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Simplified Method of Testing Ice for Creep and Relaxation 

S: S. VYALOV 

C. C. B5IJIOB 

Research Institute of Bases and Underground Structures, Moscow, U.S.S.R. 

and 

V. F. ERMAKOV 

B. <1>. EpMaKoB 

Permafrost Institute, Siberian Branch of Academy of 
Sciences of the U.S.S.R., Yakutsk, U.S.S.R. 

Abstract 

Creep experiments usually consist of testing a series of specimens under different loads, which 
are, however, constant for each specimen. Generally a group of creep curves are obtained as a 
result of tests, and the curves are used to determine the relationship between the stress and the 
deformation or its rate and time. 

The above method, however, is rather time-consuming. The authors suggest a method sub­
stantially simplifying and speeding up the tests and enabling them to be carried out on two specimens. 

In essence, the method is as follows, The load on the specimen is transmitted through a 
dynamometer, where a predetermined initial tension is set up, after which the position of the 
dynamometer is fi'xed so that the height of the specimen and dynamometer is maintained constant 
during the course of the entire experiment. Under the action of the load from the dynamometer, 
plastic flow deformation develops in the specimen, which results in a decompression of the dyna­
mometer, which is recorded. Thus, the test is reduced to a cr~ep test at a variable stress, the stress 
variation being due to the specimen deformation. 

The data on tQ.e stress variation in the dynamometer can be used to calculate the specimen 
creep characteristics. 

If the given initial stress transmitted through the dynamometer to the specimen is close to 
failure stress, the stress drop can be regarded as a decrease in specimen strength with time, while 
the stress at a given moment may be considered as long-term strength. 

I. Introduction 

As is well known, the purpose of creep tests is to establish the relationship between 

deformation s, stress tJ and time t: 

s = ({J(tJ, t), 

or between deformation rate ~ = de/dt, tJ and t: 

~ = f(tJ, t). 

(1) 

(2) 

The tests are usually performed by subjecting a series of similar specimens with different 

loads, which are constant for each specimen. A group of creep curves are plotted from 

test results, and the resulting curves determine the form of the creep eq. (1). If it is 
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necessary to establish the relationship between the deformation rate and the stress, 

as is usualIy done for ice, the creep curves are reconstructed -into deformation rate vs. 

time curves which determine the form of eq. (2). The initial portion of the creep curve 

(with a diminishing deformation rate) is qften neglected, and only the proce~s of steady­

state viscoplastic creep with a constant rate is co~sidered 

~ = f(o). (3) 

Relaxation tests are performed by assigning to the specimens a certain deformation 

e caused by the initial stress 00; the time, variation of the stress 0 necessary to maintain 

the constancy of the given deformation eo=const. is determined by 

o = f(oo, t) . (4) 

If the given initial stress 00 is close to the ultimate strength of ice, the relation (4) 

can be conventionally regarded as the equation Qf decrease in the strength of ice with 

time. 

Since both the relaxation and the creep processes depend on the development of 

plastic deformation with time, eqs. (1) and (4) are bound by a definite relationship. In 
its general form, the rheological state equation can be written by 

¢(O,e,t)=O or ¢(o,~,t)=O., (5) 

The relationship between the creep and the relaxation equations is established by pro­

ceeding from a particular hypothesis on which the various creep theories depend. 

Determination of the rheological characteristics according to the accepted method 

involves time- and labour-consuming experiments and requires a great number of similar 

specimens. To speed up and simplify the experiments, S. S. Vyalov* proposed a new 

method of testing for the creep and relaxation of frozen soils, ice, rocks, etc., with the 

aid of a dynamometric device designed by V. F. Ermalwv. 

II. Essential Features of Proposed Method 

The load on the specimen is applied through a dynamometer by tensioning to a 

given initial stress 00' The building-up of specimen creep deformations results in the 

decompression of the dynamometer which is recorded on the indicating scale of the same 

device. The data on the weakening of the initially preset stress with time can be used 

to determine the creep and relaxation characteristics. Dynamometric tests can be re­

garded as tests for creep under the action of a time-variant stress or as a relaxation 

tests at varying deformations, the variations of stress and deformation being interrelated. 

The proposed method is suitable for tests with different types of loading (compression, 

tension, shear), and although we shall further discuss a device for compression testing, 

the key diagram of the device· and the mode of data processing remains valid for any 

type of test. 

A diagram of a compression test and the curves obtained from the test are presented 

in Fig. 1. A soil specimen 1 is loaded by a tensio~ing device 7 through a settlement 

plate 3 and a dynamometer 4. The dynamometer deformation is recorded on the indicating 

* Certificate of authorship No. 161133 of 21. 1-1964. 
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a 6 c 

t t t 
Fig. 1. Diagram of dynamometric device for determining rheological 

characteristics, and curves obtained from test 

1, specimen; 2, specimen deformation indicating scale; 3, settlement plate; 4, dyna­
mometer; 5, dynamometer indicating scale; 6, frame; 7, tensioning device 

a: Dynamometer deformation curve, b: Specimen deformation curve, c: Dynamometer 
decompression curve 
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scale 5, and that of the soil specimen on the indicating scale 2. After assigning the 

initial load 300 the position of the dynamometer is fixed by securing the tensioning device 

7 in frame 6. Although the height of the specimen l// and the height of the dyna­

mometer l' varies in the course of the test, their total height remains constant 

lo = II (t)+ l// (t) = 'const. (6) 

When the initial load 300 is assigned, the initial deformation of the dynamometer 

).0 = II -l'o occurs, where l' and l'o are the heights of the dynamometer before and after 

the application of the load, respectively. This deformation decreases as the dynamometer 

decompresses (Fig. 1 a) 

A' = ).'0' +A//(t). (7) 

Quite similarly, when the load is applied, an initial deformation of the specimen, 

A'o'=l//-l'o' occurs, which builds up under the action of the load transmitted by the dy­

namometer (Fig. 1 b) 

..1// = ..1'0' +).// (t) . (8) 

In this case (ignoring the calibration corrections) the deformation of dynamometer 

decompression should be equal to the deformation of specimen compression 

).1 (t) = ).// (t) = ). (t) . (9) 
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As a result of dynamometer decompression, the given initial stress therein, 300, will 

drop in accordance with a certain law, 3O(t) (Fig. 1 c). 

For a number of materials for instance, rock and frozen soils, dynamometer decom­
pression will continue until an equilibrium is. established between the stress transmitted 

through the dynamometer and the internal resistance forces of the specimen. Accor­

dingly, the final value of the load, 30=, may be regarded (provided that the initial load 

300 was close to a failure load) as an ultimate long-term strength or ultimate flow. If, 

on the other hand, the decompression of the dynamometer continues indefinitely and the 

final stress tends to zero, this will mean that the ultimate long-term strength or the 

ultimate flow (in the Bingham sense) of the test material is equal or close to zero. This 

assumption would evidently be valid for ice, and this can be checked 'with the above 
described device. 

The design of the device is given in J!t. IS 

Fig. 2. The device is meant for compression 

tests of cylindrical specimens of two diame­

ters, 35.7 and 45.2 mm, and 10 and 16 cm2 

in cross section, respectively. The height 

of the specimens is 80 and 100 mm respec­

tively, i.e. the height to diameter ratio is 

2.2. The maximum compression stress is 

1500 kg. The loading of the specimen can 

be done mechanically, manually or by a com-' 

bined method. To allow for self deforma­

tions of the device, it should be calibrated 

and the corresponding correction should be 

introducted into the measurement results 

)," (t) = ),0' +),' (t) + A), (t) , (10) 

, 13 

1/ 

10 

18 

19 

20 

where A), (t) is the device deformation, as 3 

determined by calibration. 

III. Determining Rheological 
Characteristics 

Now we will discuss the operating con­

ditions of the device. As can be seen from 

Fig. 1, the load 30 is taken up by the dy­

namometer and specimen connected in series. 

The dynamometer deformation is described 
by the Hooke law 

30 = EX , (11) 

where E is the deformation modulus of the 

dynamometer, and the ,deformation of the 

specimen obeys a creep law which is un­

known so far eq. (5). In the simplest form 

Fig. 2. Design of dynamometric device 

1, electric motor; 2 and 3, gear transmission; 
4 and 13, lower and upper transverse pull 
rods; 5, stop screw; 6, guiding bush; 7, 
specimen deformation indicating scale; 8, sup­
port for specimen deformation indicating scale; 
9 and 12, lower and upper movable guides; 
10, dynamometer; 11, dynamometer defor­
mation indicating scale; 14, upper loading 
screw; 15, tap wrench for manual loading; 
16, longitudinal pull rod; 17 and 19, upper 
and lower cylindrical settlement plates; 18, 
ice specimen; 20, bearing plate; 21, lower 
loading screw 
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this law can be written thus 

)./1 = f(,<1jJ) F(t) , (12) 

where f(gl)) is a function describing the relationship between the load 80 and the speci­

men deformation )./1, and F(t) is the creep functi~n characterizing the building-up of 

deformation with time; at t=O we have F(O)=l. The operating conditions of the device 

are described by the equalities 

gl) =:30' =:30/1 and ).0 = ).' +)./1 = const. 

, Hence, taking into account eqs. (11) and (12), we obtain 

_ ).o-:3O/E _ )./1 
F(t) - f(gl)) - f(:3O) 

(13) 

(14) 

In this expression, ).I' is the specimen deformation developing with time, described 

by the curve of Fig. 1 b, :30 is the time-variant dynamometer stress described by the 

curve of Fig. 1 c, and f(:3O) is a certain function which is also determined experimentally. 

The most widespread form of this function for ice IS 

f(gl)) = B:3On . (15) 

Then the expression (14) will assume the form 

_ ).o-:3O/E _ )./1 
F(t) - B:3O" - B:3On' (16) 

where the parameters Band n are calculated from the test data (this will be discussed 

below). The following units are adopted in these expressions: :30 in kg, ). in cm, B in 

cm/kg", E in ·kg/cm. For conversion to true units we should assume: a=:3O/w in kg/cm2, 

s = )./I/h a dimensionless value, B = B (wn/h) in cm2/kg, where w is the specimen cross 

section, and h its height. The final deformation equation determined experimentally will 

be written thus: 

s = Ban F(t). (17) 

If we are to express the deformation law in terms of rates, eq. (18) will take the form 

(18) 

where ~=ds/dt is the ice deformation rate, 1j and n are parameters determined from the 

experiment (see below), and SJ(t) is the time function determined by the expression 

v/l' 
SJ(t) = "fI,<1jJn . (19) 

The above expression IS derived in a similar manner to eq. (16), the only difference 

being that the specimen deformation )./1 is repla,ced by its rate v/l = d)./1 /d t; the value of 

the parameter "fI included in the equation is bound with the parameter 'tJ from eq. (18) 

by the relation ~ =Y} (wn/h). 

If we consider exclusively a steady-state flow with a constant velocity, the function' 

SJ(t)=const. (for instance, SJ(t)=I) and eq. (18) takes the form 

~ = 1jan 
• (20) 

The relaxation equation can be obtained directly from eq. (17). 
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The parameters of the deformation equations discussed above are determined in the 

following manner. 

1. The device is loaded with an initial load S2io for 5 to 10 seconds (manually or 

mechanically); in the course of loading it is desirable to measure the specimen defor­

mations with the aid of a recorder in order to obtain a load vs. deformation curve in 

rapid loading. At the end of loading the initial dynamometer deformation ,10 and the 

initial specimen deformation Ail' are recorded. ; 

2. After loading the device and fixing the position of the dynamometer, the 

straightening (deformation) of the dynamometer which is calculated from eq. (7) is ob­

served. These data are used to compute the weakening of the stress in the dynamometer 

S2i(t) = A'E, 

which is reflected by the graph of Fig. 3 a. Simultaneously, the specimen deformation 

is recorded, which is calculated from eq. (8). . The accuracy of the experimental results 

is verified by seeing whether the condition of eq. (9) is met when eq. (10) is taken into 

account. The specimen deformation is described by the graph of Fig. 3\!'. 

When arranging the data in accordance with the relations (18) and (20) the graph of 

Fig. 3 b is reconstructed into the graph 3 c where the deformation rate V" is plotted as 

the ordinate. 

3. The experiment is repeated with identical specimens loaded 'with a different value 

of the initial load S2io; the data of this experiment serve to plot a second set of curves 

on the graph of Fig. 3. 

4. The parameter Band n of eq. (16) are determined from the graph of Fig. 3 in­

accordance with the expressions 

n= 

1 S2i2 (t) 
n~ 

A" 
In-Xf 

,11' ,12' 
B = [S2i1(t)]" = [S2i2(t)]n . (21) 

Here 5\ and AI', S2i2 and Az' are the values of the stresses in the dynamometer and the 

respective specimen deformations at an arbitrary moment of time in two simultaneous 

experiments at different initial loads S2iO(l) and S2iO(2) (Fig. 3). To check the reliability of 

the determination of nand B, the calculations by eq. (21) should be performed for 

several moments of time (the values of nand B should coincide). 

5. The creep function F(t) is determined on the basis of the graphs 3 a and 3 b. 

a b c 

) " 
~_----A2. 

A'( 

X' i!. --~7f2 " Ifi"i----fi 
m--------R 'lJ;" 

t t 
I-----''-IL-------:

t 
Fig. 3. Experimental data 
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To this end, the values of the function are calculated from eq. (16) and a graph is 

plotted. Thus the analytical expression of the function F(t) is found. The correctness 

of the results obtained is ascertained by the coincidence of the values of F(t) for two 

simultaneous tests at different goo. The final form of the deformation equation is given 

by eq. (17). 
6. When arranging the experimental data in accordance with eqs. (IS) and (20), the 

values of the parameters 'fj and n are determined from the graphs of Fig. 3 c, by analogy 

with 4 

n= 'fj = [go(t)]n 
v~' (22) 

the function Q(t) is determined according to eq. (19) by analogy with 5. The constancy 

of the value of Q (t) = const. indicated that a steady-state flow has been established since 

a given moment. 
7. The weakening of the resistance should be determined, as stated above, by as­

signing an initial load goo close to the ultimate strength of ice at rapid loading. The 

latter is established tentatively, by breaking down the specimen on the same device. The 

resistance Os at any moment t may be taken as approximately equal to the stress in the 

dynamometer, but with a correction for the latter's flexibility 

{ 
w }-n 

Os = o(t) E).b' [oo-o(t)]+l , (23) 

where o(t)=go(t)/w and oo=goo/w, w is the cross section (cm2
) of the specimen, goo and 

go(t) are the initial stress of the dynamometer and the stress at the moment t (in kg), 

respectively, ).b' is the initial specimen deformation (in cm), E is the dynamometer de­

formation modulus (in kg/cm). 

IV. Some Experimental Data 

Figures 4 and 5 exibit the initial data of some of the experiments. Figure 4 demon­

strates the curve of decrease of stress in polycrystalline glacier ice (r = 0.88 g/cm3) at a 

temperature of -SoC. The initial stress was l10=10.6 kg/cm2
, thus corresponding to 

about 16.4 % of the cOIiventional momentary stress which is equal to 64.S kg/cm2 • It 

can be seen from the figure th~t the stress decrease with time occurs rather smoothly, 

although the most intensive decrease takes place within the first five days. Thus, the 

ratio of the stress at a given moment to the initial stress l1(t)/l1o (100) (in percentage) 

was: 10 min after loading-94%, after 1 hr-S7%, after 12hrs-65%, after 24hrs-57%, 

after 5 days-35%, after 15 days-22.S%, and, with a conventional deformation stabiliza­

tion-after 60 days-10.9% (1.16 kg/cm2
). In another experiment using the same initial 

stress, but at a test temperature fl = - 4°C, the ratio l1(t)/l1o (100%) was: after 10 min-

91.5%, after 1hr-S1%, after 12 hrs-53%, after 24 hrs-44%, after 5 days-22.6% and 

after 15 days-12.7%. These examples show that an increase of temperature, from -S 

to -4°C, led to a more intensive stress decrease with time and to a more rapid change 

of deformations. Thus, at -4°C stress decrease in 5 days was 77.4%, and in 15 days 
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Fig. 5. 'Stress decrease curves. Lake ice at temperature -zoC, stress acts; 
(I) at an angle of Z5~30° to basal plane, (2) parallel to basal plane 
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87.3%, whereas at -8°C this stress decrease was achieved only after 15 and 55 days, 

respectively. Other experiments with polycrystalline ice at a temperature of --8°C, but 

at a lower initial stress, showed that a decrease in the initial stress brings about a 

decrease in the intensity of the stress drop with time. For instance, at 00=6.0 kg/cm2 

the stress decrease after 5 days was only 35% of the initial predetermined stress, whereas 

at 00=10.6 kg/cm2 this decrease was 65%. 

Experiments performed with lake ice (r=0.91O g/cm3, H= -2°C) showed that the de­

crease in the ice strength with time is greatly affected by the direction of the applied 

stress relative to the basal planes of the crystals (the lake ice specimens, as a rule, con­

sisted of one or more identically oriented crystals). Figure 5-1 displays the result of 

one of the experiments with lake ice (r=0.10 g/cm3) at H= -2°C and the initial stress 00= 

6.26 kg/cm2 • In the experiment, the load applied to the specimen acted at an angle of 

20 to 25° to the optical axis of the crystal (65 to 70° to the basal plane), and the specimen 

deformation -occurred due to the shear action along the basal planes of the crystal. In 

. this experiment the principal stress decrease took place within the first 30 min, during 

which the stress decreased by a factor of 6 and was equal to o(t)=1.04 kg/cm2 ; during 

the first day the stress decreased by a factor of 14. Later on, the stress decrease oc­

curred much slower and, on the whole, the stress was reduced about 20-fold relative to 

the initial value, coming down to as low as o(t)=0.34kg/cm2 (in another identical ex­

periment the stress was reduced to o(t) =0.22 kg/cm2 within the same time period). 

In still another experiment with the same lake ice at H = - 2°C and initial stress 

00 = 5.8 kg/cm2, where the applied stress acted along the basal planes and normally to 

the optical axes of the crystals, the stress decrease with time took place much slower 

than in the preceding case (Fig. 5-2), and during the first 30 min the stress was reduced 

by 12%,- after 1 day-by 51%, and after 5 days by 70%. These examples indicate that 

the stress value at a given moment of time, or)' depends on many factors: the structure 
of the ice, its temperature, the magnitude and the direction of the acting stress, etc. In 

all cases,_ however, the most intepsive stress decrease occurs in the initial period after 

the load is applied, and a relatively insignificant change, during the later period of the 

tests. 


