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Flexural and Other Properties of Sea Ice Sheets 

Condensed Version 

Andrew AssuR 
u.s. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., U.S.A. 

Abstract 

Physics of sea ice has now advanced to the point that one can predict composite properties of 
sea ice sheets on a rational basis. This leads to a synthesis on the basis of past analysis. For 
practical purposes nomograms or computer techniques can be developed, with easily measured 
quantities as input. The foundation for such methods is laid in this paper. 

The composite properties discussed are: zero strength and deformation layer, neutral layer, 
average crushing strength and Young's modulus, calculation of zero, first and second order mo­
ments, modulus of inertia, section modulus, flexural strength, plate rigidity, action radius as well 
as failure mechanism. The principal assumption underlying the future construction of nomograms 
from equations is a linear temperature profile and constant salinity. For computer techniques a 
more flexible polynomial approach is suggested. 

The basical physical parameter invariably is the brine volume which can be calculated from tem­
perature and salinity. Only surface temperature could be used under simplifying assumptions, but 
profile data at least for four points are suggested for computer techniques. 

Comparison with test data is now proceeding. " 
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NOTATIONS 

1-E/Eo -1 = ~ 
r; S (}l 

Average of AE over entire or partial profile 

1-a/ao 
..jr;S 

Average of A. over entire or partial profile 

Flexural rigidity eq. (S.20) 

Young's modulus of sea ice 

"Basic" Young's modulus of sea Ice for zero brine volume comparable 

to Young's modulus for fresh ice 

M2-Moz~ Moment of inertia eq. (S.13) 

An integral, eq. (5.3) 

Bending moment 

)

ZU E 
-dz 

"t Eo 

)

ZU E 
z--dz 

Zl Eo 

Zero moment of fictitious cross section 

First moment 

Second moment 
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V2 

V3 

VI(z) 

V2(z) 

V3(z) 

X 
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Bending moment with tension at bottom 

Bending moment with tension at top 

Salinity, here expressed in absolute ratios 

Salinity of brine in equilibrium with given temperature 

Section modulus 

Section modulus for lower fibre 

Section modulus for upper fibre 

-fll-fI 

1-~ 
lIo 

.l(~+~+~) 
lIo 2 3 4 

~(~+~+~) 
lIo 3 4 5 

~(~+~+~) 
lIo 4 5 6 

.l(~ Z+~Z2+~ Z3) 
lIo 2 3 4 

~(~Z+!!:1..Z2+~ Z3) 
lIo 3 4 5 

~ (~Z+~ Z2+~ Z3) 
lIo 4 5 6 

-fl 

ao, at> a2, a3 Coeffic1ents of third ~rder polynomial 

Coefficients of polynomial, eq. (5.1) 

Brine content by weight 

bo, bt> b2, b3 
br 

h 

hsk 

l 

lo 

II 

Yt> Y2, Y3, Y4 

Y 
Z 

Thickness of sea ice, disregarding skeleton layer 

"'='2.5 em Thickness of skeleton layer at the sea ice bottom 

afo Action radius of sea ice eq. (8.21) 

"Basic" action radius of sea ice eq. (8.23) 

Action width, eq. (8.22) 

Individual values of y, eq. (4.2) 

Average over profile or part of it 

Upwards counted distance from "bridging" layer (where the grooves of 

the skeleton layer close off), assuming the ice thickness h as unity (dis­

regarding skeleton layer) 

Zz Lower limit of integration for z 

Zn ~: Distance to neutral layer 

z" Upper limit of integration for Z 

a Reduction of action radius for sea ice, eq. (8.24) 

rb Density of brine 

ri "Theoretical" density of sea ice, without air bubbles; can be computed 

from phase relations 
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See eq. (4.2) 

ri 
7b YO 

559 

Ice temperature; also temperature of brine under phase equilibrium 

Ice surface temperature 

Y 

-54.11 for sea ice brine; constant in eq. (2.3) 

f}w-(f}w-f}o) h~shsk Temperature at bridging layer 

Temperature at lower limit of integration 

Temperature at upper limit of integration 

Water temperature 

Foundation modulus (density of water) 

Poisson's ratio 

y(l) S "Volume porosity"; relative volume of brine in sea ice 

Brine volume for which strength or deformation extrapolates to 

zero 

YI Brine volume at bridging layer 

Y2,Y3 Volume of brine for z=1/3 or z=2/3 

Y4 Volume of brine at surface 

Y(l) Relative volume of brine for S=l%o; a function of temperature 

a Strength of sea ice (may be tensile or crushing strength) 

(j Average strength over a profile or a portion of it 

00 "Basic strength" of sea ice without brine pockets, comparable to 

strength of fresh ice 

az Flexural strength with tension at bottom 

au Flexural strength with tension at top 

I. Introduction 

One of the interesting problems in the physics of sea Ice is the response of sea ice 

sheets to forces. This may be the crushing of a sheet against an obstacle. The flexural 

response to forces may lead to breakag'e or just to oscillations such as air-coupled waves. 

Sea ice, a mixture of fresh ice, liquid brine and solid salts, is not only strongly 

anisotropic but changes its basic physical characteristics rapidly with depth. At the 

bottom it has almost the consistency of mush while at the surface it may approach the 

characteristics of fresh ice depending upon salinity, age and weather. Although it is 

obvious that the usual assumptions regarding isotropy and homogeneity, which enter 

theoretical mechanics, are violated in this case nevertheless the considerable vertical 

variation of properties can be handled. Papers dealing with the mechanics of sea ice 

have virtually not considered this complication up to now. 

The foundation of a rational system in sea ice physics is its phase diagram or com­

position. Numerical values have been published by' Assur (1958) but these require further 

experimentation and refinement. 

In the following sections composite properties of sea ice sheets are summariz!"d. 
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II. The Zero Strength Layer in Sea Ice Sheets 

Depending upon salinity and temperature one may find that the strength diminishes 

to negligible values near the bottom or near the top under spring-time conditions. The 

skeleton layer of about 2.5 cm thickness at the sea ice bottom where no bridging occurs 

between elementary platelets has been customarily disregarded. However, additional 

layers may be involved. 

We assume a general strength relation 

:0=1--/:0· (2.1) 

Equation (2. 1) can be used not only for tensile but also for crushing strength as 

recently shown by Peyton (1966). 

For no strength V=Vo. This is a nominal condition since eq. (2.1) includes only the 

first term of a general expansion which is sufficient for practical purposes. Assur (1958) 

has shown the dependence of Vo on the petrographic structure of sea ice. Significant 

advances hav~ been made in the recent past in determining its dependence on growth 

velocity and salinH:y. 

or 

Brine content by weight is 

S 
b,. = s-;;. 

Up to -8.2°C according to Assur (1958) 

Assume a linear temperature profile throughout the ice thickness 

The relative brine volume is 

ri S ri 
v = b,. r; = & r; . 

From eqs. (2.6) and (2. 4) 

V=S(l+ ~) ;~ . 

Setting this equal to Vo one finds 

(}z = __ fl--,l~_ 
~~-1 ' 
Sri 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

for the temperature at the zero strength layer which can be tabulated in terms of salinity. 

f}z is virtually proportional to S with an excellent approximation. For the position of 

the zero strength layer 

(2.9) 
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The value of Zo which may be negative, located between 0 and 1 or even above 1 

characterizes the ice sheet from its initial growth until decay in Spring. 

III. Average Crushing Strength of a Sea Ice Sheet 

Combining eq. (2.1) with eq. (2.7) we have 

~= 1-, /(l+~)Q, 
00 '\I fI YbVo 

which can be also written as 

with 

Define a function 

A = 1-0/00 = / tll+tI = / U 
d ..[iiS '\I tI '\Ix' 

with 

U=-fll-fl, 

and 

X=-fl. 

(3.1) 

(3.2) 

(3.3) 

(3.4a) 

(3.4b) 

The average strength (j between the temperatures fll and flu can be obtained by 

integrating eq. (3.3) over fl. This can be done since () is assumed a linear function of z. 

Furthermore A is a linear function of a. Performing the integration one finds 

If the computational zero strength layer from eq. (2.9) is outside the thickness h 
we have flu = flo and til = fib and 

(flo-fib) Ad = ...j -til (...j -flb(1 +fJb/(}l) :.-.......j -tlo(I+tJo/Itl) ) -tllin (.j tltlo 1-~ ;+tllrO ). 
b 1- ~+tlltlb 

The average strength (j itself can be found from 

a/ao = 1-...j1iSJl •. 

(3.6) 

(3.7) 

The approach, as outlined, has the advantage that nomograms can be constructed 

theoretically which show the crushing strength of sea ice sheets in comparison to fresh 

ice sheets as a function of surface temperature, salinity and water temperature. The 

disadvantages are the limitations imposed (limited temperature range, linear temperature 

profile, uniform salinity). A more empirical way using polynomials may be more flexible 

for general use especially in conjunction with computer techniqu~ 
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IV. Average Profile Property-Polynomial approach 

Let the profile property be presented by a third order polynomial which is sufficient 

for sea ice. 

(4.1) 

The coefficients can be obtained by least squares from observed or calculated Y or 

one may use selected points. The following is a convenient way. Let YI be the profile 

property for z=O, Y2 for z=1/3, Y3 for z=2/3 and 'Y4 for z=l which are all equal distant 

m z. 
Let 

A2 = Y4-Y3 

Then by adapting Newton's formula for interpolation 

aO=YI, 

al = 3 (A _ ~2 + ~3) , 
a2 = 4.5 (A2_A3) , 

a3 = 4.5A3. 

(4.2) 

(4.3a) 

(4.3b) 

(4.3c) 

(4. 3d) 

The average propeJ:ty over the entire profile by integrating eq. (4.1) becomes 

- al a2 a3 
y=ao+T+S+4· 

Similarly the average between limits may be obtained. 

V. Average Crushing Strength-Polynomial approach 

The most convenient approach is to write .(Y as a polynomial 

";-j; = bo+bIZ+b2Z2+b3Z3. 

Integrating eq. (2.1) with eq. (5.1) over the entire profile 

(4.4) 

(5.1) 

:0 =):[1- ~~o (bo+blz+b2z2+b3z3)]dZ=1-J~-- v~o (~1+~2+~), 
(5.2) 

where the b coefficients can be obtained from differences similar to eqs. (4.2) and (4.3}. 

Equation (5.2) assumes, of course, that the full profile has some strength. If this 

is not the case then one must obtain the difference between two integrals 

(5.3) 

evaluated between the limits z = Zu and z = Zz. The result divided by Zu-Zz gives the 

average (j lao. 
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VI. Average Young's Modulus for Sea Ice Sheets 

In order to predict the flexural response of a sea ice sheet from basic aspects one 

has to proceed in a somewhat unconventional way. At first the stress-strain relations 

must be defined. The viscous behavior as a function of stress and time still causes 

problems. 

Young's modulus for sea ice can be related to brine volume as 

(6.1) 

For evidence one can refer to Langleben and Pounder (1963) who obtained 

E = (10.00-0.35v) X 1010 dyn/cm2
, v in %, (6.2) 

or 

Vo = 0.286. 

Abele and Frankenstein (1966) calculated 

E = (9.01-0.464v)X 1010 dyn/cm2
, (6.3) 

or 

10 = 0.194. 

The linearity between E and v was first demonstrated by Tabata (1958) who used 

volume of air+brine for v. His Fig. 17 can be presented as 

E = (9.27-0.282v) X 1010 dyn/cm2
, (6.4) 

or 

Vo = 0.329. 

Equations (6.2)-(6.4) give the dynamic Young's modulus. For engineering purposes 

we may adopt the linearity with v, assume vo=0.25 but must take a different much lower E. 

Furthermore logic demands to assume the same Vo for E in eq. (6.1) as the Vo for a in eq. 

(2.1). There cannot be any stress without deformation and vice versa. 

Combining eq. (6.1) with eq. (2.7) we have 

(6.5) 

Assuming a linear temperature profile one can integrate over temperature rather 

than depth to obtain an average E. 
We form a value 

AE= 1-E/Eo -1 =!L 
'YJ S . til' (6.6) 

and integrate this over the entire profile to obtain an average AE 

(6.7) 

From eq. (2.5) 

dd=-..dddz, (6.8) 

which, substituted into eq. (6.7) gives 
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(6.9) 

or 

(6.10) 

VII. Neutral Layer 

The neutral layer or aXIS is defined as the zero deformation layer in pure bending. 

Its position is given by 

(7.1) 

Th~ first moment is 
[1 E 

Ml = Jo Z Eo dz. (7.2) 

Considering eqs. (6. 1), (2.7) and (2. 5) 

Ml = ~: Z[ 1- (1+ fh!~flZ )r;S]dz, (7.3) 

which integrated gives 

(7.4) 

The zero moment can be simply represented as the average E/ Eo from eq. (6.10) so that 

1-r;S{1-~[1+~ In(l-~)]} 1 ~fI ~fI fib 
Z --

n - 2 1-r;S(1-~ ln~) 
~ fI fib 

(7.5) 

VIII. Flexural Properties of Sea Ice Sheets-Polynomial approach 

For computer oriented approaches the following is most convenient. 

We express the brine volume computed from observed temperatures and salinities as 

(8.1) 

with aO=vh and al> a2, a3 computed from eq. (4.3) or by least squares. 

We basi! our calculations not on a cross section with unit width as usually done 

but with a width reduced according to the ratio of Young's moduli . 

...!£..=1-~ 
Eo Vo 

(8.2) 

For this reduced cross section we calculate the various moments related to the 

bridging layer z=O. The zero moment over the entire profile is 

Mo = ~: ~ dz = ~:[ 1- ~o (VI +alz+a2z2+a3Z3)]dz, (8.3) 

(8.4) 

The first moment is 
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Ml = ): zt- dz = 1>[1- ~o ())I+alz+a2z2+a3Z3)]dz, 

MI = l.[1-~-~(~+~+~)] = l.(V- V2). 2 ))0))0 3 4 5 2 

The distance to the neutral layer is 

MI 1 V-V2 
Zn= Mo- =2 V-VI 

565 

(8.5) 

(8.6) 

(8.7) 

This, of course, postulates the validity of Kirchhoff's law. The position of Zn is 

quite temperature dependent. 

The second moment is 

M 2= »2 t dz= J: Z2[1- ~O ())I+alz+a2z2+a3z3)]dz, (8.8) 

M = l.[1-~-~(~+ a2+~)] = l. (V- V). (8.9) 
2 3 ))0 Yo 4 5 6 3 3 

We presented the moments for the case when Zn does not lie between 0 and 1 (no 

zero strength layer). In the general case one must integrate between the limits z" and 

Zz which upon integration gives 

(8.10) 

(8.11) 

(8.12) 

The moment of inertia can be calculated as 

(8.13) 

The moment of inertia is highly variable for sea ice sheets of the same thickness, 

depending upon age and weather. 

and 

The section modulus for the lower fibre is 

Sl = M2-Moz~, = MoMz -MI = MoM2-Ml 
Zn Ml Ml 

For the upper fibre 

S" = M2-Moz~ = ___ 1_( ~M2 -M
1

) = ~OM2-Ml 
1-z" -~-1 Ml Mo-Ml ' 

Ml 

S" Ml 
75; Mo-Ml· 

(8.14) 

(8.15) 

(8.16) 

One must consider that the "fictitious" strength of the extreme fibre is equal to 

the strength of the natural extreme fibre multiplied by Eo/E. 
The bending moment with the lower fibre under stress is 
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( ..;-) G 1- .::l 
o 110 Sz = GZ_h2 • 

1-.::l 6 
110 

Since h=l, expressed in z, the lower flexural strength simply becomes 

Similarly the upper flexural strength is 

The flexural plate rigidity is 

EJ 
D=-1--2 , 

-/1-

for a normal case. 

(8.17) 

(8. IS) 

(S.19) 

(S.20) 

In case of sea ice we must use eq. (S.13) for J and Eo for E in eq. (S.20). Similar 

considerations hold for action radius 

(8.21) 

and action width 

(8.22) 

The action radius becomes 

(S.23) 

with 

(S.24) 

if the zero strength layer does not lie within the ice sheet. 

Once the action radius is known the behavior of flexural waves can be predicted. 

The calculations can be performed in a similar way if the fulI profile is not available 

Zo should lie within 0 and 1. In particular eqs. (S.10)~(S-12) for the moments should 

be considered. 

VIII. Concluding Remarks 

The biggest problem is stilI the failure mechanism. One may assume a finite stress 

or a function of brine volume which can be absorbed by each layer leading to an elasto­

plastic analysis. A more realistic postulate for sea ice, now being tried, is the assumption 

that partial failure results in the lower layers upon reaching the finite stress without 

further propagation of a crack through this highly plastic medium. Such an assumption 
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leads to a continuous change in section modulus which can be shown in nomograms. An 

attempt to derive theoretically time dependent deformation and failure should be made. 

The theoretical results can now be compared with numerous tests in situ conducted 

on cantilever and simple beams as well as failure and deflection tests on sheets. Pre­

liminary comparisons have been highly encouraging. The agreement with experience is 

expected to be better than one would expect for such a highly variable medium as sea 

ice. Air coupled waves and flexural oscillations can now be derived on a rational basis 

primarily using equations similar to eqs. (7.19) and (7.20). 

Further advances in this direction will depend upon carefully conceived experiments 

in the laboratory. Some additional thought, are being published in Weeks and Assur 

(1967). 
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