-i 

0.1 

0.01 

H 

P (% wt.) 

1.0 

10 

0.1 

10-3 

p_4--o-Q.. f>~"""o_o 1 0-4 

oJ '0'<1 
I I 

a 100 200 300 

TIM E (psec) 

Fig.7-4 Intensity profiles of off-axis backscattered pulses (a) 8 = 2.76°, (b) 8 = 4.13° 

N 
o 
-' 



>
I
...... 
V') 

z: 
lJ.J 
I
z: 
...... 

Cl 
lJ.J 
0::: 
lJ.J 
l
I
e:( 
U 
V') 

lJ.J 

>...... 

lOa 

10 

1 

l-
e:( 0.1 
-J 
lJ.J 
0::: 

0.01 

H (c) 

(% wt.) 

1.0 

10 

0.1 

10-3 

,....o-o-¢oo--</"o'o_o 1 0-4 
l~ 
~ 

a 100 200 300 

T 1M E (psec.) 
--------_._------_ ... 

100 

10 

1 

0.1 

0.01 

H 
,q . ' 

9 \ 
Q, 

(d) 

\ 
'Q 

~
\'Q" 

o b ••• -o. 
P (% wt.) 

\ "'''0'' 
.......... 0 \ 

\~ 

O-O'~o-oO, 
/ '0. 

l.0 

10 

0.1 

10-3 

I " 
<J '0 10-4 

o 100 200 300 

TIM E (psec) 

Fig.7-4 Intensity profiles of off-axis backscattered pulses (c) e = 5.51°, (d) e = 6.88° 

I'\.) 
o 
I'\.) 



H 
9- (e) . , . , 

10 
I , 

I , 

>- Q c., 
I--

I , 
I y'\ , ...... : '0, 

(/) I' \ ... 
11- H z: 

f~o p(%Wd 
( f) L.LJ 

I--
z: 
...... 1 

i \ .~ ...... 
; \, 0",,'0 1.0 

Cl 
L.LJ 
0::: 
L.LJ 11 -~ 10 O'l f \::... p (% wt.) 
I--
I-- I c:( 

0.1 N u I . '0 1.0 0 (/) 0.1 w 
L.LJ 6 

p--<:r<l. ot:r o~ 10 - 3 > ...... 
I-- (j \ . 

~----" 10 / ~ 0.01 I 
c:( 0 -l 
L.LJ I \ 0::: 

10-3 0.01 ' '0 d I I 10-
4 H 

r---l I I 

0 100 200 300 0 100 200 300 

TIM E ( psec ) . TIM E ( psec ) 

Fig.7-4 Intensity profiles of off-axis backscattered pulses (e) e = 8.25°, (f) e = 16.4° 



._------

H (9) I H (h) 

1t- ft 
1 

>-
I-
...... 
V> 9-- - , 
Z 
l.J.J j ~ P (% wto) I-

Ool f ~'" p (% wt.) z 0.1 ...... ' '0_ , ' 
, '0', 

~. -'-0.-'--0 1.0 Cl 9 --0- "'0 1 . 0 l.J.J 
0::: 
l.J.J 
l-
I-

~ OoOl~ 
-, ----c. 10 , 

OoOl~ d f\ 
"6 10 0 

~ N 
a 
+=> ...... 

I-

g oooJ 
J 0<> ~ 10-3 oOOl~ 

.j o<><>¢ ~ 10-3 
I 00'0 <> '0 

10-4 
10-4 H 

~ 
11----1 I I I I 

0 "100 200 300 0 100 200 300 

TIM E ( .psec ) TIM E ( psec ) 

Fig.7-4 Intensity profiles of off-axis backscattered pulses (g) e = 17.7°, (h) e = 19.0° 



H (i) lb- (j) 11- H 

>-
I-
1-1 
(/) 

Z 
LJ.J , 

~ P (% wto) oot }j ~ P (% wto) 
I- O. 1 

I 
I 

Z I 
1-1 

, 0 ••• 
I '0 •• '0- •••. 

Cl '. 0 ••• 0., 
LJ.J -'0 1.0 "~ 
~ 1.0 
LJ.J 
l-
I-

~ 0.01 /\ 
-~ 

10 OoOlr -, 

f \ 
'U 10 , 

(/) 0 N 
0 

LJ.J t.T1 

> 
1-1 

I-
ex: 

.0011-
.J I -0 

, n-4""v 10-31 .00lL 
.:, ! 10-4 ~ 10-3 ..J 

LJ.J I 
~ 1\ 

200 300 

TIM E (psec). 
o 100 200 300 

TIM E (psec) 

Fig.7-4 Intensity profiles of off-axis backscattered pulses (i) e = 20.3°, (j) e = 21.6° 



1.0 

>- ! l-
~ 

U) 
z: 
w 
l-
~0.1 
~ w 
0::: 
w 
l-
l-
e::::( 
u 
U) 

>
I-........ 
U) 
z: 
W 
I-

.01 

1.0 

~0.1 
~ 
W 
0::: 
W . 
I- ; 
l-
e::::( 
U 
U) 

.01 

r ( a ) I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(a' ) 

a 100 
TIM E (PSEC) 

206 

1\ 
I \ 
I \ (b) 
I \ 
I \ 
I \ 
I \ 
I \ 

I ' 
I ' 
I ' , " 
I , , " , , , 

f\ 
I \ (·b ' ) 

~ ~ , , , ~ 
I , 
I ~ * , : ~-~-, -~ , -~ , 

a 100 200 
TIM E (PSEC) 

Fig.7-5 Agreement between theory (a),(b), and measurement (a'),(b ' ) 
in off-axis backscattered pulse shapes from dense media : 
2.02 ~m¢ latex spheres, density P = 10 % wt. ( ) and 
1 % wt. (-----), beam width W = 10 psec. 
(a),(a ' ) e = 2.76°, (b),(b') 8 = 8.25° 



207 

Slowing 
e L3 Ll + L2 ld rate 

(deg.) (mm) (mm) (mm) IX 

2.76 .769 28.5 36.5 1.37 

4.13 1.16 28.5 35.0 1.88 
I 

5.51 I 1.54 28.6 34.5 1.73 

" 6.88 1.94 28.7 32.5 2.20 
I ! 8.25 I 2.33 28.9 30.5! 2.56 ______ ~--- ___________________________ L ______ _ 
I ! 
I I 
I I 

16.4 I 4.85 30.2 29.0! 1. 73 

17.7 I 5.30 30.6 28.0! 1.80 

19.0 I 5.77 30.9 27.5 1.77 

20.3 6.25 31.3 27.0 1.76 

21.6 6.74 31.8 27.0 1. 71 

Table 7-1 

Slowing Rate of Light Velocity in Diffuse Medium 

( 

99% confidence limits for IX is ) 

1.75 ± 0.081 for lower five data 

1.85 ± 0.35 for all ten data 
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Chapter VI II 

REMOTE SENSING OF DENSE r·1EDIA BY PICOSECOND PULSE MCKSCATTERING 

VIII. 1 INTRODUCTION 

Optical pulse propagation in dense random media ~epresents a 

class of scattering problem that is important in mamm,W IJ!)ractical appli

cations, such as remote sensing in meteorology, as~my and biology. 

Although CH studies in dense media have been reporltedi ((TI:shimaru, 1978a, 

p. 175), (Reynolds, 1976), very few attempts have ~ 'made to treat 

the problem of backscattering of a short optical pm]$e from a dense 

distribution of scatterers. Recently, the general ~mulation for 

backscatter; ng of a pul se from a dense medi um was ollDtilfii;ned by apply; ng 

the diffusion approximation to the time-dependent ~ti®n of transfer 

(Ishimaru, 1978b). 

With the advent of lasers capable of generatin~ wltrmshort pulses 

with durations of the order of picoseconds, and evem ~~ons of a 

picosecond (Bradley, 1977, p. 36), a new field of elqjl1elf'fimental studies 

in time-dependent 1 i ght scatteri ng has become poss i bllfE_ ;~pp lyi ng 

picosecond optical range-gating techniques (Duquay, 1l971)(!F3.ruckner, 

1976, 1978a) to light scattering measurements. it is II\IIM possible to 

record the intensity profile of a backscattered pulse on a picosecond 

time scale. 

For several years, there has been significant interest in the 

possible deterious effects of micro-aggregates in transfused blood 
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when administered in massive amounts as large blood transfusions. It 

has been proposed that these aggregates consist of platelets. white 

blood cells and fibrin (Solis, 1974). 

Currently, there is no satisfactory technique for identifying, 

sizing and quantifying such micro-aggregates. The evidence for their 

clinical significance is largely based on the demonstration of such 

material in the pulmonary capillaries of experimental animals \'/hich 

have undergone massive transfusions of whole blood. The primary tech

nique which has been used for quantification of such material in blood 

is the screen filtration pressure measurement (Arrington, 1974). This 

is an indirect technique which measures the pressure required to push 

blood through a filter of standard size at a fixed rate. It is cur

rently the best method available but is not useful in quantitating 

size and amount of particulate material and is obviously subject to a 

number of variables. Therefore, the technique which provides a better 

evaluation of micro-aggregate size and number, is desirable. Since 

our ultimate goal is the measurement in vivo, the technique should be 

applicable to a dense medium such as whole human blood at normal 

hematocrits. 

In previous chapters, a theory was developed for the backscattering 

from random media (Chapter V), the range of validity for the diffusion 

approximation was investigated (Chapter VI), and pulses scattered in 

the off-axis backward directions (8 f 180°) were measured (Chapter VII). 

This chapter presents the development of a remote-sensing technique 

for dense media by picosecond pulses scattered in the backward normal 
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direction (0 = 180°). 

The range-gating technique is formulated and the received pulse 

shape is calculated using the diffusion solution obtained in Chapter 

V. A good agreement between theory and measurement is shown both in 

the shape and magnitude of the scattered pulse. The analysis of the 

backscattered pulse shape shows the sensitivity of this technique to 

the scatterers' absorption characteristics and diffusion optical 

distance (Td = POtrz) of the scattering medium. Finally, the feasi

bility of this technique for the remote sensing of platelet aggregation 

and dense cataracts is demonstrated. 
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VIII.2 THEORY 

VIII.2.1 Principle of Measurement 

The principle of the backscattered picosecond pulse measurement 

is illustrated in Figs. 8-1, and 8-2. The picosecond shutter con

sists of a rectangular cell filled with carbon disulfide (CS2) 

placed between two crossed polarizers, Pl and P2 whose axes are 

45° to the horizontal. Since the polarizers are crossed, the shutter 

is usually closed. The signal light in the visible wavelength 

(A = 0.53 ~m) is a plane wave propagating in the z-direction with the 

signal information (backscattered pulse shape) contained along the z

direction. It impinges on the shutter normally and the shutter-acti

vating infrared (IR) pulse passes through the CS2 in the x-direction. 

The intense electric field of the IR pulse induces a narrow zone of 

birefringence in the CS2 which makes a narrow transparent window 

through the crossed polarizers at the position of the IR pulse. 

Since the IR pulse travels at the speed of light, the transparent 

window moves across the shutter at the same speed. Thus, we observe 

the streak record of the incoming signal along the path of the IR 

pulse across the shutter face. 

VIII.2.2 Formulation of Range-Gating Technigue 

Fig. 8-2 shows the geometry of the problem. The temporal beha

vior of the backscattered pulse is resolved by means of a transversely 

gated laser-driven Kerr effect streak shutter (Bruckner, 1978a, 1976). 

The Kerr medium (CS2 in the present case) is rendered birefringent on 
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Fig.8-1 Principle of backscattered pulse shape measurement 
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a picosecond time scale by a powerful ultrashort infrared pulse 

travelling in the x-direction, obtained from a Nd:g1ass laser. The 

beam-expanded backscattered pulse is incident on the shutter along 

the z-axis, as shown. The transmitted signal is a cross-correlation 

of the gating pulse and signal pulse. Details of the experimental 

setup are given in Section VIII.3. 

The intensity function of the signal pulse propagating in the 

z-direction and normally incident upon the Kerr shutter is given by 

(8-1) 

where f1 and gl are intensity profiles of the signal pulse in the 

x- and y-directions, Vg is the group velocity of light in the shutter 

and [G*I] is the backscattered signal given as a convolution of the 

impulse response G(t) of the scatterers and the incident pulse shape 

I(t) evaluated at t - z/Vg . 

An infrared (IR) pulse travelling at the speed of light induces a 

narrow zone of birefringence at its position in the shutter which is 

normally closed, thus rendering it momentarily open at its location. 

Thus, the transmission of the shutter driven by the IR pulse is given 

by 

(8-2) 

where I(t - x/vg), g2(y) and h2(z) are transmission profiles of 

the transparent zone in x-, y- and z-directions respectively. Note 

that the profile in x-direction is the intensity profile of the 
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incident pulse I(t) appearing in Eq. (8-1). This is because the 

transmission of the shutter is assumed proportional to the square of 

the IR gating pulse and the incident pulse was derived from the IR 

pulse by second harmonic generation, which also scales approximately 

as the square of the IR pulse intensity. Thus, T(t)« I~R(t) « I(t). 

Combining Eqs. (8-1) and (8-2), the gated signal intensity recorded 

on the x-y plane can be shown to be: 

00 d 
D(x,y) = f dt I S(x,y,z;t) T (x,y,z;t) 

_00 -d 

"" 

(8-3) 

where R1(t) is the autocorrelation function of I(t), and the inte

grand is a fast decaying function in z. In our measurement system, 

the intensity variation in the x-direction is sampled and fl(X) is 

almost constant across the sampling width. Therefore, the intensity 

profile of the range-gated backscattered pulse is given by 

D(x) = Cl [h2(T)*G(T)*R1(T)]T= ~ 
Vg 

= C2:r-1:h2(w)Id(O,-z;w) Sew)] (8-4) 

where Cl and C2 are constants and H2(w), Id(w) and Sew) are 

the Fourier transforms of h2(t), G(t) and RI(t), respectively. 
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Assuming that I(t) andh2(t) are approximated by Gaussian functions, 

D(x) can be expressed as a function of measurable parameters; 

D(x) dw (8-5) 

where 

I(t) = e 

C3 is a constant, ~T is the incident pulse duration, and w is the 

beam width of the IR gating pulse. Id(w) is given in Eq. (8-10) 

derived in the next section. 

D(x) represents the time-resolved backscattered pulse as seen 

through the Kerr shutter, where the spatial variable x along the 

axis of the shutter corresponds to time. The backscattered time 

resolved pulse at z = 0 will now be defined as Is' where 

VII.2.3 Backscatterin9 from Dense Medium 

Since in measurement the beam width of the incident ,,"ave is 

collimated widely ( ~ 20 mm dia. ), it is approximated as a plane 

wave. The diffusion solution for the plane wave incidence \'las obtained 

in Sections V.2.4 and V.2.5 as asymptotic cases of the beam wave 

solution. Here, the same result is derived from the diffusion equa-

tion for a plane wave incidence, which is considerably simpler than 

the beam wave incidence. 
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The diffusion equation and boundary conditions describing the 

propagation of the average intensity Ud(z) for a plane wave pulse 

incident on a semi-infinite slab consisting of a random dense distri

bution of anisotropic scatterers is given by (Ishimaru, 1978b) 

(8-7) 

Ud = 0 at z = 00 

where Qo and Q1 represent the isotropic and anisotropic source 

contributions within the medium. 

Q1 = F po --~-- e-az 
o s atr 

(8-8) 

and Fo is the source photon flux at r = z = 0, ~ is the average 

value of the cosine of the scattering angle ( - 1 ~ ~ s 1) where - 1 

is purely backscattering, + 1 is purely forward scattering, and 0 

represents isotropic scattering. The microscopic scattering and 

absorption cross-sections are Os and 0a' p is the density of 

scatterers, and 

2 h =--
3atr 
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p(o + °a) 
.wd 

a = - 1-
S c 

p[os(l - ~) + a ] 
.Wd 

atr = - 1-a c 

.wd 
aa = POa - 1-

C 

Note that equation (8-7} is derived from the two frequency equation 

of transfer, where 

and the phase velocity within the medium at each frequency is approxi

mately equal to the velocity of light c. Detailed discussion is 

given elsewhere (Ishimaru, 1978b). 

Solving the diffusion equation, the solution for the average 

intensity in a dense medium is given by 

3 F opos 3at + {2+3~)a + 6~a 
Ud(z} = -- {(a + ~a)e-az - ~ + 2q aatre-qz} (8-9) 4n q2-a2 tr a tr 

This agrees with Eq. (5-36) exactly, which was obtained through a 

different approach in Section V.2.5. 

Using Eq. (8-9), the specific intensity improved to include the 

effect of first order multiple scattering at the boundary of the scat

tering medium, was given in Eq. (5-68): 
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(8-10) 

Definitions of parameters and detailed discussion on the derivation 

are given in Section V.2.8. Note that the first and the second term 

of the square bracket [-] corresponds to the first order multiple 

scattering and diffusion, respectively. 

Since this is an intensity in the frequency domain, the Fourier 

transform of Eq. (8-10) gives the impulse response in the time-

domain, i.e., 

00 • 

) J (- A ) -lw t G(t = Id r,s;wd e d dWd (8-11 ) 
-00 

These results coupled with the picosecond range-gating technique given 

in the previous section will be the basis of our analytical evaluation 

of the experimentally obtained time-resolved backscattered pulse on 

the interface plane of a scattering medium at z = o. 
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VIII.3 EXPERIMENTS 

VIII.3.l Experimental Facility 

The apparatus used in Chapters VI and VII is modified. Its 

schematic diagram is shown in Fig. 8-3. A mode-locked Nd:glass 

laser, LASER generates a train of ~lOO IR pulses (A = 1.06 ~m), 

each of ",10 psec duration (FHH~1) and carrying a peak power density 

of ~200 MW/cm2. Frequency doubling occurs in a KDP crystal adjusted 

to yield ~10% conversion efficiency. The green pulses are separated 

from the IR pulses by a dichroic beam splitter DBS. The vertically 

polarized green pulses are directed by prism PRl toward a polarizing 

beam splitter cube PBS, which reflects vertically polarized light 

but transmits horizontally polarized light. The quarter-wave retar

der plate, A/4, serves to circularly polarize the green pulses 

impinging on the scatterers contained in the scattering cell SC. 

The backscattered pulses are randomly polarized, which allows them to 

pass through the polarizing beamsplitter. The presence of the retar

der plate assures that the scattered light from the first few mean 

free paths in the medium will also be transmitted by PBS. After 

passing through the field stop aperture FS, the beam of signal pulses 

is expanded by a pair of cylindrical lenses II and l2' to a trans

verse width of ~ cm before entering the picosecond shutter. 

In the meantime, the IR pulses, polarized vertically by the half

wave retarder plate A/2, traverse a variable optical delay line, con

sisting of three right angle prisms PR2-PR4, to equalize the IR and 

green pathlengths and thus assure proper gating synchronization. The 
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picosecond shutter consists of a rectangular quartz cell containing 

carbon disulfide (CS 2) placed bebJeen two crossed polarizers Pl 
and P2 whose polarization axes are at 45° to the horizontal 

(Duguay, 1969). The beam of IR pulses is rendered vertically 

polarized by a half-wave retardation plate, A/2, and its diameter 

is reduced to -2 mm by the pair of lenses L3 and L4. In the CS2 
each IR pulse induces a narrow zone of birefringence which travels 

through the Kerr liquid at the speed of light. At the location of 

the IR pulse, the shutter transmits light incident at a right angle 

to its path. A portion of the beam-expanded signal pulse is thus 

transmitted along the IR path at a position which is proportional to 

the signal pulse delay. In this way, one can observe a time-resolved 

streak record of the incident signal through the shutter. The peak 

transmission factor is ",1%. \'Jith an on-off contrast ratio of ...... 1000. 

The output from the shutter is detected and processed by a low-light

level video detector system described in Section IV.3.2(3). Note the 

image intensifier was not used in this experiment. Since each pulse 

train consists of ~100 pulses, the final record is a multiple exposure 

of the same event. 

VII.3.2 Sample Scatterers 

The scattering media were aqueous suspensions of latex micro

spheres obtained from Dow Chemical Corp. with diameters of 0.481 ~m. 

2.02 ~m, 3.2 ~m. 5.7 ~m and 45.4 ~m. They were provided in concen

trated solutions with the density, 30% by weight for 2.02 ~m spheres 

and 10% wt. for other spheres. Sample suspensions of desired density 
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were prepared by diluting the concentrated solutions with 0.01% 

detergent \'1ater. The detergent, sodium dodecyl sulfate, was added 

to distilled and deionized water as a surfactant to prevent aggrega

tion of the particles. The suspensions were contained in cylindrical 

spectrophotometric cells with 22 mm diameter and 50 mm path1ength. 

To simulate an impulse response of a measurement system, a dif

fusely reflecting plate was used in place of the scattering cell. It 

was a white, 5 cm x 5 cm barium sulfate plaque obtained from Photo 

Research. It was designed for a reflectance standard and has diffuse 

reflectance nearly 100%. 

VIII.3.3 Data Processing 

The time-resolved intensity profiles of the backscattered pulses, 

obtained from the detector system in Fig. 8-3,were recorded with an 

oscilloscope. An example of the recorded signals is shown in Fig. 8-4. 

The curves were digitized and stored on magnetic tapes for further pro

cessing. The intensity axis of the recroded pulse (ordinate) was 

linear over the intensity range of interest, but the time axis (abscis

sa) was not linear due to the imaging characteristics of a video detec

tor. The calibration factors for this nonlinearity were obtained by 

measuring the time shift of the recorded pulse as a function of a 

known change in the pathlength of the IR gating pulse. Since the 

laser output intensity fluctuates from shot to shot, from 10 to 20 

data curves were collected for each scattering medium. 
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Fig.8-4 Typical recorded signals : backscatterimg from 
a diffusely reflecting plate, [I s]re1f ., and 
a solution of latex spheres, Is 
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VIII.4 RESULTS AND DISCUSSION 

VIII.4.1 Agreement between Theory and Measurement 

Fig. 8-4 shows an example of the recorded signals. They are the 

superimposed intensity profiles of backscattered pulses from a dif

fusely reflecting plate and a suspension of 0.481 ~m latex spheres. 

The pulse shape from the diffusely reflecting plate is smooth and 

closely follows the average outline of the more noisy profiles 

obtained with a mirror as the target, except for a slight tailing. 

Therefore, it was concluded that the pulse shape of the diffusely 

reflecting plate closely represents the impulse response of our 

measurement system. 

After normalization of each curve by the peak intensity of the 

impulse response, an average and a standard deviation were calculated 

at each pOint on the time axis sampled in the digitizing process. 

The width of the double curves in the following figures (a) define 

the standard deviation of the data. Fig. 8-5(a) shows the normalized 

backscattered pulse shapes from suspensions of 0.481 pm latex spheres 

having concentrations of 10%, 1% and 0.1% by weight and from the 

diffusely reflecting reference plate. Fig. 8-5(b) shows the back

scattered pulses calculated by Eqs. (8-6), (8-5) and (8-10), where 

the scattering and absorption parameters were calculated using MIE 

solutions modified to include size distributions of scatterers. 

Figs. 8-6 -8-11 show a similar comparison bebleen experiment (a) and 

theory (b) for latex spheres with diameters of 2.02 ~m (p = 0.3%, 3%, 

30% wt.), 2.02 ~m (hereafter, p = 0.1%,1%, 10% wt.), 3.20 ~m, 
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5.7 ~m, 5.7 ~m (absorbing) and 45.4 ~m, respectively. These sizes 

investigated correspond to those of biological particles of interest. 

Their correspondence is as follows: 0.481 ~m and 3.20 ~m are the 

typical diameters of microwave induced cataracts in an eye of a 

rabbit (Bruckner, 1978a). 0.481 ~m and 45.4 ~m are the typical 

diameters of a spherical equivalent of a platelet and a platelet 

aggregate (Ishimaru, 1976). 5.7 ~m is the diameter of a spherical 

equivalent of a red blood cell (Reynolds, 1975). 2.02 ~m is a 

representative diameter of general biological microparticles. 

Measurements are not shown for 0.1% solution of 2.02 ~m spheres and 

0.1% and 1% solutions of 45.4 ~m spheres, where the signal was below 

the noise level. 

Discrepancies can be seen between measurement and calculation, 

particularly in the cases of the lowest density (p = 0.1% wt.) where 

the validity of the diffusion approximation is questionable. They are 

the time-shifts of the pulses and the separation of the effect of 

first order multiple scattering (FOMS) from that of diffusion. Both 

appear in theoretical calculations but not in measurements. Otherwise, 

the agreement between theory and experiment in the pulse shapes is 

good. Note the difference in the pulse shape for the least concen

tration between the cases of 0.481 ~m, 2.02 ~m spheres and 3.20 ~m, 

5.7 ~m spheres. As was theoretically predicted in Section V.4.6, 

FOMS becomes comparable to diffusion for 3.20 ~m or larger spheres. 

The general pulse shape is characterized by a rapid rise and 

slow asymptotic decay. The response to a decrease in scatterer 
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concentration is that of pulse broadening and an intensity increase in 

the asymptotic decay. Except for the case of 45.4 ~m spheres, pulse 

broadening for a 10% solution was a few picoseconds, while the 

broadening for a 1% solution is approximately 5 to 10 picoseconds. 

In general, pulse broadening increases as the concentration is 

decreased and for a 0.1% solution the pulse broadening extends for 

several tens of picoseconds. 

Despite the fluctuation in the intensity of the incident light, 

the agreement in the relative magnitude of the pulse is also good. 

Fig. 8-12 shows the result of the regression analysis for the peak 

values of the measured and calculated pulses. The correlation coeffi

cient obtained (pxy = 0.894) is considered to be high for this 

experiment which was originally designed for the qualitative 

analysis. 

During approximately the first 20 psec the backscattered pulse 

shapes seem to be dominated by the impulse response of the measurement 

system rather than that of the scattering medium of interest. The 

impulse response of the measurement system is mainly determined by the 

cross-correlation function of the laser pulse shape and the shutter 

transmission function. To remove the influence of the laser pulse 

shape and shutter response, and thus more fully characterize the 

scattering and absorption properties of the medium, a laser and gating 

system of much shorter pulse duration and resolution, respectively, 

will be required. 

The following hypotheses are considered to explain the above 
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di screpanci es between theory and experiment. The backscatteri ng 

from the boundary region of scatterers may be larger than that calcu

lated by the FOMS approximation. If so, the impulse response of mea

surement system is predominant at the time origin of the backscat

tered pulse and the effect of the diffusion appears only in the 

asymptotic tale of the pulse. This clarifies the difference in the 

measured pulse shapes for the least concentration between the cases 

of 0.481 ~m, 2.02 ~m spheres and 3.2 ~m, 5.7 ~m spheres. Since in 

the latter cases, the diffusion tail appears late and small, the 

observed pulse shape without a tail is due to the scattering at the 

boundary of the scattering medium. While, in the former cases, the 

diffusion tail is large and close enough to merge in the pulse shape 

due to the scattering at the boundary. 

Another plausible hypothesis to explain the discrepancies is the 

following. There may be a different mechanism of scattering \'I'hich 

cannot be described by the asymptotic expansion of the FOMS and 

diffusion approximations. This scattering corresponds to the "multi

ple scattering" region named in Section VI.4.1, which was placed 

between the FOMS and diffusion regions. See Section VI.4 for detailed 

discussions. A new theory may be required to fill this gap or 

"missing link." 

VIII.4.2 Sensitivity for Scatterers Characteristics 

Figs. 8-6 ~8-10 show that the shape of the backscattered pulse 

is sensitive to the change of particle concentration but not to the 

change of particle size itself in the range of 0.481 ~ 5.7 ~m. It 
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should be remembered that with a tenuous medium scattering patterns 

are very sensitive to the change of the scatterers size. The scat

tering patterns for 0.481 ~m, 2.02 ~m and 3.20 pm spheres were shown 

to be completely different in Section IV.4.2. See Figs. 4-5, 4-6 

and 4-7. This insensitivity to a particle size is attributed to 

the multiple scattering effect which averages out the distinct 

scattering patterns of individual scatterers and make the macro

scopic scattering isotropic. 

However, as was theoretically predicted in Section V.4.3, an 

effect of the scatterers' absorption characteristics on the back

scattered pulse shape can be expected. To examine this effect, 

experiments were conducted with absorbing and non-absorbing scat

terers. They are respectively blue dyed latex spheres and regular 

white latex spheres, both with 5.7 pm diameters, and the incident 

light is green (A = 0.53 m). Fig. 8-13 shows the comparison of their 

measurements. The effect of absorption can clearly be observed in the 

reduced pulse height maxima and the almost completely diminished 

diffusion tail. The theoretical discussions made in Section V.4.3 

are thus verified. The agreement with the theory can be confirmed 

in the comparison between the measurement and calculation shown in 

Figs. 8-13 and 8-14. 

The results presented in this section suggest the applicability 

of this technique to remote sensing problems. Particularly it \."ill 

be useful to investigate the density or the absorption characteristics 

of dense media. 
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VIII.4.3 Dependence on Diffusion Optical Distance 

Fig. 8-15 shows the comparison of the measurements with 0.481 ~m 

and 45.4 ~m dia latex spheres. The back scattered pulse shapes are 

similar between 0.1% wt. solution of 0.481 ~m spheres and 10% vlt. 

solution of 45.4 ~m spheres. Between these two cases, all the para-

meters such as particle sizes, cross sections, particle densities, 

etc. are different except for the diffusion optical distance per unit 

( 
-1 

distance, Td/z = POtr' Note the closeness in POtr 4.61 cm 

and 5.39 cm- l ) and the difference in the regular optical distance, 

T/z = POt (30.5 cm-land 74.1 cm- l ). This verifies experimentally 

the results of the numerical analysis presented in Section V.4.1 and 

V.4.3 which showed the dependence on Td' Also, it justifies the 

choice of Td as the normalization constant in the analysis of diffuse 

scattering. 

The results shown in this section suggest the following appli

cations. (1) Since the backscattering from dense media is dependent 

on Td = POtr z, the physical change which causes the change in any 

one of the parameters, p, 0tr and z can be detected by observing 

the backscattered pulse shape. This is applied to detect the change 

in micrbwave induced cataracts in vivo. The changes of interest are 

the density of cataracts, the size of constituent protein particles 

and the thickness of the cataractous lesion. 

If two of the three parameters, P ,Otr and z are known, 

another parameter can be estimated from the backscattered pulse shape. 

For example, in remote-sensing of fog by lidar, the density of the 
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can be estimated by knov/i ng the average cross secti on (0 .... '> I..r 

of the fog particles and the penetration depth z of the light. 

VIII.4.4 Detection of Platelet Aggregates 

Finally, a theoretical basis is given for our ultimate goal, 

i.e., the detection of platelet aggregates in a transfusion blood. 

If scatterers are aggregated in a closed system, the density of 

the scatterers does not change in terms of the fractional weight or 

the fractional volume. However, the diffusion optical distance changes 

considerably due to the change in the optical cross sections of the 

scatterers. This is because the volume of the scatterer is propor

tional to the cube of the scatterers' size while the cross section is 

approximately proportional to the square. Therefore, if the scatterers 

are aggregated, a change in the shape of the backscattered pulse is 

expected. 

An example is shown in Fig. 8-16(a) and (b) v/hich are the back

scattered pulse shapes from 0.481 ~m spheres and 45.4 pm spheres 

both with the 10% wt. density. The conditions of (a) and (b) simulate 

those before and after the aggregation of platelets, respectively. 

This distinct difference in shape suggests a promising applicability 

of this technique to the detection of scatterer aggregation in dense 

media. If other parameters are constant or known, this technique 

can be also used to evaluate the degree of aggregation. 
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Fig.8-5 Backscattered pulse shapes from 0.481 ~m~ latex spheres : 
normalized by peak value of bottom curve, i.e., Is(t) / [Is(O)]ref 
(a) measurements; aqueous solutions of spheres (above three curves), 

and diffusely reflecting plate (bottom curve). Dual curves 
represent range of fluctuation of measured pulse shapes. 

(b) theoretical calculations; 0.481 ~m~ latex spheres (above three 
curves), and impulse response (bottom curve), wave length 
A = 0.53 ~m, beam width BW = 3 mm, pulse length PL = 10 psec. 
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Fig.8-6 Backscattered pulse shapes from 2.02 ~m~ latex spheres (30%) 
normalized by peak value of bottom curve~ i.e.~ Is(t)/ [Is(O)]ref 
(a) measurements; aqueous solutions of spheres (above three curves)~ 

and diffusely reflecting plate (bottom curve). Dual curves 
represent range of fluctuation of measured pulse shapes. 

(b) theoretical calculations; 2.02 ~m~ latex spheres (above three 
curves)~ and impulse response (bottom curve)~ wavelength 
A = 0.53 ~m, beam width BW = 3 mm, pulse length PL = 10 psec. 
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Fig.8-7 Backscattered pulse shapes from 2.02 ~m~ latex spheres (10%) : 
normalized by peak value of bottom curve, i.e., Is(t) / [Is(O)]ref 
(a) measurements; aqueous solutions of spheres (above three curves), 

and diffusely reflecting plate (bottom curve). Signal level of 
0.1 % solution was too low to measure. 

(b) theoretical calculations; 2.02 ~m~ latex spheres (above three 
curves), and impulse response (bottom curve), wavelength 
A = 0.53 ~m, beam width BW = 3 mm, pulse length PL = 10 psec. 
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Fig.8-8 Backscattered pulse shapes from 3.20 ~m~ latex spheres: 
normalized by peak value of bottom curve, i.e., Is(t) / [Is(O)]ref 
(a) measurements; aqueous solutions of spheres (above three curves), 

and diffusely reflecting plate (bottom curve). Dual curves 
represent range of fluctuation of measured pulse shapes. 

(b) theoretical calculations; 3.20 ~m~ latex spheres (above three 
curves), and impulse response (bottom curve), wavelength 
A = 0.53 ~m, beam width BW = 3 mm, pulse length PL = 10 psec. 
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(b) 
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Fig.8-9 Backscattered pulse shapes from white 5.7 ~m~ latex spheres 
normalized by peak value of bottom curves i.e. s Is(t) / [Is(O)]ref 
{a) measurements; aqueous solutions of spheres (above three curves)s 

and diffusely reflecting plate (bottom curve). Dual curves 
represent range of fluctuation of measured pulse shapes. 

(b) theoretical calculations; 5.7 ~m~ latex spheres (above three 
curves)s and impulse response (bottom curve)s non-absorbing 
spheres s albedo Wo= 1.0, A = 0.53 ~m, BW = 3 mm, PL = 10 psec. 
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Fig.8-l0 Backscattered pulse shapes from blue 5.7 ~ latex spheres: 
normalized by peak value of bottom curve, i.e., Is{t) / [Is(O)]ref 
(a) measurements; aqueous solutions of spheres (above three curves), 

and diffusely reflecting plate (bottom curve). Dual curves 
represent range of fluctuation of measured pulse shapes. 

(b) theoretical calculations; 5.7 ~m~ latex spheres (above three 
curves), and impulse response (bottom curve), absorbing spheres 
ni = 0.0001, Wo = 0.992, A = 0.53 ~m, BW = 3 mm, PL = 10 psec. 
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I Fig.8-11 Backscattered pulse shapes from 45.4 ~m¢ latex spheres: 
normalized by peak value of bottom curve~ i.e., Is(t) / [Is(O)]ref 

, (a) measurements; aqueous solutions of spheres (above three curves), 
and diffusely reflecting plate (bottom curve). Signal level of 
0.1 % and 1 % solutions was too low to measure. 

(b) theoretical calculations; 45.4 ~m¢ latex spheres (above three 
curves), and impulse response (bottom curve), wavelength 
A = 0.53 ~m, beam width BW = 3 mm, pulse length PL = 10 psec. 
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Fig.8-13 Effect of absorption of scatterers : measurement 
5.7 ~m~ latex spheres, (a) non-absorbing (white), 
(b) absorbing (blue) 
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Fig.8-14 Effect of absorption of scatterers : theory 
5.7 vm~ latex spheres, (a) non-absorbing ( ni = 0.0, 

Wo = 1.0), (b) absorbing ( ni = 0.0001, Wo = 0.992 ) 
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Fig.8-l5 Dependence on diffusion optical distance: measurements 
of 0.481 ~m¢ (a)s and 45.4 ~m¢ (b)s latex spheres 
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Chapter IX 

SU~1~1ARY AND CONCLUSIONS 

OUTLINE 

This thesis discussed the development of the following three 

remote sensing techniques. The preceding chapters were devoted to 

the theoretical analysis of their methods and the experimental veri

fication of their applicability. They are, 

(1) Fourier Transform Inversion Technique: This technique determines 

the size distribution of tenuous scatterers from the forward 

scattering pattern. 

(2) Backward Scattering Pattern Analysis: This technique determines 

the average size and variance of tenuous scatterers from the 

backward scattering pattern. 

(3) Pulse Backscattering from Dense Medium: This technique evaluates 

the optical parameters and condition-changes of scatterers in a 

dense medium by means of backscattered pulses. 

These techniques are applied to the non-invasive probing of 

biological particles, namely bacteria in urine, cataracts in an eye, 

and platelets in blood, respectively. 
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RESULTS 

(1) A modification of the Rayleigh-Debye approximation was proposed 

to extend its range of validity. The derivation of the modification 

was given in two different methods. The improvement due to the modi

fication was demonstrated by comparing the scattering patterns for 

spheres calculated by the modified Rayleigh-Debye approximation, 

regular Rayleigh-Debye approximation and the exact r'1ie solution. 

The improvement is evident, particularly in the scattering angles 

for the extrema of scattered intensity. 

(2) An inversion technique was developed which determines the size 

distribution of tenuous scatterers from the forward scattering pattern. 

This technique is applicable for 1, 2, and 3 dimensional scattering 

(diffractions). It does not require matrix-inversion or a priori 

knowledge of functional forms of the size distribution, and it can 

take advantage of other techniques in spectral analysis such as the 

Fast Fourier Transform or digital filtering technique. 

Susceptibility to noise was checked by adding the random noise 

to the scattered intensity pattern simulated by the Rayleigh-Debye 

approximation. Typical error for 10% noise was within a few % for 

mean and standard deviation in the estimation of Gaussian distribution 

using 1024 points FFT. 

Size distributions were determined for the latex spheres with 

known sizes and bacteria in homogeneous and highly aggregated condi

tions. The range of validity of this technique was extended by the 
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modification discussed above. A resolution comparable to the wave

length of the probing light was demonstrated. In the case of prolate 

spheroidal bacteria, the determined size was found to be that of the 

minor axis of the spheroids. With aggregated bacteria, a large peak 

and small periodic peaks we-p.e l"ecovere<t-corresponding to the bacteria 
p.r,)2{',<vrl (i ~" ":/'" (hi,., .1.; ~P .;! ;~t • 

in singlets and multiplets, respectively. 

(3) A technique was developed which determines an average size and 

variance of the scatterers from the backward scattering pattern. 

Using the solution of the equation of transfer under the first order 

multiple scattering (FOMS) approximation, a time-dependent specific 

intensity was obtained as a function of geometrical and illuminating 

conditions. An experimental .system was constructed which can measure 

backward scattering patterns while eliminating extraneous scattering 

by the range-gating technique. 

Measurements with and without range-gating showed the noise

suppression of more than two orders of magnitude. Scattering patterns 

were measured with latex spheres of 0.481 ~m, 2.02 ~m and 3.20 ~m 

diameters where the wavelength of probing light is 0.53 ~m. Hith 

range-gating, they agreed with Mie calculations very well. Hithout 

range-gating, the patterns were severely distorted by the forward 

scattering due to the reflection from the backwall of the scattering 

cell. 

Reduction of the multiple scattering effect by range-gating was 

demonstrated. The density range of single scattering and For~S is 

extended by an order of magnitude from the non-range-gated case. The 
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valid range of FOMS is further extended if the multiple scattering 

effect is included as a decrease of measured turbidity. The useful

ness of the range-gating technique was also shown in eliminating 

the correction for the change of scattering volumes. 

(4) The equation of transfer was solved under the two-frequency 

diffusion approximation and a closed form expression was obtained for 

beam wave pulse incidence on a slab of dense random media. It was 

shown that the solution is general and includes the cases of the semi

infinite medium, the plane wave incidence and the point source, as 

its asymptotic cases. The validity of the diffusion approximation was 

theoretically investigated by examining the sign of the impulse res

ponse at the time-origin. A new parameter "diffusion optical distance," 

Td = POtrZ , was proposed. 

Through the numerical analysis, the following were obtained. 

The pulse shapes scattered at backward angles are characterized by a 

rapid rise and slow asymptotic decay. The decay, called a diffusion 

tail, is approximated by exp(- CTd)' where C is a constant. The 

normalization with Td enables us to present the scattered pulse 

shapes in a universal curve for different observation geometries 

and scatterer properties except for the absorption characteristics. 

The effect of scatterer absorption appears in the scattered pulse 

shape as an attenuation of peak intensity and as suppression of the 

diffusion tail. The pulse broadening is greater for the point source 

than for the plane wave incidence by 3 -4 orders of magnitude. The 

effects of diffusion, particularly in the diffusion tail, appear more 
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pronounced for point source than for the plane wave incidence. The 

beam wave case has the property of these tvw cases. A closed form 

expression was obtained for the backscattered specific intensity 

which includes the effect of FOMS near the boundary of the scat

tering media where the diffusion approximation is not valid. It 

was shown that the effect of FOMS is significant around the time

origin of the scattered pulse for particles larger than 3.20 ~m among 

those used in experiments. 

(5) The dependence of scattered intensity on the scatterer density 

was investigated. Backward scattering patterns and visual observation 

of the collimated beam in a scattering medium suggested the four dif

ferent phases of scattering. Their distinctions were shown clearly 

when the scattered intensity is plotted as a function of scatterer 

density. Two peaks appeared in the low and high density regions. 

The four phases were found to correspond to the ascending and descen

ding slopes of each peak. 

The two peaks were well described by the solution of the equation 

of transfer under the time-dependent For~S and the two-frequency dif

fusion approximations, respectively. The locations of the peaks 

calculated were generally in good agreement with measurement. 

(6) By the optical range-gating technique, pulse shapes scattered 

in the off-axis backward directions were measured in the picosecond 

range. Trapezoidal and exponentially decaying pulse shapes were 

observed for tenuous and dense media. The pulse shapes agreed well 
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with the solutions of the equation of transfer under the time

dependent FOMS and two-frequency diffusion approximations, respectively. 

The slowing rate of light velocity in diffuse media is obtained 

by measuring the difference in arrival-time of the pulse peaks scat

tered from tenuous and dense media. The 99% confidence interval for 

the slowing rate measured at five different propagation distances was 

1.75 ± 0.081 which is very close to the theoretically predicted value 

of 13. 

(7) Backscattered pulse shapes were observed on-axis with picosecond 

resolution. The range-gating technique was formulated mathematically. 

The agreement between theoretical calculation and measurement was very 

good both in the shape and the magnitude of the backscattered pulses. 

The correlation coefficient between theory and lneasurement vias 0.894 

for the peak intensity of the pulses. The effect of scatterer absorp

tion was seen in the reduced pulse heights and considerably diminished 

diffusion tails. The pulse shapes were found to be dependent on the 

diffusion optical distance rather than the regular optical distance. 

These results verified the theoretical analysis made above. Further

more, they showed the feasibility of this technique to assess the 

aggregation of scatterers in a closed system such as the platelet 

aggregates in transfusion blood. 
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CONCLUSIONS 

(1) The three remote sensing techniques proposed are feasible. They 

are applicable to the medical problems specified. 

(2) The scattering patterns calculated by the Rayleigh-Debye approxi

mation are considerably improved, if the approximation is modified 

to include the refractive index of the scatterer in the Fourier 

transform kernel. 

(3) The range-gating technique is useful in backward scattering 

pattern measurements. 

(4) Light scattering can be classified into four categories according 

to the scatterer density. 

(5) Light is slowed down in diffuse media by the factor l/~. 

(6) The two-frequency diffusion approximation is a valid mathematical 

approach to the description of the backscattering of optical 

pulses from dense random media. 
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FUTURE STUDY . ~'" "flo':. 

Progressing technology is now producing the laser which is 

capable of generating optical pulses shorter than a picosecond. With 

the shorter pulses, the latter two remote sensing techniques proposed 

in this thesis become more powerful. Further study should be con

ducted to refine these techniques with the shorter pulses. 

As to the practical applications, the techniques are still in 

the stage of development. Further effort is also required to imple

ment these techniques in clinical applications, such as reliability 

study, safety study, etc. 
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Appendi x II LA Derivation of Eq. (3-19) 

(Inversion Formula for 3-Dimensiona1 Case) 

The field at a spherical scatterer with the radius a is 

given by 

{ 
0

1 

E(r,a) = rect(r,a) = 
r > a 

As can be seen in Eq. (3-15), the inverse transform of the scattered 

intensity is the autocorrelation function of the above field, i.e., 

where the transform S -1 was defined in Eq. (3-12). Applying the 

differential operation, we have 

::2 S -l[I(kra)] = r rect(r,2a) + (r2 - 4a2)o(r) + ~(r3 - 12ra2 

+ 16a 3 ) 0 I (r) 

where (r2 - 4a2)o(r - 2a) = 0 

and (r 3 12ra2 + 16a 3 )o'(r - 2a) = 0 

Therefore, 

where f1' f2' f3 are functions of r. 
Q.E.D. 
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Appendix IlLB Proof of Eq. (3-21) 

(Elimination of Differential Operation in 3-Dimensiona1 Case) 

The differential equation for the spherical Bessel function 

is given by 

~ + f. .9Y + {k2 _ n{n + 1} 
dr2 r dr r2 } y = 0 

and the solution is y = C1 jn{kr) + C2nn(kr) where C1 and C2 

are constants. 

Hence, the spherical Bessel function of order 0, or jo(kr) 

satisfies the equation 

~ _ 2 dy 
dr2 - - r dr - k2y { 38-1} 

As was shown in Eq. (3-19), the size distribution of scatterers is 

given by 

Using Eq. (38-1), we have 

( ~ yll) . = ( _ L y' _ ~ y) • 
r 2 r 

where y' = ~ j (kr) = - k j1{kr) . or 0 

(38-2) 

= ( ~ _ ~) y' 3k2 

r 3 r + --rr- y (38-3) 
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Substituting (3B-3) in (3B-2), we have the spherical Bessel 

transform converted into the Fourier-cosine and -sine transforms, 

i . e. , 

00 8k2 k4 
A = ~ (~- r2 ) I(k) cos kr dk 

+ Joo ( 4k 3 
_ 8k ) I(k) sin kr dk 

o rr r S (3B-4) 

Since I(k) is an even function with respect to k, Eq. (3B-4) is 

combined into the regular Fourier transform, i.e., 

00 00 

_00 

where fe(k) and fo(k) are even and odd functions. Therefore, 

finally we obtain 

r -1 4k2 ~4 2k 3 4k 
n(2") ex: F [{ (~ - "2y:T ) + i (-y;T - y=s-)} I(k) ] 

r > 0 

Q.E.D. 
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Appendi x II I. C Extrema of Scattering Pattern for Spheroids 

Fig. Al shows scattering patterns of a sphere and spheroids with 

different axial ratios (e) using the Rayleigh-Debye approximation. 

Here, an axial ratio is defined as the ratio of one axis and an axis 

of revolution. 

The locations of extrema for prolate spheroids (e > 1) coincide 

with those of spheres (e = 1), but those for oblate spheroids (e < 1) 

do not. This phenomenon can be interpreted as follows. When a prolate 

spheroid rotates in all the directions uniformly, it forms a sphere 

with a concentri c i nhomogenei ty. Its core is a sphere with a radi us 

equal to the minor axis of the prolate spheroid. Considering a degree 

of overlap, the core is most dense and therefore gives the largest 

contribution in scattering. 



-CO 
-0 ......... 

r-
Z 

r-
<{ 
() 
(f) 

260 

o~----------------------------~ 

-40 

-60 

o 10 

e 

.2 

.4 

.8 
Io 
2. 

10. 

100. 

20 

Fig.A-l Scattering patterns of randomly oriented spheroids 
by Rayleigh-Debye approximation : 
e ( axial ratio) = one axis I axis of revolution 
e > 1 ; prolate spheroid, e = 1 ; sphere 
e < 1 ; oblate spheroid 
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Appendix V.A. Derivation of Eq. (5-43) 

(Saddle Point Technique for Evaluation of Integral) 

The integral to be evaluated is 

00 

I = ~ f(y)Jo(\r)exp(- yz) ~ d\ 

= t SOO f(\) H~2)(\r) exp( - yz) ~ dA 
_00 y 

-3 ex. ex. = _k 2 
a tr 

Using the asymptotic form for the Hankel function of the 2nd kind, 

we have 

where 

changing the variables 

A = k sina , z = R cose , r = R sine 

\\fe have 
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where 

( ) () ( k sina '\ 1/2 f(jk cosa) 
f2 a = f1 k sina k cos a = R sine} j 

Change in the integration path and the steepest descent contour (SDC) 

are shown in Fig. SA-l. 

/.. - plane a. - plane 

Im[a.] 

/.. = k sin a. 
• 

-1f/2 

Re[A] 

Im[a] 

-n/2 Re[a] 

,,' Ie (Saddl e) 
: ~ Point 

" ! 
I 

Fig.SA-l Method of steepest descent contour: 
e ; saddle point 

1f/2 

SDC (-----) ; steepest descent contour 

Re[a.] 
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Saddle point ~s is given by 

~ = e s 

He choose <p so that - ej2
<p f"(~) is real positive and the s 

integration contour C follows the soc. In this case' 

<p = 7f/4 

Using the method of steepest descents or the saddle point technique 

(Ishimaru, 1974, p. 338), we have 

= exp(j7f/4) Ik f(jk cose) exp ( - jkR + j~4) .~ 
~ ~ j VIT 

= f(jk cose) exp{-jkR) 
R 

-qR 
= f(q cose) ~ 
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Appendix P Computer Programs 

App.P-l Fourier transform inversion technique for measured data 
determination of size-distribution of scatterers 

1
10 
11 

,1Z 

\

14 
15 
16 

I 

\
17 

,18 
'19 
C 

21 

22 

30 
C 

31 

32 

from measured scattering pattern 

PROGRAM INVMES (INPUT.OUTPUT,PUNCHJ 
INVERSION FOR MEASURED DATA OCT. 1978 K.SHIMIZU 

SIZE DISTRISUTION ESTIMATION FROM SCATTERING PATTERN 
10MIT J OMIT LOWER ANGLE DATA (1" HIGHER ANGLE (ZI. OR NOT (31 

REAL KS,KSLMT 
DIMENSION SIK(1030).KS(1030),RCI030) 
DIMENSION X(515),Y(S15) 
DATA N,M,NOUT,RMAX,YMAX I 512, 9, ZOO, 1.5, 5.0 I 
DATA IWIND,IPUNCH,IFILT I 1, 1, 0 I 
DATA PI,WL,~FMEO I 3.14159265358979, 0.6328, 1.33 I 
FORMAT(lH11 
FORMATCE17.10,E17.101 
FORMAT(11130X,*SCATTERING PATTERN.) 
FORMAT(11130X,*SIZE DISTRIBUTION --- ESTIMATE~.1 
FORMATeII130X,*SIZE DISTRIBUTION --- FILTEREO •• 
FORMAT(IIIIOX,*N-*,I5.5X,*SAND·+-*,F8.Z,/15X,*I/P ~INOOWa.,I2,5X 

1,*O/P FILTER-*,IZ) 
FORMAT(/10X,*MEAN·*,E1Z.5,5X,*STO.DEV.· •• EIZ.5) 
FORMAT(10X,EIZ.5,5X,EIZ.5) 
FORMATC10C/),30X,*XXXXX DATA ARE PUNCHED IN CARDS XXXXX*) 

--- READ IN MEASURED DATA 
1-1 
READ 11. XCI),YCI) 
IF e XCII .LT. 0.0 ) GO TO 22 
1-1+1 
GO TO 21 
NDATA-r-1 
PRINT 10 
PRINT 18, C XCII,Y(I).I-1,NDATA 
CONTINUE 

--- INTERPOLATE DATA FOR Z**M 
AK-Z.*PI*RFMED/WL 
YNORM-Y(11 
00 31 I-l,NDATA 
XeIJ-AK*Z.O*SIN(X(Il*PI/360.1 
yeIl-IO.*ALOGIO(YCI)/YNQRM) 
KSLMT-XeNDATAI 
NHLF-N/2 
DO 32 I-1,NHLF 
KSeI)·XC1)+eKSLMT-X(1»*FLOATC2*r-lI/FLOAT(NJ 
CALL INTPOLT(x.y,~OATA.KS,SIK,NHLFJ 
PRINT 10 
PRINT 18. e KSeI),SIKCI),I-l,ZO) 
PRINT 10 
CALL PLOTAeKS,NHLF~SIK,NHLFI 
CALL PLOT3'lH*,KS.SIK,NHLFJ 
CALL PLOT3(lHX,X,Y.NDATAJ 
CALL PLOT~C1,lH ) 
IF ( IPUNCH .EQ. 0) GO TO 35 
XENO--IO.O 
YENO-O.O 
PUNCH 18, (KS'J),SIKeJ),J-l,NHLF) 
PUNCH 18. XENO,YEND 
PUNCH 18, eXeJ),Y(J).J-l.NDATA) 



35 
36 
C 

51 

S2 
53 

C 

61 

'72 

73 

81 

PUNCH 18, XEHD,YEND 
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00 36 I-l,NHlF 
SIK(I)-lO.**eSIK(II/10. ) 

--- ~INOOWING TO REDUCE THE LEAKAGE 
IF(IWIND.EQ.OI GO TO 53 
DO 51 J-l,NHLF 
ARG-PI*FLOAT(NHLF-J+1)/FLOAT(NHLFI 
wINO-O.42-0.,*COS(ARGl+O.08*COS(ARG*Z.l 
SIK(NHLF+J)·SIK(Jl*WINO 
KS(NHLF+J)-KS(J) 
00 52 J-1,NHLF 
SIK(J)-SIK(N-J+1I 
KS(Jl--KS(N-J+ll 
CONTINUE 
PRINT 10 
CALL AUTOPLT{KS,SIK,Nl 
PRINT 12 

--- SIZE DIST~IBUTION ESTIMATION 
CALL ESTDER~ (SIK,KS,R,N,M,KSlMT,X,y,NOUT,RMAX) 
00 61 J-1,NOUT 
XeJ'-X(JI/2. 
Y(J)--Y(J) 
IF (IPUNCH.Ee.O) GO TO 62 
PUNCH 1B, (X(JJ,Y(JJ, J-1,NOUTI 
PUNCH 18, XENO,YEND 
CONTINUE 
PRINT 10 
CALL FIXPlOT(X,y,NOUT,O.O,RMAX,O.O,YMAXI 
P~INT 14 
NSTOP.NOUT/10 
DO 63 J-l,NSTOP 
Y(J)-O.O 
PRINT .LO 
CALL AUTOPLT(X,Y,NOUT, 
PRINT 14 

--- FILTERING THE ESTIMATED SIZE DISTRIBUTION 
IF (IFILT.Ee.O) GO TO 64 
CALL FILTER(X,y,NHLF) 
PRINT 10 
CALL AUTOPLT(X,Y,NHlF) 
PRINT 15 
CONTINUE 

--- MEAN AND STD.DEV. OF ESTIMATED DISTRIBUTION 
SUMI-O.O 
SUMZ-O.O 
NSTOP-NOUT/1Z 
00 72 J-NSTOP,NOUT 
SUM1-SUM1+X(JI*Y(J) 
SUI1Z-SUI1Z+Y(J) 
XAV-SUt11/SUMZ 
SUlll-0.0 
00 73 J-NSTOP,NOUT 
SUM1-SUM1+(X(J)-XAV)**Z*Y(J) 
XSTOEV-SQRT(SUI11/SUM2) 
PRINT 10 
PRINT 16, N,KSLI1T,IWIND,IFILT 
PRINT 17, XAV,XSTDEV 
IF (IPUNCH.EQ.O) GO TO 81 
PUNCH 16, N,KSLMT,IWINO,IFILT 
PUNCH 17, XAV,XSTDEV 
PRINT 1q 
CONTINUE 
PRINT 10 
STOP 
END 
SUBROUTINE INTPOLT(X,Y,N,XC,YC,NCI 
DIMENSION X(N),Y(Nl,XCINC),YC(NC),C(QO,3),aPAR(41 
BPAR(l)-l. 
BPAR(Zl-6.*(Y(Z)-Y(lll/IX(Z)-X(1)l**Z 
BPAR(3)-O. 
8PAR(4)-0. 



C 
C 

10 
11 

30 

50 

, 00 

70 

80 

qO 

C 
C 
C 

ie 
:C 
Ic 
ic 

C 
C 

IC 

IC-N-l 
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CAll ICSICU(X,y,N,BPAR,C,IC,IER11 
CAll ICSEVU(X,Y,N,C,IC,XC,YC,NC,IERZI 
RETURN 
END 
SUBROUTINE ESTOERV (SIK,K,~,N,M,KlMT,X,y,NOUT,RMAX) 

SIZE OISTRISUTION ESTIMATION FOR 3 DIMENSION 
BY TAKING DERIVATIVES AFTER FFT 

REAL 1<, KlJ1T 
COMPlEX CS1 

DIMENSION SIK(NI,K(NI,R(NI,X(NOUT),Y(NOUTI 
DIMENSION CSI(10301,BPAR(~I,C(1030,3),O(1) 
FORMAT(lHlI 
FORMAT(11130X,.PROCESS OF ESTIMATION*' 
DO 30 J-I,N 
ARG-SIKeJ)*KeJ' 
CSI(J)-CMPlXeARG,O.) 
CAll FASTFT(CSI,M,KlMT,R) 
~11l-N-1 
00 ~O J-l,NMI 
R(JI-R(J+lI 
SIK(J)-AIMAG(CSI(J+II)/(Z.*R(J') 
PRINT 10 
CALL AUTOPLT(R.S1K,NMII 
PRINT 11 
SPAR(lI-O. 
SPAR(Z)-O. 
SPAR(31-0. 
ap4R(~I-O. 
IC-I-IM1-1 
DO 50 J -l,NOUT 
X(J)-Z.*(R(1)+(RMAX-R(111*FLOATeJ-l)/FLG4TeNOUT-111 
CALL ICSleU(~,SIK.NMl,aPAR,c,lC,IER1) 
CALL OCSEVU(R,SIK,NMl,C,IC,X,Y,NOUT,O,O,IERZI 
DO 00 J-l,HOUT 
IF (Y(JI .GT. 0.0 l Y(JI-O.O 
IC-NOUT-1 
CALL ICSICU(X,Y,NQUT,8PAR,C,IC,IER3) 
CALL OCSEVU(X,y,NOUT,C,IC,X,y,NOUT,D,O,IER~) 
DO 70 J-1,NOUT 
IF (f(JI .IT. 0.0) Y(JI-O.O 
00 80 J-1,NOUT 
Y(JI-Y(JI/X(JI 
CALL ICSICU(X,Y,NOUT,ap4R,c,IC,IER5, 
CALL DCSEVU(X,Y,NOUT,C,lC,X,Y,NOUT,D,O,IER6J 
00 90 J-1,NOUT 
IF (Y(J) .GT. 0.0) Y(JI-C.O 
PRINT 10 
CALL AUTOPLT(X,Y,NOUT) 
PRINT 11 
RETURN 
END 
SUBROUTINE FASTFT (e,M,S,T) 

THIS ROUTINE CALCULATES FAST FOURIER TRANSFORM 

C(OUT) -
K 

N 
SUM C(IN) * EXP( I*~(JI*T(K) ) * OW 
J-l J 

W(J)-(J-l)*DW-B*(N-ll/N, T(K)-(K-1J*OT, 
DW-Z*8/N, DT-PI/B, ~-Z.*M. (-S,B)-SAND WIDTH 
NOTE a SPECIAL CONSIDERATIONS ON THE SYMMETRY 

COMPLEX C,CARG 
DIMENSION Cel030),T(1030',IWK(ZO) 
PI·3.1~159Z05358979 

N-Z**M 
FRCTN-l.-I./FLOAT(N) 
CALL FFTZ(C,M,I~KJ 
CAll FFRDRZ(C,M,IWK) 
ARGI-Z.*8/FLOAT(NJ 



DO 1 J-l,N 267 
ARGZ--fLOAT(J-l'*FRCTN*PI 
CARG-CMPlX( COS(ARGZ"SIN(ARGZ) 
C(J,-ARGl*CARG*C(J' 
T(J)-FLOATrJ-l'*PI/B 

1 CONTINUE 
RETURN 
END 
SUBROUTINE FILTERIX,Y,N) 
DIMENSION X(N)~Y(N' 
RETURN 
END 
SUBROUTINE FIXPlOT (X,Y,N,XMIN,XMAX,YMIN,YMAX, 

C PLOTTING IN FIXED SCAL~ 
DIMENSION X(N),Y(N),IMAGE(561"NSCALE(5J 
NSCALE (U-O 
CALL PLOTIINSCALE,5,lJ.I0,lO' 
CALL PLOT2(IMAGE,XMAX.XMIN,YMAX.VMIN) 
CALL PLOT3(IH*,X,Y.N, 
CALL PLOT4(1,IH ) 
RETURN 
END 
SUBROUTINE AUTOPlT(X,Y,N' 

C PLOTTING AUTOMATICALLY SCALED 
DIMENSION X(N),YIN' 
CALL PLOTA(X,N,Y,N' 
CALL PLOT3(lH*,X,Y.N) 
CALL PLOT4(1,lH ) 
RETURN 
END 

App.P-2 Fourier transform inversion technique for simulated data 
analysis of the technique with simulated scattering 
patterns 

C 
C 
C 
C 
C 

10 
11 
lZ 
13 
lit 

'15 
16 

,17 

PROGRAM INVSIM CINPUT,OUTPUT,PUNCH) 

INVERSION fOR SIMULATED DATA OCT. 1978 K.SHIMIZU 
SIZE DISTRIBUTION ESTIMATION FROM SCATTERING PATTERN 

IOHIT I OMIT LOWER ANGLE DATA (1), HIGHER ANGLE (Z" OR NOT (0' 

REAL KS,KSUIT 
DIMENSION SIK(1030'.KS(1030"R(10301,A(1501,SDIST(1501 
DIMENSION XCS1S),Y(515) 
DATA th'hNOUT,RMAX, YMAX I 128, 7, 200, 3.0, 1500. I 
DATA NDIST,AVE,STDEV,SNR 1101, Z.O, 0.18, 0.00 I 
DATA IWIND,IPUNCH,IFILT,IOMIT,NCUT I 1, 1, 0, 0, 1000 I 
DATA Pl,WL,RFMED I 3.14159265356979, 0.6328, 1.33 I 
FORI'IAHIHl) 
FORI1AT(11130X,*SIZE DISTRIBUTION --- GIVEN*) 
FORI1ATCII130X,*SCATTERING PATTERN*, 
FORI1AT(11130X.*RESULT OF TRANSFQRK*) 
FORMAT(I/130X,*SIZE DISTRISUTION --- ESTIMATED*) 
FORMAT(11130X,*SIZE DISTRIBUTION --- FILTERED*' 
FORI1AT(IIII0X,*N-.,I5.5X,.SANO-.-*,F8.Z,·/15X,*I/P WINOOW-*,IZ,5( 

1,.O/P FIlTER-*,IZ/15X,*OATA 0I1IT •• ,I2,5x •• CUTaUT NO.-*,15) 
FORI1ATC/30X,.'GIVEN DISTRIBUTION) •• 9X,*I1EAN-*.EIZ.S,5X, 

I*STO.OEV.-*,EIZ.5/30X,*(ESTII1ATEO DISTRIBUTION,.,5X,*MEAN-. 
Z,EIZ.5,5X,*STD.DEV.-*,E12.5,5X,·SNR-*,F8.4) 

FORKATCIOX,EIZ.S,5X,E12.5) 
FORI1ATII0(/),30X.*XXXXX DATA ARE PUNCHED IN CAROS XXXXx*) 

--- SIZE OISTRISUTION 
ARGl·SQRT(2~.PI)*STDEV 
00 31 I-l,NOIST 
A(I)-1.00+FLDAT(I-l)*O.02 
ARGZ--O.'*(·IA(I)-AVE,/STDEV'**Z 
SDISTCI)-EXPlARGZ)/ARGI 



C 

32 
C 
C 

41 
42 

43 
44 

, 45 

C 

40 
48 
C 

50 

56 
,c 

51 

52 
53 

C 

01 

62 

PRINT 10 
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CALL AuTOPLT(A,SDIST,NOISTJ 
P~INT II 
XEND--IO.O 
YENO-O.O 
IF ( IPUNCH .E~. 0) GO TO 32 
PUNCH la, (A(J),SDIST(JJ, J-l,NDIST 
PUNCH 18, XENO,VEND 
CONTINUE 

--- GENERATION OF SCATTERING PATTERN 
KS-WAVENO CORRESPONDS TO SCATT.ANG.-O-60 (OEGJ 

WAVENO-2.-PI.RFMEO/Wl 
KSLMT-WAVENO 
CALL SCATPATIKS,SIK,N,A,SOIST,NOIST,KSLMTI 

--- MODIFICATION OF SCATTERING PATTERN 
NHLF-N/2 
NCUTH-NCUT/2 
NCUTHI-NCUTH ... 1 
IF(IOMIT-ll 45,41,43 
DO 42 I-l,NClJTH 
SIK(I)-SIK(NCUTHll.(KS(NCUTHll/KS(I»**4 
GO TO 45 
DO 44 I-NCUTHl,NHlF 
SIK(I)-SIKINCUTH)·IKS(NCUTHJ/KS(I)**4 
CONTINUE 
YNORM-SIK(ll 

NOISE ADDITION (IF UNWANTED, SET SNR-O.O O~ ADD, 
IX-2**24+3 
CALL RANOI15,IX,0,NHLF,R) 
JO 46 J.l,Ni-ILF 
IUJ)-Z.·R(J)-l.O 
SIKeJI·(l .... SNR.R(J»)·SIKeJJ 
CONTINUE 

--- PLOTTING THE FORWARD SCATTERING PATTERN 
DO 56 r-l,NHLF 
XUI-KS(I) 
IF C SIK(IJ .EQ. 0.0 J SIK(I)-l.OE-IO 
YCI)-10.*ALOG10eSIK(II/YNORK) 
PRINT 10 
CALL AUTOPLTeX,Y,NHLFJ 
PRINT 12 
IF ( IPUNCH .EQ. 0 I GO TO 58 
PUNCH 18, (X(J),Y(JI,J-l,NHLF) 
PUNCH 18, XEND,YEND 
CONTINUE 

--- WINDOWING TO REDUCE THE LEAKAGE 
IF(IWINO.EQ.O) GO TO 53 
DO 51 J-l,NHLF 
ARG-PI*FLOAT(NHLF-J+11/FLOAT(NHLF) 
WINO-O.42-0.s·caS(ARGI"'O.OS·COSCARG·Z.) 
SIKCNHLF ... J)·SIK(J)-WIND 
KS(NHLF+J)-KS(J) 
00 52 J-l,NHLF 
SLK(J}-SIKCN-J"'l) 
KS(J)--KS(N-J"'l) 
CONTINUE 
PRINT 10 
CALL AUTOPLT(KS,SIK,N) 
PRINT 12 

--- SIZE DISTRIBUTION ESTIMATION 
CALl- ESTOERV (SI K,KS, R, i'bt\,KSlMT, x,-y-, NOl1i, RI'tAX"l 
DO 01 J-l,NOUT 
X(J)·X(J)/2. 
y( J I --'(( J ) 
IF (IPUNCH.EQ.OI GO TO 6Z 
PUNCH 18, (XCJ),Y(J), J-l,NOUT) 
PUNCH 18, XENO,YENO 
CONTINUE 
PRINT 10 
CALL FIXPLOT(X,Y,NOUT,O.O,RKAX,O.O,YMAX) 

GO TO 48) 



PRINT 14 
NSTOP-NOUT/10 
DO &3 J-1,NSTOP 

63 yeJ'-o.o 
PRINT 10 
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CALL AUTOPLTeX,Y,NOUT) 
PRINT 14 

C -- FILTERING THE ESTIMATED SIZE DISTRIBUTION 
IF (IFILT.EO.O) GO TO 64 
CALL FILTER(X,y,NHLF) 
PRINT 10 
CALL AUTOPLT(X,Y,NHLF' 
PRINT 15 

64 CONTINUE 
C - MEAN AND HD.DEV. OF ESTIMATED DISTRIBUTION 

SU/1l-0.0 
SUt1Z-0.0 
NSTOP-NOUT/S 
DO 72 J-NSTOP,NOUT 
SUM1·SUM1+XeJ)*Y(J, 

72 SUM2aSU/1Z+Y(J, 
XAVaSUM1/SU/1Z 
SUt11-0.0 
00 73 JaNSTOP,NOUT 

73 SUM1-SUM1+(XeJ)-XAV)**2*YCJ) 
XSTOEV aSORTCSUrll/SUMZ' 
PRINT 10 
PRINT 1b, N,KSLMT,IWIND,IFILT,IOt1IT,NCUT 
?~INT 17, AVE,STDEV,XAV,XSTDEV,SNR 
IF (IPUNCH.EO.O) GO TO 81 
PUNCH 16, N,KSLMT,IWINO,IFILT,IOMIT,NCUT 
PUNCH 17, AVE,STOEV,XAV,XSTDEV,SNR 
PRINT 19 

31 CONTINUE 
PRINT 10 
STOP 
END 
SUBROUTINE SCATPAT(KS,SIK,N,A,SOIST,NOIST,KSLt1T) 

C SCATTE~ING PATTERN BY RAYLEIGH-DEBYE APPROXIMATION 
C INPUT I N,A(NOIST',SDIST(NDIST),NOIST,KSLMT 

,C OUTPUT I KS(N),SIKCN' 
REAL KS,KSLMT 
DIMENSION KS(N),SLK(N"A(NOIST"SOISTlNDIST) 
SCAT(Z)a3.*(SIN(Z'-Z*COS(Z"/Z**3 
PI-3.141S92b5358979 
NHLF-N/2 
DO 10 J-l,NHLF 
KS(J)-FLOAT(Z*J-l'*KSLMT/FLOAT(N) 

10 SIK(J)aO.O 
DO 30 I-l,NDIST 
V-4.*PI*A(I'**3/3. 
DO 20 J-l,NHLF 
ARG-A(I)*KSeJ' 
SIKA-(V*SCAT(ARG"**Z 

20 SIKeJ'-SIK(J'+SIKA*SDISTeI) 
30 CONTINUE 

RETURN 
END 
SUBROUTINE ESTDERV (SIK,K,R,N,M,KlMT,X,y,NOUT,RMAX) 

C SIZE DISTRIBUTION ESTIMATION FOR 3 DIMENSION 
C BY TAKING DERIVATIVES AFTER FFT 

REAL K,KLMT 

rests are same as App.P-l 
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App.P-3 Solution of diffusion equation for beam wave incidence 
on semi-infinite medium 

PROGRAH BEAMW~E(OUTPUr,TAPt6-0UTPUT,PUNCHJ 
C UNITS ARE IN CENTIMETERS 
C IPUNCH- NO PUNCH(OI~ I~?UlSE RESP.Cl), rMP.~ESP. $ SPECTRUM(ZI 
C BW- HALF WIDTH OF £-1 POINTS (NOT FULL WIDTH) 
C ANGO- SCATT. ANGLE IN OEG~EE, FOR BACKSCATT. ANGO-180. 

COMPLEX CSI,eT,eA,eTR 
DIMENSION CSI(260),w(Z60J,T(260),SIMAG(2bO),SIPHSE(Z60) 
DIMENSION X(31),YR(31) 
COMMON IPA~MI ROIST,Bw,aWNRM,AMU,ANGR,RG 
COMMON ICSI CT,CA,eTR 
EXTERNAL FXR,FXI 
DATA IPUNCH,N,M,lTAPER,P I 0, 128, 7, 1, 50. I 
DATA AKU,H,RHO,SCATcs,AaSCS/0.886,O.00,2.26EIO,7.95E-8,O.01 
DATA ROIST,8W,ANGO I 0.0457567, 0.1, 173.1666667 I 
OATA WLMr,ALMT,aLMT~RrOL/1.50,0.O,O.30,O.OOll 

DATA IRG I 1 I 
10 FORMATC1Hl) 
101 FORMAT(1145X,*REAL PART OF INTEGRANO*,lOX,*w·*,F6.3J 
111 FORMAT(/10X,*N-*,I4,5X,*RAO.DIST.(CMJ·.,F8.5,5X,*E-l B.W.tCM).* 

l,F8.3,5x,.REe.ANG.(DEG)·.,F8.3/10X,*RHO(/CC)-.,E12.5,5X 
2,*H(PACK.FACT.)-*~F5.3,5X,*MU·*,F8.5) 

112 FORMATCIOX,*TR.C-SCCM.*ZJ·*,E12.5,5X,*TOT.C-S·.,E12.5,5X 
1,*SCAT.C-S··,E12.5,5X,*ABS.C-Sz*,E1Z.511) 

12 FORMAT(30X,.NORM.COEFF.(P.HO.SIGMATR*CMEO)·~,E12.5,. (/SEC).) 
131 FORMAT(30X,~NORMALIZED ANG.FREC. (OMEGA.O/NCRM.COEFF).IIIJ 
132 FORMAT(~OX,.NORMALIZEO TIME (T*NORM.COEFF'_) 
133 FORMAT(lHl,5X,*(IMPULSE RESP.)/(NGRM.COEFF.)+' 
14 FORMAT(1117X,*~ORMALrZEo*,2X,*SPECTRUM OF SPECIFIC INTENSITY. 

1,* ITERATION*/6X,*ANG.FREC •• ,4X,*(MAGNITUOEJ*,4X,.(PHASECDEGII* 
2,4X,*REAl IMAG.*/) 

151 FORMAT(oX,F9.3,5X,2(E12.5,3X),2IS1 
t52 FORMATC9X,Fb.3,5X,2(EIZ.5,3X» 
16 FOR~AT'JI117X,*NORMALIZEO*,11x,*rMPULSE RESPONSE*120X,*TIME*,lIX, 

l*(REAL)*,BX,*(IMAGINARY)*JJ 
17 FORMATI15X,F10.3,5X,EIZ.5,5X,E12.S' 

.13 FORMATC1Hl,lOC/),20X,+XXXXX DATA ARE PUNCHED IN CARDS XXXXX*) 
C CONSTANTS 

'C 

PI-3.141S9Zb535S979 
C-3.0no 
RHMEO-l.33 
CMED-C/RFRMEO 
/IIHLF-N/2 
ANGR-ANGO·PI/1ao. 
SCACS-SCATCS 

SCATCS-SCACS*(1.0-H) 
TOTLCS·SCATCS+A8SCS 
TRSPCS-(1.0-AMU)·SCATCS+ASSCS 
BWNRM-RHO*TRSPCS*SW 
ANRM-RrlO*TRSPCS*CMEO 

C SETTI~G THE NORMALIZED FREQ.(OMEGA) 
OW·2.*~LMT/FLOAT(N) 
F~C Tt-l.l • -1 • I F L OAT ( N » 
,,::' 31· t.l,NHLF 
~1~··;L~4T(I-ll*OW-fRCTN.WLMT 

31 WCN+1-L. ~~:~ 
, C 

C SPECTRUM 
C 

PRINT 10 
PRINT 14 
ARGl·-SCATCS*B~NRM·.2/TRSPCS 
ARG2·-(RDIST/6~)**2 
ARGZ-AMU*EXP(ARG2)/BWNRM·*Z 



51 

52 

C 
:C 
!C 

62 

lRGRI-TOTLCS/TRSPCS 
ARGRZ-ABSCS/TRSPCS 
DO 51 I-l,NHLF 
CT-CMPLX(ARGR1,-w(I)' 
CA-CMPLX(ARGR2,-wll.) 
CTR-CMPLX( 1., -WII.) 
PL-5.E-12 

271 

PW-0.15 
ARGW-0.5.PL*·2+0.25.(P~/CMED)**2 
WD-RHO*TRS~CS*CMED·W(I) 
RG-EXP(-ARGw*WD**Z) 
IF C I~G .Ee. 0) RG-l.O 
CALL CUAD(ALMT,BLMT,RTOL,ERR,l,SIR,FXR,lEKR,O) 
CALL QUAOClLMT,BlMT,RTOL,ERR,l,SII,FXI,IERI,O' 
CSIII)-ARGl*(CMPLXISIR,SII)-COS(ANGR)*ARGZ*RG/CTR' 
CSI(N+I-I)-CONJG(CSI(I» 
SIMAG(I)·CABS(CSI(I» 
SIR-REALICSI(I» 
SII-AIMAG(CSI(I») 
IF ( SIR .EO. 0.0 .AND. SII .EO. 0.0) SIR-SII-l.O 
SlPHSE(l)-ATANZISII,SIR)*IBO./P[ 
PRINT 151, W(I).SIMAG(I),SIPHSE(I),IERR,IERI 
CONTINUE 
DO 52 J-I,3I 
X(J,-ALMT+FLOAT(J-l)*(BLMT-AlMT)/30. 
Y R (J , -F X R ()(( J ) ) 
CALL AUTOPLT(X,YR,31) 
PRINT 101, W(NHLF) 
CALL AUTOPLT(W,SIMAG,NHLF) 
PRINT 131 
PRINT lZ, ANRH 
IF (IPUNCH .NE. 0) PUNCH Ill, N,RDIST,BW,ANGD,RHO,H,AMU 
IF (lPUNCH .EO. Z) PUNCn 152, (W(K),SIMAGIK),SlPHSE(K),K-1,NHLF) 

IMPULSE RESPONSE 

IF (ITAPER .Ee. 0) GO TO 62 
CALL CTAPER(CSI,N,P) 
CONTINUE 
CALL INVfTICSI,M,WLMT,T) 
00 63 I-bN 
SII1AG(I)-REAL(CSI(I» 
PRINT 10 
PRINT 133 
CAll PLOTA(T,N,SIMAG,NI 
CALL PLOT3(lH*,T~SIMAG,N' 
CALL PLOT~(l,lH , 
PRINT 132 
PRINT Ill, N,ROlST,BW,ANGO,RHO,H,AMU 
PRINT 112, TRSPCS,TOTLCS,SCATCS,ABSCS 
PRINT 12, ANRI1 
PRINT 10 
PRINT 17, (T(K',CSI(K),K-l,N) 
IF (IPUNCH.EQ.O) GO TO 64 
PUNCH 16 
PUNCH 17, (T(K),CSI(K),K-1,NJ 
PRINT 10 
CONTINUE 
CONTINUE 
PRINT 10 
STOP 
END 



C 

10 

C 

FUNCTION FXiUX, 272 
COMPLEX CT,CA,CTR,V,CARG1,CARGZ,CARG3,Cl,C2,C3,C~,CFX 

REAL MMBSJO,MMSSJl 
COMMON IPAR""I RDIST,Bw,oPiNRM,AMU,ANGR,RG
COMMON ICSI CT,C.,CT?. 
Y-CSORT(X**2+3.*CA*CTR, 
ARGI-RDIST*B~NRM*X/Bw 
ARGZ-MMBSJOIARG1,IDUMMYI 
ARGJ-MM8SJ1(ARG1,IOUMMYI 
ARG~--(dwNRM·X/2.1**Z 
ARG~·EXPIARG41 

CI-AMU*V-CTR 
C2-2.*Y+3.*CTR 
C3-Y+CT 
C4-CTR+AMU*CT 
CARGI-CI/(CZ*C31 
CARGZ-CARGI/CTR 
CARG3-(1.5*C4/C3+AMU*Y/CTR)/CZ 
CARGI-ARGZ*ARG4*CARG1*X 
CARGZ-ARG3*ARG4*CARGZ*X**Z 
CARG3-ARG2*ARG~*CARG3*X 
CFX-CARG1+SIN(ANGRI*CARGZ+COS(ANGR'*CARG3 
FXR-REAUCFX,*RG 
RETURN 
END 
FUNCTION FXl(X, 
COMPLEX CT,CA,CTR,Y,CARG1,CARGZ,CARG3,Cl,C2,C3,C4,CFX 
REAL MMBSJO,MMBSJI 
COMMON IPARMI RDIST,B.,BwNRM,AMU,ANGR,RG 
COMMON ICSI CT,CA,CTR 
Y-CSQRTIX**Z+3.*CA*CTR) 
ARGI-RDIST*gwNRM*X/BW 
ARG2-MMBSJOIARGI,IDUMMY' 
ARG3-MMBSJl(ARGl,IDUMMY' 
ARG4--IBWNRM*X/2.)**Z 
ARG4-EXPI ARG4l 
CI-AMU*V-CTR 
CZ-2.*Y+3.*CTR 
C 3-Y+CT 
C4-CTR+AMU*CT 
CARGI-CII (C2*C3' 
CARGZ-CARGI/CTR 
CARG3-(1.5*C4/C3+AMU*Y/CTRI/C2 
CARGI-ARG2*ARG4*CARG1*X 
CARG2·ARG3*ARG~*CARG2*X**2 
CARG3-ARG2*ARG~*CARG3*X 
CFX-CARGl+SIN(ANGRI·CARG2+COS(ANGR)*CARG3 
FXI-AIMAG(CFX)*RG 
RETURN 
END 
SUBROUTINE AUTOPlT(x,V,Nl 

PLOTTING AUTOMATICALLY SCALED 
DIMENSION X(N'#Y(N) 
PRINT 10 
FORMAT( IHl) 
CALL PLOTA(X,~,Y,N' 
CALL PLOT3(lH*,X,V,N) 
CALL PLOT4(1,1H I 
RETURN 
END 
SUBROUTINE CTAPER (C,N,P) 

SPLIT-CDS-SELL TAPERING 
COI1PLEX C 
DIMENSION C(N' 
PI-3.14159Zb5358979 

PI 1. OF SERIES TO aE TAPERED (IN 1.) 

IF «P .lE. 0.0' .OR. (P .GT. 100." RETURN 
I1-INT(O.Ol*P*FLOAT(N'+0.5)/2 
00 10 1-1,/1 
W.O.5-0.5*CQS(PI*(FLQAT(~)-0.5'/FLOAT(M)' 

- -C ( I 1 -C-' I ) *w . -- - - -- .- -
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10 CIN+I-I'·CCN+l-l)*W 
RETURN 
END 
SUBROUTINE INVFT(C,M,8,T) 

C THIS ROUTINE CALCULATES INVERSE fOURIER TRANSFORM 
C 
C 1'1 

C ClOUT) - l/Z*PI ( SUM C(IN) *EXPI -I*WIJI*TIK) )·OW 
C K J a 1 J 
C 
C WIJ)-(J-l,*uW-S*{N-ll/N. TIK)-(K-N/Z)*OT 
C OW-Z*6/N, OT-PI/B. N-Z •• M, C-B,B)-SANO WIDTH 
C NOTE. SPECIAL CONSIOER~TIONS ON THE SYMMETRY OF FREQ. AND TIME 
C 

COMPLEX C,CA,Ca.CARG 
OIMENSION CIIOlOI,CACI030),CB(1030),TII030),IWK(ZO) 
PI-3.14159Zb535S979 
N-Z*.M 
FRCTNal.-l./FlOAT(N) 
Nt-IlF-N/Z 
Oil 1 r--l"N 
C A( I , aC (I , 

1 CSII1-CONJG(C(I» 
CAll FFTZ(CA,M,IwK) 
CALL FFRDRZCCA,M,I~K) 

CALL FFTZ(C8,M,IWKl 
CALL FFRDR2CCB,M,I~K) 

ARGl-S/CPI*FLOATCNI) 
D \) 2 I -1, NH L F 
ARGZ·-~LOAT(NHLF-I)*fRCT~*PI 
CARG-CMPLXICOSCARGZ),SIN(ARG2J' 
CCI)aARG1*CARG*CACNHlF+I-I' 

Z T(II--FlOAT(NHlF-I)*PI/S 
00 3 Ial,NHlF 
ARGZ-FlOATII)*FRCTN*PI 
CARG-CM?lXICOS(ARGl),SINCARGl» 
C{NHlF+I)·ARG1*CARG*CONJGICo(I+1) 

3 T(NHlF+II-FLOATCI)*PI/S 
RETURN 
END 

App.P-4 Solution of diffusion equation for quasi-spherical wave 
incidence on semi-infinite medium 

PROGRAM SPHR~VECOUTPUT,TAPEb·OUTPUT,PUNCH) 
C UNITS ARE IN CENTIMETERS 
C IPUNCH- NO PUNCH(O), IMPULSE RESP.ll), IMP.RESP. S SPECTRUMCZ) 
C Few- NOMINAL SEAM WIDTH (TO KEEP FLUXI1.O)*SW**Z CONSTANT) 
C AFFECTS ONLY ON MAGNITUDE OF OUTPUT 
C ANGO- SCATT. ANGLE IN DEGREE, FOR SACKSCATT. ANGO-180. 
C IRoas,PHIO)- POLAR COOROINATE OF OBSERVATION POINT (CM,OEG) 

COMPLEX CSI.CT.CA,CTR.CQ.CARG,Cl,C2,Cl.CNOM,CDEH,CSI1,CSIZ 
DIMENSION CSI(ZbO),W(ZbO),TC2bO),SIMAG(lbO),SIPHSE(ZbO) 
DATA IPUNCH,N,M.ITAPER.P I 1, 25b, 8. 1" 50. I 
D~TA AMU"H,RHO,SCATCS,ABSCS/0.g30,0.lO,1.95Eb,3Z95.0E-8.0.0 I 
OATA wLMT,ANGD,ROBS,PHID,FSW I 4.0000.150.,1.000, 90.0. 0.01 I 

10 FORMAT(1Hl) 
111 FORMAT(/l0X,.N.+,I4,5X •• RHO(/CC)·*,E12.5,5X,.HCPAC~.FACT.) •• 

1,F5~3,5X,*MU·*,F8.5,5X,.REC.ANG.(DEG)-.,F6.3 
Z/IOX,.OIST.OF OSS.(CM) •• ,FIO.5,5X,+ANGlE OF 08S.(OEG) -.,F8.3) 

liZ FORMAT(lOX,*TR.C-SCCM*+Z,-*.EIZ.5,,5X,*TOT.C-S •• ,ElZ.5,5X 
1.*SCAT.C-S-*,EIZ.5,5X.*A8S.C-S-*,EIZ.511) 

12 FORMAT(30X,;NORM.CDEFF.CRHO.SIGMATR*CMED).~.E12.5,. (/SEC)*) 



131 
132 
133 

; 14 

.151 
:152 
: 16 
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FORMAT(30X,~NORMALIZco ANG.F~EQ. (OMEGA.o/NORM.CDEFf)~III) 
FORMAT(40X,~NORMALIZEO TIME (T*NORM.COEFFI.) 
FaRMAT(IH1,5X,*(I~PULSE RESP.)/(NORM.COEFf.)*) 
FORMAT(1117X,+NORMALIZEo*,2X,*S?ECTRUM OF SPECIfIC INTENSITY. 

1/8X,*ANG.FREQ.*,4X,*(MAGNITUoEI*,4X,.(PHASE(OEGII*1 
FORMAT(6X,F9.3,5X,2IEI2.5,3X)) 
FOR~AT(9X,F6.3,5X,2(EI2.5,3X)) 

FORMATIJII17X,*NORMALIZEO*,11X,*IMPULSE RESPGNSE*IZOA,*TIME*,llX, 
1*(~EAL)*,8X,*(IMAGINARYI*/) 

FORMAT(15X,FIO.3,;X,E12.5,5X,EIZ.5) 
FORMAT(1H1,lO(J),ZOX,*xxxXX DATA ARE PUNCHED IN CARDS XXXXx*) 

CONSTANTS 
PI-3.14159Zb5358979 
C-3.DElD 
RFRMEO-l.33 
CMEO-CJRFRMEO 
NHLF-N/Z 
PHIR-PHIO*Pl/ldO. 
ANGR-(ANGO-PHIO)*Pl/lBO. 
SCATCS-SCATCS*(I.-HI 
TOTLCS-SCATCS+ABSCS 
TRSPCS-(l.O-AMUI*SCATCS+ABSCS 
ANRM-RHO*TRSPCS*CMED 
BWNRM-RHO*TRSPCS*FBW 
RNRM-RHO*TRSPCS*ROBS 
OW-Z.*wLMT/FLOAT(N) 

C SETTING THE NORMALIZED FREO.(OMEGA) 
FRCTN-l.-l.IFLOATIN) 
DO 31 I-1,NHLF 
~(II-FLOAT(I-1)*Ow-FRCTN*WlMT 

31 W(N+I-I)--W(I) 
C 
C SPECTRUM 
C 

PRINT 10 
PRINT 14 
ARGRI-TOTLCS/TRSPCS 
ARGR2-ABSCSJTRSPCS 
X-COS(PHIR) 
DO 51 r-l,NHLF 
CT-CMPLX(ARGRl,-W(I" 
CA-CMPLX(ARGR2,-W(I) 
CTR-CMPLX( 1., -W(I)) 
CO-CSORTI3.*CA*CTR) 
CARG-O.5*6WNRM**2.CEXP(-CQ*RNRM)*SCATCS*AMU/(RNR~*TRSPCS*CTR) 
Cl-CTR*(CT+l.S*AMU*CT+l.5*CTR)/(AMU*CO·*21 
CZ-l.5*CTRJCO 
C3-(CT/CO)**Z 
CNOM-X*(X**Z+Cl' 
COEN-(X+C2)*(X**2-C3) 
CSI1·(CTR+(CQ+l./~NRMI*COS(ANGR)I*CNQMJCDEN 
CSIZ·(3.*X**2+Cl)/COEN-CNOM*(3 •• X**2+2.*C2*I-C3}/CDE~**2 
CSIZ-CSIZ*SIN(PHIR'·SIN(ANGR)/RNRM 
CSI(I)--CARG*(CSI1+CSIZ) 
CSI(N+I-I)·CONJG(CSI(I» 
SIMAG(II·CA8S(CSl(II) 
SIR-REAL(CSI(I» 
SII-AIMAG(CSI(I)' 
SIPHSE(I)-ATANZ(SII,SIRI*180.JPI 
PRINT 151, ~(II,SIMAG(I),SIPHSE(II 

51 CONTINUE 

·C 

CALL AUTOPLT(W,SIMAG,NHLF) 
PRINT 131 
PRINT lZ, ANRM 
IF (IPUNCH .NE. 0) PUNCH Ill, N,RHO,H,AMU,ANGO,ROaS,PHIO 
IF (IPUNCH .EO. 2) PUNCH 152, (W(K),SIMAG(K),SIPHSE(KI,K~l,NHLF) 

!c IMPULSE RESPONSE 
C 

IF (ITAPER .EQ. 0) GO TO 6Z 
CALL CTAPER(CSr,N,p) 
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62 CONTINUE 

CAll INVFT(CSI,M,wLMT,T) 
00 63 I-l,N 

63 SIMAG(I)-REAL(CSI(I» 
PRINT 10 
PRINT 16 
PRINT 17, (T(K),CSI(K),K-l,N) 
PRINT 133 
CALL PLOTA(T,N,SIMAG,N) 
CALL PLOT3(IH.,T,SIMAG,N' 
CALL PLOT4(I,lH ) 
PiUNT 13Z 
PRINT Ill, N,RHO,H,AMU,ANGO,ROBS,PHIO 
PRINT lIZ, TRSPCS,TOTLCS,SCATCS,ABSCS 
PRINT 12 .. ANRM 
IF (IPUNCH.EQ.O) GO TO 64 
PUNCH 16 
PUNCH 17, (T(KI,CSI(K),K-l,NJ 
PRINT 18 

64 CONTINUE 
99 CONTINuE 

PRINT 10 
STOP 
END 
SU8ROUTINE AUTOPLT,X,Y,N) 

C PLOTTING AJTOMATICALLY SCALED 
DIMENSION X(N),Y(N) 

rests are same as App.P-3 

App.P-5 Solution of diffusion equation for a point source 
PROGRAM PNTSRCE (OUTPUT, PUNCH' 

C UNITS ARE IN CENTIMETERS 
C IPUNCH- NO PUNCH(O), IMPULSE RESP.(l), IMP.RESP. S SPECTRUM(2) 
caw- HALF WIDTH OF E-l POINTS (NOT FULL ~IDTH) 

C ANGO- SCATT. ANGLE IN DEGREE, FOR BACKSCATT. ANGO-180. 
C HPL- HALF PULSE LENGTH OF E-l POINTS (SEC) 
C HPW- HALF PULSE wIDTH OF E-l POINTS (CM) 

COMPLEX CSI,CT,CA,CT~,CQ 

DIMENSION CSI(2bO),W(2bO),T(2bO),SIMAG(2bU.,SIPHSE(Z60) 
DIMENSION X(31),YR(31),YI(311 
DATA IPUNCH,N,M,lTAPER,P I 1, 256, a, 1, 50. I 
DATA AMU,H,RHO,SCATCS,A6SCS/0.930,0.10,1.95E6,3295.0E-8,O.O I 
DATA WLMT,ROST,IRG,HPL,HPW I 0.800, 1.00000, O. 5.E-12, 0.15 I 

'10 / FORMAT( IH1) 
III FORMAT(/IOX,.N·*,I4,5X,.RHO(/CC) •• ,E1Z.5,5X,*H(PACK.fACT.) •• 

l,F5.3,5X,.MU-.,F8.5,5X,.RAO.OIST.(CM)a*,F6.3J 
112 FORMAT(10X,.TR.C-S(CM**Z) •• ,EIZ.5,5X,*TQT.C-S •• ,E12.5,5X 

1,·SCAT.C-S··,EIZ.5,5X,·ASS.C-S-·,E12.511) 
1Z FORMAT(30X,_NORM.COEFF.(RHO*SIGMATR*CMEO)·~,EIZ.5,* (/SEC).) 
131 FORMAT(30X,-NORMALIZED ANG.FREe. (OMEGA.O/NOR".COEFFI_,II) 
132 FORMAT(40X,_NORMALIZEO TIME (T.NORM.COEFF)~) 
133 FQRMAT(lHl,SX,.(IMPULSE RESP.)/(NORM.COEFF.).' 
14 FORMAT(1117X,*NORMALIZED.,ZX,*SPECTRUM OF S?ECIFIC INTENSITY* 

- 1/8X, *ANG. FREQ-.*,,4X, *( MAGNITUDE) *, 4X-, * f PHA5E(DEGJJ*1--
151 FORMAT(6X,F9.3,5X,2(E12.5,3X» 
152 FORMAT(9X,F6.3,5X,2(E12.5,3X» 
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16 FORMAT(11117X~*NORMALIZEO*~11X,*IMPULSE RESPONSE*IZOX~*TIME*,11X, 

1*(REAL'*~8X~*(IMAGINARYI*/' 
17 FORMAT(15X,FIO.3,5XIE12.5,5X,EIZ.5' 
16 FORMAT(lHl,10(/',ZOX,*XXXXX DATA ARE PUNCHED IN CARDS XXXXX*, 
C CONSTANTS 

PI-3.141S9Z6535S979 
C-3.0EIO 
RFRMEO-l.33 
CI1EO-C/RfRMEO 
NHLF-N/Z 
SCACSN-SCATCS*(l.-H} 
TOTLCS-SCACSN+A8SCS 
TRSPCS-(l.O-AMU'*SCACSN+ABSCS 
ANRM-RHO*TRSPCS*CMEO 
RNRM-RHa*TRS?CS*~DST 

C SETTING THE NORMALIZED FREQ.(OMEGA' 
OW-Z.*WLMT/FLOAT(N) 
FRCTN-l.-l./FLOAT(N) 
DO 31 I-l~NHLF 
W(I'-FlOAT(I-l'*Dw-FRCTN*WLMT 

31 WCN+I-II--wCII 
C 
C SPECTRUM 
C 

PRINT 10 
PRINT 14 
ARGl-(KHO*TRSPCS'**Z 
ARGR1-TOTLCS/TRSPCS 
ARGR2-ABSCSITRSPCS 
DO 51 r-l,NHLF 
CT-CMPLX(ARGRl~-W(I» 
CA-CMPLX(ARGR2,-W(I) 
CTR-C~PLX( 1.~ -wn» 
CO-CSQRT(3.*CA*CTR) 
CSI(I)-ARG1*CTR*CEXp(-ca*RNRM'/RNRI1 
IF ( IRG .EO. 0' GO TO 41 
ARGRG-O.5*HPL**2+0.25*(HPW/CMED'**Z 
WO-RHO*TRSPCS*CMEO*W(I) 
RG-EXP(-ARGRG*wo·*2) 
CSI<I)-CSI(I'*RG 

41 CSI(N+I-I'-CONJG(CSI(I)) 
SIMAG(I)·CABS(CSI(I») 
SIR-REAL(CSII!)' 
SII-AII1AG(CSI(I" 
IF ( SlR .EO. 0.0 .ANO. SI1 .EO. 0.0) SIR-SII-l.O 
SIPHSE(I)-ATAN2(SII,SIR)*180./PI 
PRINT 151, W(IJ,SIMAG(I),SIPHSE(I) 

51 CONTINUE 

C 

CALL AUTOPLT(w,SlMAG,NHlFJ 
PRINT 131 
PRINT 12, ANRM 
IF (IPUNCH .EO. 2' PUNCH 152, (~(K),SlMAG(K),SIPHSE(K),K-l,NHLF) 

C IMPULSE RESPONSE 
C 

IF (ITAPER .Eo. 0' GO TO 62 
C A l'L C TA PER ( C S 1 ~ N ~ P ) 

62 CONTINUE 
CALL INVFT(CSI'M~WlI1T~T) 
DO 63 I-l,N 

63 SIMAG(I).~EAL(CSI(I)J 

PItINT 10 
PRINT 16 
PRINT 17, (T(K),CSI(I{),K-l,N' 
PR INT 133 
CALL PLOTA(T,N,SlI1AG,N) 
CALL PLOT3(lH*,T,SlI1AG,NJ 
CALL PLOT4(l,lH , 
PRINT 132 
PRINT Ill, N.RHO,H,AMU,RoST 
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PRINT llZ, TRSPCS,TOTLCS,SCACSN,ABSCS 
PRINT 1Z, ANRM 
IF (IPUNCH.EQ.O) GO TO 64 
PUNCH 17, (T(K),CSI(K),K-l,N) 
PRINT 16 
CONTINUE 
CONTINUE 
PRINT 10 
STOP 
END 
SUBROUTINE AUTOPLTIX,y,N) 

PLOTTING AUTOMATICALLY SCALED 
OIME~_~!O_N X(N),ytN) 

rests are same as App.P-3 

App.P-6 Solution of diffusion equation for plane wave incidence 
on semi-infinite medium: Effects of range-gating and 
first order multiple scattering are included. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

: 10 
11 
12 

c 

PROGRAM PLANINC (OUTPUT, PUNCH) 

CALCULATION Of BACKSCATTERED-PULSE-SHAPE FOR PLANE WAVE PULSE 
INCIDENT ON SEMI-INfINITE DIFFUSION ~EJIUM NOV. 1978 

PL-PULSE LENGTH. FULL (NOT HALF) wIDTH OF E-1 POINTS (SEC) 
BW-SEAMWIDTH OF RANGE GATING PULSE, F.w. OF E-1 POINTS (CM) 
IPRINT- NUMBER Jf DATA TO BE PRINTED OR NO PRINTING 
IPUNCH- PUNCH(l) OR NOT(O) 
I~IND- WINDOwING(l) OR NOTCO) 
UNITS ARE IN CM (CENTIMETERS) 

COMPLEX tSI,CRG,CT,CTR,CA,CQ,CARG,CARG1,CARGZ,CARG3,CARG4 
COMPLEX CSIA,CRGA 
DIMENSION CSI(260),CRGC260),w(260),T(ZbO),YA(2bO),YB(ZbO) 
DIMENSIDN CSIA(ZbO),CRGA(260) 
DATA N,M,IP~INT,IPUNCH,IWIND I Z56, 8, 20, 1, 1 I 
DATA AMU,H,RHO,SCATCS,ABSCS 10.928,1.000,1.95E7,31t27.5E-8, 0.0 I 
DATA WLMT,PL,BW,BACKCS / 2.5£12, 10.E-12, 0.3, 3945.46E-6 I 
FORMAT (IHl) 
FORMAT (5X,E12.5,5X.4E14.5) 
FORMAT (lHl,10(/',30X,*XXXXX DATA ARE PUNCHED IN CA~DS XXXXX*) 
PI·3.1Itl5926535~97q 
C-3.0ElO 
RFI'1EO-l.62 
V-C/RFMED 
HPL-Pt/2.0 
HBW-Biol/2.0 
NHLF-N/2 
NPRINT-NHLF+IPRINT 

--- SPECTRUM OF SCATT. INT. 
DO 90 III-t,3 
RHO-PHO/10. 
H-H/10. 
SCACSN-SCATCS*(l.-H) 
TOTLCS-SCACSN+A6SCS 
TRSPCS-(l.O-AMU)*SCACSN+ABSCS 



C 

31 

32 

3b 

C 
C 

37 
38 
C 

33 

RT-RHO*TOTLCS 
R TR-RHO.TRSPCS 
RA-RHO.ABSCS 
OW-2.·wLMT/FLOAT(N) 
FRCTN-l.-1./FLOAT(N) 
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00 31 J-l,N 
WCJ)-FLOATCJ-1)*Ow-FRCTN*WLMT 
DK-w(JI/V 
C T-CMPLX (RT ,-OK) 
CTR-CMPLXCRTR,-OK) 
CA-CMPLXCRA,-OK) 
CO·CSQ~TC3.*CTR*CA) 
CARG1-RHO*BACKCS/C6 •• CT) 
CARGZ-(RHO.SCACSN)**Z 
CARGZ-CARGZ*(AMU*CQ-CTRI/(CQ*·z-cr··z) 
CARG3-CZ.+3.*AMU)·CT+3.*CTR+6.*AMU*CA 
CARG3-CARG3/«Z.*CQ+3.*CTR)*(CO+CT)) 
CARG4-CAMU*CQ+CTRl/CZ.·CT·CTR) 
CSI(J)-CARGZ*CCARG3-CARG4) 
CS IA (J) -CARG 1 

-- RANGE-GATING 
ARG-O.S.HPL*·Z+O.Z5*(HBW/VI**Z 
ARG--ARG*W(J)**Z 
CRGCJI-CS!(Jl*EXP(ARGI*PL**Z*BW/V 
CRGA(JI-CSIACJ)*EXPCARGI*PL··Z*SW/V 
CONTINUE 
IF (IPRINT .EO. 0 I GO TO 32 
PRINT 10 
PRINT 11, 
CONTINlJE 
00 36 J-l,N 
YACJ)·CABSCCSI(J») 
YBeJI-CABS(CRGIJI) 
CAll AUTOPLTCw,YA,N) 
CALL AUTOPLTIW,Y9,N) 

-- BLACKMAN WINDOw TO REDUCE THE LEAKAGE 
FOR IMPULSE RESPONSE ONLY, NOT fOR THE RANGE-GATED 

IF e BlIND .EO. 0) GO TO 38 
NHLF-N/Z 
DO 37 J-l,NrfLF 
ARG-PI*FLOATCJ)/FLOATCNHLF) 
wINO·0.4Z-0.S*COSCARG)+O.08*COSCARG*Z.) 
CSICJ)-CSIIJI*WIND 
CSIA(J)-CSIACJI.wtND 
CSICN+I-J)-CSleN+l-J)·WI~D 
CSIACN+I-JI-CSIA(N+I-J)·WINO 
CONTINuE 

--- INVERSE FOJRIER TRANSFORM 
CALL INVFTICSI,M,~LMT,T) 

CALL INVFTICSIA,M,wLMT.T) 
CALL IHVFT(CRG,M,wLMT,T) 
CALL INvFTCCRGA.M,WlMT,T) 
DO 33 J-lIN 
~A(J)-REAL(CSICJ» 
IF C YA(JI .LT. 0.0) YA(J)-O.O 
YA(J)-YA(J)~~EAL(CSIACJ») 

IF ( YA(J) .LT. 0.0) YAeJ).O.o 
YBIJ)-REAl(CRG'J» 
IF C YBCJ) .LT. 0.0' yseJ).o.o 
YB(J)·YB(J)+REAL'CRGACJ) 
IF C YS(J) .LT. 0.0) YSeJ).o.o 
CONTINUE 
CALL AUTOPLTCT,YA.N) 
CALL AUTGPLT(T,YB,N) 
IF (IPRINT .EQ. 0) GO TO 3~ 
PRINT 10 
PRINT 11" 
CONTINUE 
IF (IPUNCH .EQ. 0) GO TO 35 
PUNCH II" (TCI),CSICI),CRG(I),r-lIN) 
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35 CONTINUE 
90 CONTINUE 

PRINT 10 
STOP 
END 
SUSROUTINE INVFT(C,M,B,T) 

C THIS ~OUTINE CALCULATES INVERSE FOURIER TRANSFORM 
C 
C N 
C ClOUT) - lIZ-PI ( SUM C(IN) $EXP( -I$W(JI*T(KII I.OW 
C K J-1 J 
C 

,C W(J)-(J-1)*OW-S*(N-l'/N, TIK)-(K-N/Z)*OT 
lc DW-Z*B/N, OT-PI/S, N-Z**M, (-S,SI-SAND WIDTH 
IC NOTE I SPECIAL CONSIDERATIONS ON THE SYMMETRY OF FREQ. AND TIME 
.C 

1 

Z 

3 

10 

COMPLEX C,CA,Ca,CARG 
DIMENSION C(l030),CA(1030),CB(l030),T(1030),IwK(ZOl 
PI-3.141592b535S979 
N-Z*·M 
FRCTN-l.-1./FLOAT(N) 
NHLF-N/2 
DO 1 I-l,N 
CA (I ) aC (l ) 
C8(I)-CONJG(C(!)) 
CALL FFT21CA,M,IWK) 
CALL FFRDR2(CA,M,IWK) 
CALL FFTZ(CB,M,IWK) 
CALL FFRDR2(CB,M,IWK) 
ARG1-S/(PI*FLOAT(N)) 
DO Z I-I, NHLF 
ARGZa-FLOAT(NHLF-I'*FRCTN*PI 
CARG-CMPLX(COS(ARGZ),SIN(ARGZ)) 
C(1)-ARG1*CARG*CA(NHLF+I-I) 
T(I)--FLOAT(NHLF-I)*PI/S 
DO 3 I-l,NHLF 
ARGZ-FlOAT(I)*FRCTN*PI 
CARG-CMPLX(COS (ARG2 b SIN (ARGZ)) 
C(NHLF+I)-ARGl*CARG*CONJG(CBII+1)) 
T(NHLF+I)aFLOAT(I)*PI/B 
RETURN 
END 
SUBROUTINE AUTOPLTIX,y,N) 

PLOTTING AUTOMATICALLY SCALED 
DIMENSION X(N),Y(N) 
PRINT. 10 
FORMAT( 1Hl) 
CALL PLOTA(X,N,Y,N' 
CALL PLOT3(lH*,X,Y,N) 
CALL PLOT4(I,lH ) 
RETURN 
END 
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App.P-7 Mie theory modified for asymmetrical size-distribution 
of spherical scatterers 

C 
c 

'c 
iC 
'c 
cc 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

II 
1Z 
13 

14 

15 
. 16 

·1&5 
17 
18 
19 

C 

M~IN PROGRAM MIE -- CALLS SUBROUTINE DAMIE 
MODIFIED FOR ASYMMETRIC SIZE DISTRIBUTION BY K.SHIKIZU MAY 1971 

THE PROGRAM CALCULATES ANGULAR SCATTERED INTENSITY AND 
SCATTERING PARAMETERS (C-S. AND EFF.FACT.) 

GAUSSIAN QUADRATURE INTEGRATION FOR SIZE OISTRleUTIOH 
RFR,RFI • REAL AND IMAGINARY PARTS OF REFRACTI~E INDEX OF SPHERE 
RFMED - REFRACTIVE INDEX OF BACKGROUND MEDIUM (REAL) 
wVLENG • WAVELENGTH IN VACUO (MICRON) 
JX - NO. OF ANGLES IN 0-90, AJX· ANGLE STEP SIZE 
Tol(l) • FIRST ANGLE IN DEGREES ••• USUALLY 0.0 
R • AVERAGE RADIUS OR MODE OF DISTRIBUTION (MICRON' 
PDR - FULL 30B-WIDTH OF SIZE DISTRIBUTION IN ~ OF MODE RADIUS 
PDR • 2.86-STD.DEV/RADIUS (NOT DIAMETER) 
PORL,PDRR-S.D.~IuTH OF LEFT S RIGHT OF MODE RADIUS (POR-PORL+PDRRI 
IF SIZE DIST.IS NOT NEEDED, SET N-1,LPDR-RPDR-ZI(1)·O.0,wEI(11-1.0 
GAUSS DATA ORDER ZI(II,wEI(I)·(O.O),RIGHT,LEFT,RIGHT,l,R,L, 
IPUNCH • DATA PUNCHll) OR NOTlO) 
IRANGE - SCATTERING RANGE, WHOLE(O), FORwARD(l), 6ACKWARO(Z) 

C OMON IRANGE 
DIMENSION SIVVl(100),SIVV2(lOO),SIVV(200),SrVVN(ZOOI 
DIMENSION TD1(100),TD2(100),TD(200),ELT~MX(4,100,Z' 
DIMENSION lI(151.WEI(151,OISTl15) 
DIMENSION NS(5),IMAGEl1000),X(ZOO),Y(200) 
DATA (ZI(I),1·1,15)/0.0,0.201194093997435,-O.20119~Oq3997435, 

1 O.3941j1347077563,-0.394151347077563,O.57097Z172608539, 
2 -0.570972172608539,0.724417731360170,-0.724417731360170, 
3 0.848206563410427.-0.848206583410427,0.g3727339Z400706, 
4 -0.937273392400706,0.981992518020485,-0.98799251802048 51 

DATA (WEI(I),I-1,151/0.2025782419Z5561,2*0.198431435327111, 
1 2*0.186161000115562,Z-0.166269205816994,Z-0.139570677926154, 
z- 2-0.1071592204671 72, 2-0.07036604 H88l08, Z*O. 030753Z4rqQ61171 

FORI1AT<l!iJ.) ________ _ 
FORMAT(15X,-MIE SCATTERING - - -- SIZE OISTRIBUTEO.' 
fORMAT(1118X,-(INPUT)-/20X,-AVERAGE RAOIUS.-,f10.bI20X,.3DB-wIDTH* 

1,* OF DISTRIBUTION IN ~ OF AVE.RAOIUS-/25X,*LEFT •• ,i7.2, 
2* ~ RIGHT --,F7.Z,- 1.* 
2 120X,*NO. OF SAMPLE POINTS FOR S.D. INTEGRATION ~ •• ,I3) 

FORMAT(20X, *WAVELENGTH(MICRON)·-,F10.6,5X,*RFMEO •• ,FIO.6, 
1 120X,*WAVENUMBER·-,E12.S,5X,-AV.SIZE PARAMETER·.,E12.5) 

FORMAT(20X,*SPHERE INDEX-(*,FIO.8,.I-I(*,E11.5,*I*' 
FORMAT(/18X,*(OUTPUTI*/20X,*AVERAGEO TOTAL CROSS-SECfIJN -.,E12.5, 
1/20X,~AVERAGED ABSORPTION C-S (MICRON--2).~,E12.S 
1/20X,*AVERAGEO MEAN COS(THETA) -.,E12.5) 

FORMAT(20X,*AREA UNDER S.D. CURVE --,Fa.S) 
FORI1AT(1127X,-ANGLE*,7X,.S.I.VERT.-,6X,*NORI1.SIV(081./J 
FORMAT(25X,F7.2,5X,E12.S,5X,E12.5) 
FORI1AT(25X,-NORMAllZEO SCATTEREO INTENSITY VERT. (DB)-' 

1 70X,-NORMALIZATION DENGMINATOR .-,EI2.5111 

PI-3.14159265358979 
IPUNCH-O 
IRANGE-O 
TOl(lI-0.0 
JX-31 
AJX-3.0 
R-1.010 
RFR-1.58 
RFI-O.O 



C 

il.FMEO-1.33 
WVLENG-O.53 

00 90 N-l,15,14 
PoRL-l.O 
PORR-1.0 
IF (N.NE.l) GO TO 25 
PDRL-PORR-O.O 
ZI<ll"'O.O 
IIEI(l)-l.O 
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25 CONTINUE 
RRFR-RFR/RFMED 
RRFI-RFI/RFMEO 
IIAVENO-2.0*PI*RFMEO/WVLENG 
SOKINV-(1.O/WAVENQ)**2 
C-1.0823922 
DO 31 J-1,JX 
T01(J)-FLOATtJ-11*AJX+T01(11 
SIVVltJ)-O.O 
SIvvztJ)·O.O 

31 CONTINUE 
DISSUM-O.O 
CEXT-O.O 
eseAT-O.O 
AMU-O.O 
I-I 

312 NPI-N+I 
IOOO-tFLOAT(NPII/2.0-FLOAT(NPI/2)1*3.0 
IF (10001 90,313,314 

313 ~R-R*2.*PoRL/IOO.O 
GO TO 31:; 

314 DR-R*2.*PORR/100.0 
315 RI-R+oR*ZICII/C 

SP-WAVENO*RI 
CALL OAMIEtSP,RRFR,RRFI,T01,JX,OEXT,QSeAT,CT6RQS,ELTRMX) 
DISTII)-(1.-ZI(I)**2)**2 
OISSUM-OISSU~+OIST(Il*wEIlI) 
CExr-CEXT+wEIlII*tQEXT*PI*RI**2)*oIST(II 
CSCAT-CSCAT+wEltI)*(QSCAT*PI*RI**2)*OIST(I) 
AMU-AMU+WEItI)*oISTtII*CTBRQS/QSCAT 
IF(IRANGE.EQ.2) GO TO 33 
DO 32 J-1,JX 

;32 SIVV1lJ)-SIVV1(JI+WEI(II*SQKINV*ELTRKX(Z,J,11*OISTlII 
I IF(IRANGE.EQ.l) GO TO 35 
,33 CONTINUE 

i 

I 
I 

DO 34 J-1,JX 
T02(JI-180.0-T01(JI 

34 SIVV2(J)-SIVVZ(JI+WEltII*SCKINV*ELTR"X(Z,J,Z)*OIST(Il 
35 CONTINUE 

IF (I.EO.N) GO TO 38 
1-1+1 
GO TO 312 

38 CONTINUE 
C DATA ARRANGEMENT 

IF(IRANGE.EO.21 GO TO 52 
IN-JX 
DO 51 J-1,JN 
To(J)-T01(J) 
SIVVtJ)-SIVV1(J)/OISSUM 
ARG-SIVV(J)/SIVV(ll 

51 SIVVN(J)-10.*ALOG10(ARG) 

52 

XMAX-O.O 
XMIN--~o.O 
YMAX-O.O 
YMIN--90.0 
IF (IRANGE.NE.21 GO TO 54 
IN-JX 
DO 53 J-1,JN 
TO(J)-T02(J) 
SIVV(J)-SIVV2(JI/OISSUM 



53 

54 

55 

56 

C 

71 
C 

72 
C 

C 

73 

74 

175 
76 
90 
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ARG-SIVVCJI/SIVV(1) 
SIVVNCJ)-lO.*ALOGIOCARGI 
XMAX-I0.0 
XMIN--7.5 
VMAX--150.0 
YMIN--1SO.O 
IF (IRANGE.NE.O) GO TO 56 
IN-2'''JX-l 
JXMl-JX-l 
DO 55 J-l,JXMl 
JA-JX+J 
JB-JX-J 
TOeJA)-TDZeJB) 
SIVV(JA)·SIVV2CJSI/OISSUM 
ARG-SIVVeJA)/SIVVel) 
SIVVNeJAJ-IO.*ALOGIOCARG) 
XMAX-O.O 
XMIN--56.0 
YMAX-O.O 
VI1IN--lBO.O 
CONTINUE 
SPAV-WAVENO*R 
CEXT-CEXT/DISSUM 
CSCAT-CSCAT/DISSU/1 
CABS-CEXT-CSCAT 
AMU-AMU/OISSUM 

. PRINT 11 
PRINT lZ 
PRINT 13, R,?DRl,PDRR,N 
PRINT 14, WVLENG,RFMED,WAVENQ,SPAV 
PRINT 15, RFR,RFI 
PRINT 16, CEXT,CASS,AMU 
PRINT 165, OISSUM 

--PRINTING DATA. TO AVOID,ADD GO TO 71 
PRINT 17 
PRINT 18, (TDeJI,SIVV(J),SIVVN(J),J-l,JN) 
CONTINUE 

--PLOTTING. TO A~OIDI ADO GO TO 73 
DO 72 J-1,JN 
YeJ)--TOeJ) 
X(J)-SIVVN(J) 
PLOTTING wITH VARIABLE AXES 
PRINT 11 
CALL PLOTA(X,JN,V,JN) 
CALL PLJT3(lH.,X,Y,JN) 
CALL PLDT4e3b,36H SCATTERING ANGLE ••• OEGREE) 
PLDTTING WITH FIXEO AXES 
NS(l)-l 
NS(Z)-NS(3)-NSe4)-O 
NSCS)-2 
PRINT 11 
CALL PLOTICNS,3,15,7,13) 
CALL PlOT2(IMAGE,XMAX,XMIN,VMAX,YMINI 
CALL PLOT3(lH*,X,Y,JNI 
CALL PLOT4(31,31H SCATTERING ANGLE ••• OfGREEI 
PRINT 19. SIVV(l) 
PRINT 13, R,PDRl,PORR,N 
PRINT 15, ~FR,RFI 
CONTINUE 
IF (IPUNCH) 76,76,74 
PUNCH 13, R,PORL,PDRR,N 
PUNCH 15, RFR,RFI 
PUNCH 18, eTDeJ),SIVVCJ"SIVVN(JI,J-l,JNI 
PRINT 75 
FORMAT(lHl,10(/),ZOX,*XXXXX OATA ARE PUNCHED IN CARDS 
CONTINUE 
C ONT INUE 
STOP 
ENO 

XXXXX·' 
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SUBROUTINE DAHLE IX,RFR,RFI,THETD,JX,CEXT,CSCAT,CTBRQS,ElTRMX) 
MODIFIED FOR CDC 6400 - 0 A CHRISTENSEN 
REFRACTIVE INDEX RF. CMPLXIRFR,-RFI' 
MODIFIED FOR FORWARD/BACKWARD SELECTION APR. 1977 

AMIE 
AMIE 
AMIE 

5 FORMATC 9X,. THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN AHIE 
1 90.0 DEGREES. IT IS *,F15.4) AMIE 

o FORMAT CII 9X,* PLEASE READ COMMENTS •• II) AMIE 
7 FORMATIII 9X,.THE VALUE OF THE ARGUMENT JX IS GREATER THAN 100*) AMIE 
8 FORMAT(II 9X,* THE VALUE OF RFI • X IS GREATER THAN 80.0. IT IS., AMIE 

1 F15.4) AMIE 
COMMON IRANGE 

1 
2 
3 

It 
5 
b 
7 
6 
9 

REAL X,RX,RFR,RFI,CEXT.CSCAT,T(5),TA(4',TBIZ',TCIZ' AMIE 10 
REAL TDCZ),TE(2',CTBRCS AMIE 11 
REAL ElTRMX(4,100,2),PIt3,100),TAUt3,100l,CSTHT(100J,SIZTHTtlOO)AMIE 12 

1,THETDCIOO' AMIE 13 
COMPLEX RF,RRF,RRFX,WM1,FNA,FNB,TC1,TCZ,~FN(2),ACAP(ZJ AMIE 14 
COMPLEX FNAP,FNBP AMIE 15 
EQUIVALENCE (WFN(1),TACl),CFNA,TBC1»,CFNB,TCC1» AMIE 10 
EQUIVALENCE(FNAP,TDtl)),(FNBP,TE(l)) AMIE 17 
IF ( JX .lE. 100 ) GO TO 20 AMIE 18 
WRITElb,7' AMIE 19 
WRITE(o,6) AMIE 20 
CAll EXIT AMIE Z1 

20 RF· CMPlXtRFR,-RFIl AHIE 22 
RRF • 1.0 IRF AHIE 23 
R~ • 1.0 IX AMIE 24 
RRFX • RRF • RX AMIE 25 
00 30 J • 1,JX AMIE 26 
IF t THETD(J) .IT. 0.0 THETOIJ). -A8SCTHETotJ)) AMIE 27 
IF I THETOIJ) .GT. 0.0 GO TO 23 AMIE 28 
CSTHTtJ) • 1.0 AMIE 29 
SI2THHJl • 0.0- -- --- --AIfIT-30-
GO TO 30 AMIE 31 

23 IF I THETOIJ) .GE. 90.0 ) GO TO Z5 AMIE 3Z 
TIl) • t 3.1~159Z65358979 • THETDtJIl/ldO.O AMIE 33 
CSTHTIJ). COSIT(l») ~MIE 34 
SIZTHTtJ) • 1.0 - CSTHTIJ)**2 AMIE 35 
GO TO 30 AMIE 36 

25 IF I THETD(J) .GT. 90.0 ) GO TO 28 AMIE 37 
CSTHT(J) • 0.0 AMIE 38 
SI2THT(J) • 1.0 AMIE 39 
GO TO 30 AMIE 40 

Z8 W~ITE(6,5) THETO'J) AMIE 41 
WRITElo,6) AMIE 42 
CALL EXIT AMIE 43 

30 CONTINUE AMIE 44 
00 35 J • 1,JX AMIE 45 
PI(l,J) • 0.0 AMIE 46 
PIt2,J) • 1.0 AMIE 47 
TAU(l,J) • 0.0 AMIE 48 
TAU(Z,J) • CSTHTIJ) AMIE 49 

35 CONTINUE AMIE 50 
H 1) • cas (Xl A:1 I E 51 
TIZ)· SIN(X) AMIE 52 
;/."11· CMPlXI Hl),-HZ») AMIE 53 
WF~tl) • CMPlX(Tt2),Ttl)' AMIE 54 
WFNtZ) • RX • WFN(l) - WMI AMIE 55 
Tel) • RFI * X AMIE 56 
IF e Ttl) .GT. ao.o ) GO TO 40 AMIE 57 
T(3) • 0.5 * EXP(TIl» AMIE 58 
T(It) • 0.25 IT(3) AMIE 59 
Ttl) • T(3) + T(4) AMIE 60 
T(2) • T(3) - T(4) AMIE 61 
T(3) • Tt21**Z AMIE 6Z 
TtZ) • T(l) * TtZ) AM IE 63 
Ttl) • T(3) AMIE 04 
T(3) • RFR * X AMIE 65 
T(4). SINtT(3)) A .. HE 66 
T( 3) • C os , T (3 » A M I E b 7 
TIll • Ttl) + T(4)**Z 
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T(31 • T(3) * T(4) 
ACAP(ll • CMPLX(T(3J,T(ZII/T(11 
GO TO 50 

40 ACAP(l). eMPLX( 0.0 ,1.0 
Io/RITE(6,S) T(l) 

Io/RITE(6,6) 
50 ACAP(Z) • - RRFX + (1.0 I(RRFX - ACAP(l»)) 

Tel a ACAP(Z) • RRF + RX 
TeZ • ACAP(ZI * RF + RX 
FHA • (TC1*TA(31 - TA(1')/CTC1*WFN(ZI - WFN(l)1 
FNa • ( TC2*TA(3) - TA(111/(TC2 * wFN(ZI - Io/FN(ll) 
FNAP - FNA 
FNBP a FH8 
T(1) - 1.50 
T8(1) • T(ll * T8(1) 
Ta(ll - T(ll * T8(ZI 
TC(ll • T(ll * TC(li 
TC(ZI - T(ll * TC(Z) 
IF (IRANGE.EQ.Z) GO TO 60Z 
00 bOl Jal,JX 
ELTRMX(l,J,l) • Ta(ll • PI(Z,JI 
ELTRMX(Z,J,l) • T8(Z) • PI(Z,Jl 
ELTRMX(3,J,l) • TCCl) • PI(Z,JI 
ELTRMX(4,J,ll • TC(Z) • PI(l,JI 
CONTINUE 
IF (iRANGE.Eo.11 GO TO 60] 
DO 60 J-l,JX 

- ELTRMXCl,J,ZI 
El TRMlI.( 2, J, Z) 
ELTRMXD,J,2) 
ELTRMX(4,J,Z) 

60 CONTINUE 

• Ta(ll 
• TB (ZJ 
• Teeu 
• TeCZI 

• PI( Z, J I * PIC Z, J) 

• PH2,JI 
• PU2,JI 

+ TC (l I 
+ Ttl 2 J 
+ TBU) 
+ T8(ll 

TC( 1) 

- TC(Z) 
- TB ( 1) 

- TB(ZI 

• TAU(2,J I 
* TAU(Z,JI 
* TAU(Z,JI 
* TAU (2,J I 

* TAU(Z,JJ 
* TAU(Z,JI 
* TAU' 2,J ) 
* TAU (Z, J) 

603 CONTINUE 

\ 

OEXT • 2.0 * ( TB(11 + TC(l)1 
OSCAT .(T8(1)**2 + TBCZ)**Z + TC(11**2 + TC(2)**lJ/0.75 
CTBROS • 0.0 
N • Z 

65 T(l) • 2*N - 1 
HZ) • N - 1 
Te31 • 2 * 101 + 1 
DO 70 J • 1,JX 
PIC3,J) • (T(l)*PI(Z,JJ*eSTHT(J)-N*PI(l,JII/T(ZI 
TAU(3,JI • CSTHT(JJ*(PI(3,JI-PI(I,JII-T(11*SIZTHT(J).Plll,JI+ 

1 TAUCl,JI 
70 CONTINUE 

,1111 • WFN (1) 

WFNClI • WFN(ZI 
WfN(Z) • T(l).RX*WFNC1J - WMl 
ACAP(l) • ACAPCZ) 
ACAP(Z) • -N * RRFX + (1.0 /(N*RRFX-ACA?(l») 
TCl • ACAPCZ)*RRF + N*RX 
TCZ • ACAP(Z'*RF + N*RX 
FHA· (TCl*TA(3)-TA(1)"(TC1*WFN(ZJ - wFN(l) 
FHB • (TCZ*TA(]I-TA(llJ/tTCZ*WFNCZ) - WFN(l) 
T(5) • N 

T(4) • T(11/tTC5).T(Z) 
TCZ) • (T(2,*tTt5) + 1.0 »)/T(S) 
CTBRQS • CTBRQS + T(ZI.CTD(l).TS(ll + TO(l).TstZI + TE(11*TCt1) + 

1 TE(ZI*rC(2)' + T(4,*(TD(11*TECIJ + TO(21*TE(2)1 
oEXT • QEXT + T(3)*CTS(l'+TCtl)I 
T(4) • TS(ll**Z + TS(Z)**! + TC(11*.Z + TCtZ)**! 
OSCAT • OSCAT + T(3) .T(4, 
HZ) • H*(N+U 
TIL) • T(31/T(2) 
!( • (N/!)*2 
IF CIRANGE.EQ.Z) GO TO 80l 

A 1'1 IE 68 
AMIE 69 
MilE 70 
AMIE 71 
A/H E 72 
AM IE 73 
A:1IE 74 
AMIE 75 
AMIE 76 
AMIE 77 
AMIE 78 
AI1IE 79 
AMrE 80 
AMIE 81 
AMIE 82 
AIHE 83 
AI1IE 84 
AMIE 85 
AI11E 86 

AMIE 88 
MilE 89 
AI1IE 90 
A/lIE 91 

. AMIE 92 
AllIE 93 
A./HE 94 
AMIE 95 
AMIE 96 

AMIE 97 
AMIE 98 
AMIE 99 
AMlE 100 
AI1IE 101 
AMIE 102 
AI1IE 103 
AMIE 104 
AMIE 105 
A/HE 106 
AMIE 107 
AI1IE 108 
AHIE 109 
A/HE 110 
AMIE III 
AI1IE llZ 
AMIE 113 
AMIE 114 
AMIE 115 
AI'1IE U6 
AMIE 117 
AHIE 118 
AMIE 119 
AMIE 120 
AI1IE 121 
AMIE lZZ 
A.MIE 1Z3 
AI1IE 1Z4 
A .. 'II E lZ5 
AMIE 12& 
AI'1I E 127 
UlIE 128 
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00 801 J-l,JX 
ELTRMX(1,J,1)-ELTRMX(1,J,1)+T(1)*(TB(11*Pl(3,JI+TC(11*T4U(3,J'J 
ELTRMX(Z,J,1)·ELTRMX(Z.J,11+T(11*(TB(Z)*?113,Jl+TCIZ).TAU(3,J)J 
ELTRMX(3,J,11-ELTRMX(3,J,1)+T(1)*(TC(11*Pl(3,J)+TB(11*TAU(3,J» 
ELTRMXI4,J,ll-ELTRMX(4,J,1)+TIl)*(TC(ZI*PlI3,JI+TBIZI*T&U(3,J» 

801 C.ONTINUE 
IF (IRANGE.EO.l) GO TO 803 

80Z 00 80 J-l,JX 
IF ( K .EO. N ) GO TO 75 
ELTRMXIl,J,Z)-ELTRMX(1,J,Z)+T(1'*(TB(1)*PIl3,JI-TC(1'.TAU(l,J» 
ELTRMX(Z,J,Z)-ELTRMX(Z,J,Z)+T(1)*(TB(Z)*PI(3,J)-TC(Z).TAU(3,J» 
ELTRMX(3,J,Z)-ELTRMX(3,J,ZI+Tlll*(TC(1)*PI(3,JI-TSll)*TAU(3,J» 
EL TR MX (4, J, Zl -EL TRM X (4, J, 2) + T (1.) * crc (Z) * P I l 3, J ) -T B (Z) .TAU( 3, J) ) 
GO TO 80 

75 ELTRMX(1,J,Z)-ELTRMX(1,J,Z'+T(1'*(-TSll)*PI(3,J'+TC(11*YAU(3,J'1 
ELTRMX(Z,J,ZI·ELTRMX(Z,J,Z)+T(11*(-TalZl*Pll3,J'+TCIZ)*TAU(3,J)J 
ELTRMX(3,J,Z'-ELTRMX(3,J,Z)+T(11*l-TC(1)*PI(3,Jl+TB(lJ.T~U(3,J)' 
ELTRMX(4,J,Z'-ELTRMX(4,J,Z)+T(1'*(-TClZ'*PI(3,Jl+TB(Z)*TAU(),J), 

130 CONTINUE 
803 CONTINUE 

IF( T(4' .LT. 1.0E-14 I GO TO 100 
N • N + 1 
00 90 J • I, JX 
Plll,J) • PI(Z,J) 
PI(Z,JI • PI(3,J' 
TAUll,J' • iAU(Z,J' 
TAU(Z,J) - TAU(3,Jl 

90 CONTINUE 
FHAP • rNA 
FHBP - FNB 
GO TO 65 

00 CONTINUE 
IF (IRANGE.EO.Z' GO TO lZl 
K-l 
00 120 J-l,JX 
00 115 I - 1,4 
T(I' • ElTRMX(!,J,K) 

115 CONTI NUE 
ELTRMX(Z,J,K) - T(1)**2 + T(ZI**Z 
ELTRMX(l,J,~) • T(3'**Z + T(4'**Z 
ELTRMX(3,J,K' • T(1)*T(3) + T(Z)*T(4J 
ELTRHX(4,J,K) • T(2).T(3) - T(41*T(1) 

1Z0 CONTINUE 

121 

1Z2 

IF (IRANGE.EQ.l .OR. K.EO.Z) GO TO 122 
K-2 
GO TO 101 
CONTINUE 
T(l) • 2.0 * RX**Z 
CEXT • CEXT * T(11 
CSCAT • OSCAT * T(ll 
CTaROS • 2.0 * CTBRQS 
RETURN 
END 

* H1) 

AlilE 130 
AMIE 131 
A~IE 132 
AI'lI E 133 

AMlE 134 
AliIE 135 
MilE 136 
AM IE 137 
AM IE 138 
MilE 139 
AMIE HO 
AMIE 141 
AMIE 14Z 
AMlE 143 
AMIE 144 

A/HE !It 5 
AI1IE 14t1 
AMIE 147 
AI1IE Ilt8 
A:'\! E !It 9 
AMIE 150 
A ,'1 IE 151 
A/Hi: 152" 
AM IE 153 
AMIE 151t 
AMIE 155 

Al1lE 158 
AMIE 159 
AIHE 160 
Al1lE Itll 
AMIE 16Z 
AMIE 163 
AMIE Iblt 
ArlIE 165 

AMlE 
AMIE 
AMlE 
AMrE 
A/HE 
AIHE 

166 
167 
16d 
169 
110 
171 
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