

Title	NUMERICAL ANALYSIS ON THE WAVY TRACK OF NEMATODES
Author(s)	SARASHINA, Takao
Citation	Japanese Journal of Veterinary Research, 22(1-2), 49-49
Issue Date	1974-04
Doc URL	http://hdl.handle.net/2115/2042
Туре	bulletin (article)
File Information	KJ00002371149.pdf

INFORMATION

Hokkaido University granted the degree of Doctor of Veterinary Medicine to the following 2 researchers on 25 December, 1973 under a new regulation (1962) authorizing the granting of the Graduate School of Veterinary Medicine.

The titles of their theses and other informations are as follows:

NUMERICAL ANALYSIS ON THE WAVY TRACK OF NEMATODES

Takao Sarashina

Takikawa Animal Husbandary Experiment Station of Hokkaido, Takikawa, Hokkaido, Japan

Analyses of the bending waves in the locomotive tracks left by nematodes on the surface of a 1% agar plate coated with drafting ink were attempted by the help of many photomicrographs. A functional formula suitable for these tracks was investigated. The results obtained are summarized as follows:

Waves of tracks are classified 4 principal types, A (resemble sine curve), A' (flatter than A), B (U-shaped) and C (horseshoe-shaped). The gap between the sine curve and the track wave increases from A' to A, B and C-types respectively.

Using the curvature $\left(\frac{1}{\rho}\right)$ and the arc-length (s) of the track, the track wave is transformed into a normalized curve, which follows the sine curve and is expressed by the equation $\frac{1}{\rho} = \overline{A} \sin \frac{2\pi}{M} s$ (\overline{A} is the amplitude and M is the track length in a wave-length).

Using the s and θ (angle by which the row deviates from the mean track direction), the above mentioned equation is integrated and the equation of sinegenerated curve (SGC), $\theta = \omega \cos \frac{2\pi}{M} s$ (ω is the maximum angle the curve makes from the x-axis) is obtained. Therefore, the SGC fits for all 4 principal track waves.

Parameter ω and M have a mutual relation and acquire regression lines, the ω and M of the track are not influenced by various body-lengths of the same species and under a thermal gradient, but with a lapes of time and under a hige agar concentration, the value of M decreases. And the velocity of the nematode decreases when the value of M decreases and the value of ω increases.