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Creep of Snow and Ice 

Malcolm MELLOR and James H. SMITH 

U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., U.S.A. 

Abstract 

Constant load creep tests in uniaxial unconfined compression were performed on samples. of 
sintered snow and bubbly poly crystalline ice. Nominal axial stresses were in the range 0.1 to 
1.0 kg-wt/cm2 for snow, and 0.5 to 20 kg-wt/cm2 for ice. The range of temperatures investigated 
was from -0.5 to -34.5°C. Assuming creep to follow the Arrhenius relation, values of apparent 
activation energy for secondary creep under a nominal axial stress of 0.5 kg-wt/cm2 varied from 
10.7 kcal/mole for ice of density 0.83 g/cm3 to 17.8 kcal/mole for snow of density 0.44 g/cm3. The 
dependence of strain rate ;§ on stress (J for poly crystalline ice subjected to stresses in the range 0.5 
to 20 kg-wt/cm2 at temperatures of -4 and -lOoC could best be described by a relation of the form 

where C1 and C2 are constants for a given ice type. The behaviour of sintered snow is probably 
similar, although the tests did not go to sufficiently low stresses to confirm this supposition. It is 
suggested that the creep of poly crystalline ice depends on at least two distinct mechanisms in the 
stress range studied. Possibilities include dislocation damping for the process dominant at high 
stress, and drift of dislocations pinned by stress-induced order for the low stress mechanism. If 
each mechanism has its own characteristic activation energy, the apparent activation energy mea
sured in creep experiments may well vary with stress level. In snow subjected to a given nominal 
stress, such an effect should be reflected in variation of apparent activation energy with bulk density, 
since true stress in the ice matrix will increase as density decreases when the nominal applied stress 
is fixed. The effect of bulk density on strain rate and the possibility of predicting creep rates for 
snow from data on creep of poly crystalline ice are discussed. 

I. Introduction 

The influence of temperature on the creep rate of snow does not seem to have been 

investigated systematically. It has been assumed, with some theoretical justification, that 

the temperature dependence of snow cr.eep can be expressed by the Arrhenius function, 

but the values of activation energy deduced from miscellaneous observational data range 

widely, from about 7 to 24 kcal/mole. In an attempt to provide working relationships 

for the creep of high density snow, such as is encountered in ice cap construction, 

simple uniaxial creep tests were made. Since the creep of snow ought to be determined 

largely by the behaviour of its constituent ice particles, tests were also made on imper

meable polycrystalline ice in the hope that creep of snow might be related to the creep 

of low porosity ice. 

Although the data obtained probably satisfy the engineering requirements which 

motivated the study, they raise a number of questions concerning the creep of ice, and 

emphasize desirability of further study. 
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II. Creep Testing Methods 

Since the study was concerned largely with the elucidation of physical behaviour, 

unconfined compression offered the most convenient test procedure; a free-standing 

cylinder was loaded axially in compression while the axial creep rate was measured. 

The other simple alternative is confined compression: a sample rigidly 'confined in a 

smooth-walled cylinder is loaded axially in compression while the axial deformation rate 

is measured. In principle there are more satisfactory techniques, such as a combination 

of hydrostatic compression and torsional shear, but they seem inordinately awkward to 

apply to multiple tests on fragile snow. 

Although the simple approach is valid for the stated purpose, it should be recognized 

that the usual single viscosity parameter yielded by either confined or unconfined tests 

is insufficient for general application in continuum mechanics. Such a parameter may 

also lead to some confusion if taken as the sole basis for a general relation between 

viscosity and density. The significance of simple creep parameters is best illustrated 

by reference to linear creep theory, which appears to be reasonably valid for "low stress" 

problems, such as those concerning deformation in the uppermost 10 m of polar ice 

caps, creep in avalanche slopes, and the loading of engineering structures associated with 

these environments. "High stress" problems, which involve viscosity which is non-linear 

with stress, can at present be treated only in special cases, such as the one-dimensional 

simplification for densification of horizontally-bedded snow. 

Taking the Newtonian approximation, the equations relating stress G and strain rate 

e can be written in terms of "bulk" and "shear" viscosities, 'fJ and p. respectively, which 

are analogous to the bulk and shear moduli of elastic theory: 

where i, j = 1,2,3, the primes denote deviators, and 'fJ and p. are scalar if the snow or 

ice is assumed isotropic. Applying these to the unconfined compressive test when secon

dary creep is well established and making the idealizing assumption that the test sam

ple is completely free to strain laterally, even near the ends, 'fJ and p. can be determined 

if the axial stress Gz , the axial strain rate ez, and the circumferential strain rate eo are 

measured: 

In the present tests, unsuccessful attempts were made to measure er (which is equal to 

eo) using both a horizontally mounted cathetometer and a hand micrometer, and making 

due allowance for end effects. The only data finally recorded were Gz and ez, and the 

low stress viscosity given by their ratio was thus 'fJE, a viscous equivalent of Young's 

modulus. It is related to 'fJ and p. by 

9'fJp. 
'fJE = 3'fJ+p. • 

In order to apply 'fJE to continuum problems in snow, it would be necessary to estimate 

a value for p./'fJ or for Vv , the viscous analogue of Poisson's ratio, by judicious interpolation 

between deducible limits, viz. 
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In the laterally confined compressive test it is usually only possible to measure Gz 

and ez ; their ratio gives a "compactive viscosity" '1/c, which is directly comparable with 

the compactive viscosity derived from observations on the creep settlement of horizontally 

bedded snow layers under gravity body forces. In terms of '1/ and t-t the compactive 

viscosi ty is: 

r;c = '1/+4/3 t-t . 

Since Gr or Go would be very difficult to measure, the confined test seems unsuitable 

for determination of r; and t-t separately. However, r;c can be applied directly to some 

problems, while t-t/r; or )Iv can perhaps be estimated as mentioned above. 

III. Test Procedures 

Snow samples were prepared by gently grinding and sieving natural snow into 

cylindrical molds and compacting the aggregate under controlled conditions. The re

sulting snow cylinders (3.35 cm dia. x7.14 cm long, finished dimensions) were,sintered in 

an ice-saturated atmosphere at a temperature of -lOoe for approximately 3 weeks, after 

which time mass transfer by vapour and surface diffusion was approaching completion. 

Ice samples were made by taking high density snow cylinders prepared in the above 

manner, soaking them in an ice bath, and slowly refreezing while uniform saturation 

was maintained. Grain size of the sintered snow ranged from less than 0.1 to 0.8 mm 

with a mean size of about 0.2 mm, and bulk densities of the 3 groups of samples were 

0.436±0.02, 0.53l±0.02, and 0.644±0.023 g/cm3• The ice samples contained uniformly 

distributed air bubbles, approximately 0.5 mm dia., and the average crystal size was ap

proximately 0.8 mm. Bulk density of the ice was 0.832±0.025 g/cm3, so that it was quite 

similar to the ice formed by triaxial compression of snow at sub-freezing temperatures. 

The creep tests were made by compressing cylindrical samples axially with no side 

restraints. All were constant load tests, which for small strain increments approximate 

to constant stress tests. "Low stress" tests were made with nominal axial stresses of 

0.5 and 1.0 kg-wt/cm2
, using a lever system and deadweights for loading, and reading, 

deformation from a dial micrometer. "High stress" tests on ice were made on a Tinius

Olsen testing machine, which applied constant loads to give nominal axial stresses from 

3.35 to 20 kg-wt/cm2
• 

For the low stress tests, 6 loading frames were enclosed in each of 6 constant tem

perature boxes. These boxes had styrofoam walls 5.6 cm thick with a plexiglass viewing 

panel, and constant temperature was maintained by a Micro-Set mercury regulator which 

actuated a heater (100 watt light bulb) and convector fan. The boxes were placed in 

rooms where the ambient temperature was always below the desired test temperature. 

Loose snow was scattered inside the boxes to saturate the air, and sample evaporation 

was further inhibited by sheathing the cylinders in rubber membranes. With a nominal 

axial stress of 0.5 kg-wt/cm2
, 3 types of snow (0.436, 0.531, 0.644 g/cm3) were each tested 

at -0.5, -1, -2, -4, -10, -20 and -34.5°e; for each combination there were 
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6 replications, glvmg a total of 126 tests in this series. Additional tests on snow of 

0.483 g/cm3 were made under stresses of 0.1, 0.2~, 0.5 and 1.0 kg-wt/cm3 at temperatures 

of -1 and -10°C; made in multiples of 3, these tests totalled 24. Low stress tests on 

ice were made under stresses of 0.5 and 1.0 kg-wtlcm2 at temperatures of -1, -2, -4, 

-10, -20 and -34.5"e; 3 samples were tested for each combination of conditions, 

giving a total of 36 tests. 

For the high stress tests on ice, 3 identical sheathed samples were pressed simul

taneously between the loading platens of the Tinius-Olsen machine. This procedure 

improved the effective load-holding capability and provided a mean result for 3 samples. 

Nominal axial stresses applied to the ice samples were 3.35, 5, 10, 15 and 20 kg-wt/cm2
, 

and the test temperatures were -4 and -10°C (10 runs, 30 samples tested). 

Altogether 216 samples were tested, excluding those used in pilot tests to develop 

technique. 

For ice, test durations were up to 115 days, with total axial strains in the range 

4 X 10-3 to 2 X 10-2• High stress tests on ice were continued to rupture, which occured 

at total axial strains of order 10-1
• For snow, total axial strains were in the range 

5 X 10-3 to 10-\ but there was no indication of tertiary creep or rupture. 

Detailed observations were made during the initial period of creep, but after the 

first day of the tests observations were made only once a day. Transient elastic straining 

is not considered here, although the data are available for possible future use. It might 

be noted, however, that apparent, values for instantaneous elastic strain are unreliable 

owing to slackness and flexure in the loading apparatus. The strain rates discussed in 

this report are logarithmic strain rates taken from the" linear portions of the creep 

curves. Steady-state creep, in which strain increments are approximately proportional 

to time, developed in ice when axial strain exceeded about 4 X 10-3 ; in snow axial strain 

was about an order of magnitude greater before steady-state creep set in, i.e. 2xlO-2 

to almost 10-1. Log-log plots of the creep curves showed that in some cases steady

state creep never truly developed. 

In retrospect, it appears that the present test programme might have been expedited 

by rapidly pre-straining the samples to about 4 X 10-3 under high stress, and thereafter 

relaxing the stress to the required test level. 

IV. Apparent Activation Energy for Creep 

For analysis of temperature dependence it was assumed that creep of snow and ice 

IS a thermally activated process which follows the Arrhenius (or Boltzmann) relation 

derived from thermodynamic theory, i.e. 

e =A1 exp(- fT)' (1) 

where e is strain rate, Al is a constant for any given stress and snow type, R is the 

gas constant, T is absolute temperature, and Q is an activation energy for creep under 

the prevailing conditions. Since the range of temperatures studied was small compared 

with the absolute temperatures themselves, the possibility of a further temperature 

factor T-l, suggested by dislocation climb theory, was disregarded. 
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Fig. 1. Variation of strain rate with temperature 

In Fig. 1 the results of the temperature study are shown linearized III accordance 

with eq. (1). Correlation coefficients for the least squares fit of eq. (1) were in the 

range 0.974 to 0.997. Apparent activation energies given by the data are: 

Bulk density Nominal axial stress Apparent activation energy 

(g/cm3) (kg-wt/cm2) (kcal/mole) 

0.436 0.5 17.8 

0.531 0.5 14.0 

0.644 0.5 13.4 

0.832 0.5 11.9 

0.832 1.0 10.7 
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Fig. 2. Graphic illustration of the Boltzmann or Arrhenius function 

These values of Q show considerable spread, and the limited data suggest the Q 
may increase as density decreases. 

Although eq. (1) has a sound theoretical basis in thermodynamics and rate theory, 

it is not necessarily validated by fitting data for a range of T which is small compared 

with T itself. Regarded simply as a functional representation of a physical relation, 

the equation seems largely irrelevant (Fig. 2). With any reasonable value of Q (~10 
kcal/mole), the inflection of the function (T=Q/2R) is at a temperature an order of 

magnitude higher than the melting point of ice, so that the particular properties of that 

function are simply not utilized. As a matter of fact, the present data can be linearized 

equally well according to the empirical relation: 

e = A2 exp ( - K 18) , (2) 

where A2 is a constant for a given stress and snow type, -{} is the Centigrade tem

perature, and Kl is a rate constant for the prevailing conditions. Equation (2) also fits 

the probable boundary conditions for the physical phenomenon. 

v. Activation Energy of Polycrystalline Ice 

The mean value of Q determined for impermeable polycrystalline ice, 11.3 kcal/mole, 

is somewhat lower than values reported previously for creep. Disregarding the ques

tionably high values of 31.8 and 37.8 kcal/mole found by Glen (1955) and Higashi (1959) 

respectively, the range of reported values is from 12 to 16.1 kcal/mole : 

Investigator Activation energy (kcal/mole) 

Raraty and Tabor, 1958 12 

Jellinek, 1960 14.1 

Butkovich and Landauer, 1960 14.3 

Jellinek and Brill, 1956 16.1 

It should be pointed out that these previous tests were of relatively short duration, 

and the only ones to yield steady-state creep rates directly were at higher stresses than 
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the present tests. They were also made over smaller (and higher) temperature ranges. 

However, there is a weakness in the present tests in so far as total strains for low 

temperature tests were too small to give a complete guarantee that secondary creep was 

fully established. 

Even though the detailed creep mechanisms of ice are yet to be firmly established, 

the assumption of thermal activation requires that there should be some correspondence 

between the creep activation energy and the activation energy for self-diffusion. Mea

surements on the rate of tritium diffusion through single crystals at different tempera

tures give activation energies for self-diffusion of 13.5 kcal/mole (Dengel and Riehl, 1963), 

14.4 kcal/mole (Blicks et al., 1966), and 14.2 kcal/mole (Ramseier, personal communication). 

In many metals the activation energy for self diffusion (in kcaljmole) is approxi

mately 0.038 times the absolute melting temperature, which for ice would be about 10.4 

kcal/mole. 

As a matter of interest, activation energies of ice for mechanical and dielectric relax

ation, and also for proton magnetic resonance, are between 13 and 14 kcaljmole, while 

activation energies for electrical conductivity are between 11 and 12 kcal/mole. 

In view of the fact that apparent values of Q are found here to vary with snow 

density, it seems reasonable to enquire into the factors which might affect the apparent 

activation energy of ice. Two possibilities suggest themselves. The first is that chemical 

contamination affects the temperature dependence of ice creep: this has actually been 

demonstrated by Raraty and Tabor (1958), who showed that ice contaminated with 1 % 
sodium chloride behaved like pure ice below the eutectic temperature of the salt, but 

exhibited a marked increase in the temperature dependence of creep at temperatures 

above the eutectic. The second possibility is that apparent activation energy varies with 

the stress level, an effect which has not previously been reported. 

All the snow types tested were sintered aggregates of equant ice grains, and since 

the tests were made at constant nominal stress (load divided by total sample cross-section), 

true stresses in the ice matrix obviously varied with density. Hence it is conceivable 

that the observed change of activation energy with snow density, if real, might reflect a 

dependence of the apparent activation energy of ice on stress (or strain rate). The 

reality of activation energy variations with density is supported by scraps of evidence 

outside the present tests: an earlier engineering study (Mellor and Hendrickson, 1965) 

hinted at such an effect, Ramseier (personal communication) noticed variations of Q with 

density in field creep tests, and Yosida et al. (1956) obtained values of 20.8 and 23.8 

kcal/mole for transient creep of low density (0.17 and 0.25 g/cm3
) snow. 

The experimental programme was not designed to test the constancy of q for ice 

through a wide stress range, but there is a possibility that some evidence can be gathered 

from the measurements of strain rate as a function of stress. 

VI. Strain Rate of lce as a Function of Stress 

In Fig. 3 strain rate of ice is plotted against stress for two different temperatures, 

-4 and -lODC. Displaced scales have been added in order to express axial stress (lz 

and axial strain rates ez in terms of shear, assuming that the test samples behave as 
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ideally stressed elements. Defining octahedral shear stresses 'to and octahedral strain 

rates eo by 

where aij and eIj are deviator stress and deviator strain rate components respectively 

(i, j=l, 2, 3), .then 

d" d' -/3. To = -/3 an eo = -2- ez , 

assuming the ice to be incompressible and isotropic. 

Results for the two test temperatures are consistent and in broad agreement with 

previous findings. At high stress ('t'o~ 107 dyne/cm2), strain rate is approximately propor

tional to the third or fourth power of stress, in reasonable agreement with earlier data 

(Glen, 1955; Steinemann, 1959; Butkovich and Landauer, 1959; Mellor, 1959). At low 

stress (To~5 X 105 dyne/cm2), strain rate is more nearly linearly proportional to stress. 

The data of Fig. 3 are bolstered by 6 sets of data for az =0.5 and 1.0 kg-wt/cm2 at tem

peratures -1, -2, -4, -10, -20 and -34.5°C; assuming a power dependence of strain 

rate on stress for the small stress range, these data yield a mean exponent of 0.93. Linear 

viscosity at low stress (7:0~ 104 to 105 dyne/cm2
) was demonstrated previously by Butkovich 

and Landauer (1960). 

In attempting to describe the dependence of strain rate on stress for ice, three 

functional forms have been considered; they are (i) a simple power relation, (ii) a hyper

bolic sine function, and (iii) a linear relation plus a power function. One of these, the 

simple power law, can immediately be relegated to the role of a convenient empiricism for 

limited stress ranges, since it is incompatible with the data. The second, the hyperbolic 

sine relation, deserves more serious consideration, for in addition to its inherent empirical 

suitability it has a certain theoretical rationality. 

In early attempts to provide a physical explanation for creep, Eyring and Kauzmann 

applied theory of reaction kinetics, assuming that creep occurs by atomic diffusion (see, 

for example, Kennedy, 1962). It can be argued that if the normal height of the energy 

barrier H between two lattice locations is biased by stress such that the barrier heights 

become (H - A H) and (H + A H) in forward and reverse directions, the net rate at which 

atoms surmount the barrier in the forward direction is proportional to 

If it is further assumed that AH is proportional to the biasing stress a, then this argu

ment predicts that creep velocity will be proportional to sinh a at any given temperature. 

The present data were tested against the function 

. 1 . h a e=-a*Sln -, 
Yil a* 

(3) 

where Yi1 is a viscosity coefficient and a* is a constant with the dimensions of stress. Yil 

was estimated from the low stress portions of curves fitted by inspection (when d 4;.a*, 

e ~ a/1J1), while a first estimate of a* was made from the slope of the high stress portions 

of the curves (when a-;:pd*, de/da~(l/Yil) exp (a/a*)). The estimated values of YJl and a* 
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were then adjusted by trial. The best fitting curves were not very satisfactory, since 

the curvature of the function was too acute. 

The third type of relation applied to the stress dependence of Ice creep is 

(4) 

where CI and C2 are constants for a given ice type and temperature. Butkovich and 

Landauer (1959) tested this form against rather scattered data with n=3 (thus in effect 

approximating the hyperbolic sine), but concluded that a simple power function gave a 

better fit. Meier (1959) proposed eq. (4) in its general form, and postulated that ice 

creeps by two distinct mechanisms. For these mechanisms he suggested dislocation 

climb, which requires that n=4.5, and some undetermined type of grain boundary flow 

leading to Newtonian behavior. 
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Meier's idea seems reasonable, although it is still difficult to decide what the physical 

creep mechanisms might be. Weertman's (1957) dislocation climb mechanism leads to 

n=4.5, while another mechanism suggested in the same paper, movement of dislocation 

lines in a Peierls stress field, leads to n = 2.5. Still another mechanism, dislocation 

damping, gives n = 3 (Weertman, 1962). Tegart (1964), reviewing the problem of ice 

creep, favoured Weertman's value n=2.5 and added a suggestion of n=2 from consider

ation of non-basal slip in the crystaL These last va1ues were for temperatures above 

-65°C; at very low temperatures Tegart expected the dislocation climb mechanism to 

operate. No explanation for Newtonian creep at low stress has been offered, although 

it is conceivable that if dislocations were pinned by stress-induced order, and no disloca

tion multiplication occurred, dislocation drift at low stress might lead to the observed 

behaviour (Weertman and Weertman, 1964; Weertman, personal discussion). 

The best fit of eq. (4) to the data (for positive coefficients) was obtained with n=3.5. 

The resulting relationships were: 

e. = l.8XlO-9n.+l.5x10-1on~·5, 
e. = l.5 X 10-9 n.+8 X 10-11 a~·5 , 

where ez is in sec-1 and nz is in bars. 

(4 a) 

(4 b) 

These results tend to support the view that there are at least two distinct creep 

mechanisms operating in the stress range studied. At the highest stresses the dominant 

mechanism is one which gives creep velocities proportional to stress raised to the power 

3.5; this behaviour is in reasonable accord with We ertman's suggested dislocation 

damping mechanism. 

If two different creep processes exist, each with its own characteristic activation 

energy, then there may well be a change in the apparent activation energy as stress 

varies and alters the relative contribution of each process to the gross creep. The 

results in Fig. 3 are actually consistent with an increase of apparent activation energy 

with stress, but since there are only two values of the temperature parameter the effect 

is far from proved. 

Additional tests were planned so as to check whether the apparent activation energy 

for high stress (12 kg-wt/cm2 axial) creep was significantly different from the value ob

tained from the low stress (0.5 to l.0 kg-wt/cm2 axial) tests. This programme has been 

beset with practical difficulties, but preliminary indications are that tests in the temper

ature range -3.5 to -35°C give an activation energy of 15-16 kcal/mole. 

VII. Variation of Creep Rate with Density 

For practical purposes the results shown in Fig. 1 can be utilized to gain some idea 

of the variation of creep rate with snow density. In Fig. 4, points taken from the re

gression lines of Fig. 1 are plotted; in spite of the limited data, no attempt has been 

made to suppress the "step" of the resulting semi-logarithmic plot, since there is mount

ing evidence that such a step is a real feature of compressive creep data for the stress 

magnitude considered (see, for example, Mellor, 1964, p. 49). Although the limits of the 

step in Fig. 4 are obviously ill-defined, it might be noted that it lies between 0.53 g/cm3
, 

which is close to the practical maximum density for close packing of equant grains, and 
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0.65 g/cm3, which is about the theoretical maximum density for close packed spheres. 

Considering the parallelism of the lines for the lowest density section of the plot, there 

seems to be a possibility that the lower density limit of the step might decrease some

what with decreasing temperature. 

In seeking an understanding of creep variation with snow density it is first recog

nized that creep of the constituent ice grains and their bonds is the controlling factor. 

Above the maximum density for close packing ice grains must be deformed, while below 

that density it becomes easier to strain the snow by translating grains relative to each 

other. If snow is tested under a fixed and moderate nominal stress (i.e., load per unit 

sample area), assumed to be low enough for straining to be Newtonian, there will be 

some density below which the effective stress in the ice matrix exceeds the limit for 

Newtonian behaviour; strong variation of creep rate with density might be expected in 

this range. 

In attempting to relate the creep of snow to known creep properties 'for ice, it 

seems simplest to consider first the high density range in which snow grains are closely 

packed and the general structure does not vary too drastically. The most obvious line 
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of argument IS that the effective stress in the ice matrix of the snow varies III propor

tion to the amount of ice in any given plane when a fixed nominal stress is applied to 

the sample. Thus the effective stress Ge might be related to the nominal stress G. in 

the form 

Ge (1) tJe -=a -- or -=a(l+r), 
G. 1-n tJ. 

(5) 

where n is bulk porosity, r is void ratio, and a is a coefficient which mayor may not 

be constant. Some additional deductions can be made from the known variations of 

strength with density (Ballard and Feldt, 1966; Mellor and Smith, 1965), and from con

sideration of limits and boundary conditions. With these and other refinements, such 

as incorporation of a stress concentration factor in a, several suggestions for the vari

ation of tJe with porosity or void ratio can be advanced, chiefly variants of eq. (5) or of 

the form exp (br). It would then seem possible to use eq. (4 b) and the -lOoe line of 

Fig. 4 to test the simple hypotheses. However, it was found that all of the stress-porosity 

relations which were tried led to a variation of creep rate which was far too weak in 

the high density range. Only by invoking high effective stresses, and hence non-linear 

creep of the ice, could the observed rate of variation be reproduced; no rational argu

ment to support the necessary stress-porosity functions could be found for the high 

density range, although it seems likely that non-linear creep becomes a significant factor 

in low density snow. 

The only known theoretical treatment of this problem (Feldt and Ballard, 1966) 

deals with Newtonian creep under lateral confinement for the density range 0.41 to 0.60 

g/cm3
• It appears to explain density dependence in the "step" range quite adequately, 

but it is not applicable to either high or low density ranges. It seems highly desirable 

to pursue further the questions raised above. 
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