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The Stability of Snow Cover on Mountain Slopes 

Yu. D. MOSKALEV 

IO. Jl. MOCKaJIeB 

The Middle Asia Research Hydrometeorological 
Institute, Tashkent, USSR 

Abstract 

Avalanching stands in complicated causal relationship with snow and meteorological conditions. 
At present it is possible to connect these factors only in a qualitative way. For the calculation of 
force relations in the snow cover on mountain slopes it is necessary to know the mechanism of 
avalanche release. In this paper an attempt to characterize the main factors of avalanching in a 
quantitative way is made. The factors involved seem to be the following 4 points; the snow strength 
under constant load, anchorage at the circumference of a snow layer, filtration of free thaw or 
rain water and the slight curvature of the slope profile. A generalized stability equation of a snow 
layer on a mountain slope and a nomograph for corresponding calculations was proposed. The 
conclusion drawn here that there exist two limits of avalanche danger slope inclination has been 
led from the generalized stability equation (if the snow cover on the slope is homogeneous in its 
density and height). A plot showing the correlation between certain characteristic of the snow 
cover and avalanching is given. 

I. Introduction 

The instability of snow cover on mountain slopes is the main factor of avalanche 

release. Dangerous instability and consequently an avalanche release is the result of: 

1) increase of snow load on mountain slopes, 2) decrease of strength properties of the 

snow, 3) rheological properties of snow (creep and glide). 

Shearing stress in snow cover can easily be calculated, but strength properties of 

snow vary greatly in complicated causal relationship with meteorological conditions and 

cannot be calculated so easily. The most important of the conditions influencing the 

strength properties of snow is temperature; it seems possible to connect these factors 

by means of correlation analysis. It may be better to connect the main meteorological 

elements and snow conditions with the degree of avalanche danger, but at present it is 

possible only in a qualitative way. Any of the quantitative correlations between, for 

example, the intensity of snow-fall or snow-storms and the moment of avalanche release, 

are only of a localized nature, which do not yield a possibility to predict avalanching 

in this manner unless a series of meteorological observations is performed for several 

winters. 

It is necessary therefore to know the mechanism of avalanche release in order to 

calculate force correlations provided that proper measurements in a snow cover can be 

accomplished. 

Below an attempt to review the factors which play the main part in the mechanism 
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of avalanche release was made based on the supposition that the strength properties of 

the snow are known (for instance, when periodical measurements on conditions near 

the site of avalanche release were previously made). 

II. The Strength of Snow under Constant Load 

The mechanical properties of snow are very complicated. It creeps even when the 

shearing stress is very small, but it shows elastic properties when the rate of force 

action is sufficiently large. A full description of the mechanical properties of snow has 

been given by means of complicated rheological models including viscous, elastic ele

ments (Ohnishi, 1962) and a dry friction element. Under the action of forces which 

exceed, the yield point of snow one need only to take into account the element of dry 

friction (Ziegler, 1963). But snow is not an ideal plastic body and the strain involved 

does not occur instantly. The strain rate in a snow layer, where the shearing stress 

has exceeded the yield point, is dependent on viscosity analogous to that of Bingham's 

body. And the strength properties of snow depend on that of ice. Thus, the strain 

rate of ice particles j" uIlder constant shearing stress , is expressed by the equation 

j" = k,n , (1 ) 

proposed for ice by Voitkovsky and Glen (Kalesnik, 1963). Where k is the coefficient 

dependent o~' the' temperature of ice: in Voitkovsky's equation k=B/(l+{}) (B is con

stant, () is the absolute value of the temperature of ice); n> 1. The eq. (1) may also be 

written as follows: 

(1 a) 

where kl=l/'J:/T, nl=l/n<1. This is the equation for pseudoplastic (Wilkinson, 1960). 

Ice has no clearly marked yield point but conventionally the value, 1.5-1.75 kg/cm2 is 

assumed: at stresses exceeding these values the creep rate increases progressively and 

leads to destruction of an ice sample. 

Avalanching is possible when the ice particles in snow are broken or disaggregated; 

it takes place when stresses in ice exceed its yield point. If snow is subjected to stress 

's, the stress in ice particles , is much higher, for the force action concentrates in 

cross sections of ice, needles or rays of snow flakes or other parts in contact areas 

among ice corns (ice-bonds). It may be found after measurements in thin snow slices 

and simple calculations that stresses in the weakest sections or contact areas of ice 

particles should be around 80-500 times more than the mean stress in snow which is 

assumed to be a solid body. The yield point of snow thus evaluated ranges within 30-

200 kg/cm2• Indeed, avalanching is frequent when the shear stress in snow cover ex

ceeds these figures. 

Let the eq. (1) be transformed into 

,- '0 = '1{{J) , (2 ) 

where '-'0 shows an excess of shear stress, over the yield point '0, '1{ is the effective 

viscosity coefficient (for glide movement) and w=j" is the strain rate. Here '1{ depends 

on the stress " but if , is approximately constant r; is constant as well. 
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This corresponds to the simple Bingham's rheological model. The yield point ~o 

IS a variable dependent on the normal stress; 

~o = f(a) , ~ = f(a) + YJw . (3 ) 

The function f(a) expresses the experimental curve of the dependence of snow shearing 

strength ~o on the normal pressure a. The latter can be approximated through Cou

lomb's law 

~o = c+fa, (3 a) 

c denotes cohesion and f the coefficient of internal friction. Substituting eq. (3 a) into 

eq. (2) yields 

~ = c + YJw + fa . (4 ) 

Here the term c+YJw is equivalent to cohesion Ce which IS dependent on the cohesion 

c corresponding to the yield point and the glide resistance YJw. 

III. The Stability Factor 

Avalanching is possible when the shearing stress ~ in the weakest snow layer over

comes its shearing strength ~s. The shearing stress 

~ = rd sin a, 

where r is the specific gravity of the snow cover lying above the weakest layer, d is 

its thickness and a is the slope angle. The shearing strength is generally less than 

the ultimate strength and higher than the yield point. 

If the shearing stress increases rapidly up to the ultimate strength immediate ava

lanching occurs; but if the shearing stress is less than the ultimate strength of the 

snow (but more than its yeild point) a delayed action avalanche is possible in conse

quence of gli,de which is accelerating during the passage of time. Of course this is not 

the single cause of avalanching, but even if the temperature and other properties of 

the snow were constant for some time avalanching may take place. Roch (1965) has 

established that avalanching is possible when the stability factor 

~s s=
~ , (5 ) 

is as' high as 4. This figure must be the ratio of the ultimate strength of snow to its 

yield point. In the USSR Lossev (1963) has experimentally ascertained that snow sam

ples subjected to stress broke (with the lapse of time, even if the stress was 2.5-4, up 

to 5-8.5 times less than the ultimate strength. The same occurrence is usual in the 

Western Tian-Shan: avalanches frequently are known to start when the stability factor 

is higher than 1. For the calculations of avalanche prediction it is necessary to divide 

the ultimate strength Cu (normal pressure is excluded) by the so called relaxation coef

ficient, to obtain the value of shearing strength (cohesion) under a lasting load. 

Inserting eq. (4) into eq. (5) yields the stability factor: 

Ce f s = rd. + ctg a . sma 
( 6 ) 
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The dependence "'s = f(a) is not, generally, linear but for practical calculations one may 

adopt the linear approximation of "'s. 

IV. Anchorage 

The stability condition "':C;;"'s or 

cos a (tg a-f):C;;K ;d ' (7) 

is sufficiently accurate for the "endless" layer if K= 1. Practically it is so (with an 

insignificant error) when the layer has a length and width exceeding several tens to a 

hundred meters. The layer is generally anchored along its circumference. The anchor

age should be taken into account by use of the coefficient 

K = 1+ SPm = 1+ acp p.d 
Ts Ce F' 

where Pm and Ts are forces in accordance with the circumference and the foot of the 

layer, a cp is the mean strength of the snow along the circumference of the layer (con

ventionally it may be supposed that acp has the same order of value as Ce or, simply, 

acp"'='ce) ; P is the perimeter of the snow layer on the slope which has a square F. For 

isometrical shape of projection of the layer onto the slope the ratio R=F/p (which may 

be considered to be a length characteristic for the geometrical configuration "of the 

layer) is 4 times less than the diameter or the length (width) of the layer; if the layer 

has a width (or length) sufficiently large compared to other dimensions it is approxi

mately 2 times less than the smallest dimension (in the projection onto the slope) of 

the layer and so on. 

Anchorage is the cause of the snow layer being on the slope in a state of equilib- ' 

rium when its stability factor calculated by means of the eq. (6) is less than 1. In gen

eral the stability factor is seldom less than 0.9, in accordance with the small influence 

of anchorage in many cases. 

Formation of a layer of depth hoar ("swimming" snow) which has an inner friction 

angle less than that of the slope angle leads to dangerous stress in a snow slab, which 

is held in equilibrium only by anchorage. In this case the thickness of the snow slab 

does not apprecially affect its stability on the slope: the thicker the slab is the greater 

the stress in it is but on the other hand the greater is the strength of the slab as well. 

The stability formula (7) can be transformed into the form 

cosa(tga-f)<~+ acp .p_ 
- rd r F' 

If ce-+O (when swimming snow has formed) it yields: 

cos a (tg a- f):c;; a;p ~. 

(8 ) 

(8 a) 

When F/p is sufficiently large (on an "endless" slope) the stability condition is reduced 

to tg a:C;;j. 
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v. Filtration of Water 

Free water in the snow layer filtrates along the impervious stratum (ice and the 

like) or soil (if the latter has water permeability much less than that of snow) and causes 

an additional force tending to push the snow layer downwards. Its action is equivalent 

to the decrease of the inner friction angle and increase of water equivalent or mean 

specific gravity of the snow layer (Moskalev, 1966): 

I-do r J, re=r+do, 
I+Tdo 

fa= 

where do is the ratio of thickness of the aquifer (the stratum saturated with free water) 

to that of the whole snow layer under consideration, r is mean specific gravity of the 

snow layer if there is no filtrating water, rw is the specific gravity of water, re is the 

effective mean specific gravity of the snow layer having an aquifer in its foot, f( =tg q;) 

is the inner friction coefficient and q; is the inner friction angle of the snow in the foot 

of the layer, fe ( = tg q; e) is the effective inner friction coefficient and q; e is the effective 

friction angle of the same snow containing free water filtrating through it. 

The ultimate stability equation of a snow layer lying on a water saturated stratum 

is as follows: 

red cos a (tg a- fa) = Ce , 

if the anchorage is neglected, or 

cosa(tga-fe) = K :'d ' 

(9 ) 

(9 a) 

where K takes into account forces acting on the circumference of the snow layer and 

so on. 

Filtrating water acts as a lubricant which causes snow cover gliding or avalanching. 

Some examples of heavy avalanching in the Western Tian-Shan illustrate this statement 

(Moskalev, 1965). 

If free water is seeping or forming in a snow layer (for instance as a result of rain 

or snow thawing), the equivalent inner friction angle q;e is not constant and varies from 

point to point according to the thickness of the water flow within the snow layer. The 

full shearing force resulting from filtrating water can be calculated by use of the water 

balance method if the intensity of thawing or seepage from rain falling onto the slope 

surface is known. For these calculations one can make use of the methods given in 

the scientific monographs of Kuzmin (1961) and Denissov (1965). 

VI. The Form of a Slope Profile 

The problem of calculating stresses and forces at any point of a snow cover on an 

arbitrary slope is very complicated. Elementary methods of solving this problem are 

suitable when the slope profile is being considered as a fragment of a circle arc. In 

this case application of the known Swedish method of soil mechanics leads to an ap

proximate solution (Moskalev, 1965) which may be written down in the form 
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wK" K,. (sin 8- fe cos fJ) = Ce , (10) 

where w =red/cos a is the water equivalent of the snow cover under consideration, 

Kx=l/x is the ratio of the length of the glide arc to that of its horizontal projection, 

Kr is the length ratio of the radius vector drawn from the center of the arc to its 

gravity center (the arc having a running weight dependent on the snow load) to' the 

radius of the arc, f) is the angle between the radius vector and the vertical line. In 

many cases this angle is somewhat .less than the angle formed by the chord of the arc 

with the horizontal line. For approximate calculations, the latter angle may be taken 

instead of f). The ratio Kr is rather near to 1. 
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Similar correlations were obtained for a 

snow layer which lies on a concave or convex 

slope which is regarded approximately to be a 

part of a sphere surface. 

VII. The Generalized Stability 
Equation 

The equation for the snow layer which is 

In a state of ultimate equilibrium is approxi

mated as follows: 

where am is roughly the mean angle of the slope 

and the factor K includes the coefficients Kx 
and K,.; 

We=rehm; hm is the mean height of snow cover 

(hm =dm/cos a). 

Equation (11) has two roots if the ratio 

Kce/we is less than 0.5. It has only one root 

n 1964 

2 \ 

I ~ (' 
l"-\. 

U -~ ----- ---- -

~I ~ II 
January February March 

o 

Fig. 2. The plot showing correla
tions between the ratio cjrh-:::;K· 
Ce/We and avalanching in the 
region of the Western Tian-Shan 
(the onset of avalanche release 
are pointed out with arrows) 

if the ratio is equal to 0.5 and has no intrinsic roots if the ratio is more than 0.5 (!Pe = 

o was" coventionally adopted). The first case takes place when a group of differently 

inclined (from am, to am,) slopes is subjected to avalanche danger, the second case 

corresponds to avalanche danger which exists on slopes of certain uniform inclination 

and the last case corresponds to the state of avalanche security. 

After corresponding calculations (the nomograph of the eq. (11) constructed by the 

author is given), one is to draw a graph showing the course of the ratio K ce/we in 

the course of time; if the ratio decreases to 0.5 or less avalanche danger exsists, and 

the danger increases with the decrease in this value. From the trend of the curve one 

can predict avalanche danger ahead of time. 

VIII. Conclusion 

An analysis of the main factors in the mechanism of avalanche release was attempted. 
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