<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>北海道に於けるスジコガネ類の生態學的研究</td>
</tr>
<tr>
<td>Author(s)</td>
<td>中島 敏夫</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大學農學部 演習林研究報告 16(1), 1-115</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1952-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/20692</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>16(1)_P1-115.pdf</td>
</tr>
</tbody>
</table>
目次

<table>
<thead>
<tr>
<th>章節</th>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>総 言</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>北海道に於けるスジコガネ類の生態学的考察</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>北海道産スジコガネ類の生態学的考察</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1. 種の識別</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>a. 成虫による検索</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>b. 卵による検索</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>c. 幼虫による検索</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>d. 腹による検索</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2. 種の記載</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3. 考察</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>生態</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1. 北海道に於ける経過の概要</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2. 常</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>a. 産卵状況</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>b. 常の増大</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>c. 湿度と関係</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>d. 土壌酸性度と関係</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3. 幼虫</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>a. 生長</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>b. 睡眠</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>c. 移動</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>d. 树栖深度の季節的变化</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>e. 溫度差</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>前進及び触手</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>a. 經過</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>b. 空気温度との関係</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>c. 溫度と発育速度</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>成虫</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>a. 発生経歴</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>分布</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>a. 発生表</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>b. 種の分布</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>c. 各地域に於ける表</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>群の組成</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>d. 考察</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>附表</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>各地域に於ける成虫誘致</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>頭数表</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>文献</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Résumé</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>圖版</td>
<td>I〜IX</td>
</tr>
</tbody>
</table>
緒 言

北海道に於ては、かなり古からコガネムシ類が大発生をした事が知られているが、近来開拓の進捗に伴い、特に農業地及び林業苗圃に対する害虫の加害及びに造林地に対する成虫の
害害が激増したため、これが防除は我々農林業上重大問題として取上げられるに至った。

北海道に於けるコガネムシ類の生態は、環境条件等の相違により本州に於ける経過習性とはやや異なる様であり、未だ本道に於ける大部分のコガネムシ類、特にスジコガネ類の生態は
明らかにされていない。従ってこれが適切な防除法もまた確立されるに至っていない。

元来コガネムシ類の加害は、地中に於ける幼虫の根部害と、地上に於ける成虫の茎葉部
害害とに別れ、成虫の加害も大発生時には大害を及ぼす事があるが、幼虫による農作物害及びに
森林苗圃に於ける苗苗に対する加害には、真に恐るべきものがある。1929、'30年の十勝及び
根室原野のスジコガネ、'34、'35年の増振、日高、渡島地方に於けるヒメコガネによる農作
物の被害には甚大なものがあり、殊に根室原野於ては、農作物のみならず原野の雑草類さえ
も、根部の害害のために生長を阻害せられ、牛馬の放牧にも困難な状態になったという。また
1938年にも大発生し、根室原野に於て幼虫22,000貫の捕殺を見た。その後も全道各地に大体
4年毎に多かれ、数かえ発生加害があるため、實にコガネムシ類は北海道の開発上から見る
も、放任する事の出来ない一大害虫であるといつても過言ではない。また全道各地に散在する
苗圃に於ては、カラマツ、トドマツ、エゾマツ等の幼苗に相当の被害があり、そのため一苗圃
に於て千余貫本の幼苗の枯死するもののある事は稀ではなく、治山・治水のため、または戦後
の難民により荒廃した森林の復興上、造林の急を要する折、林業上からもまた極めて重要な害
虫といふわけならばない。ここに於て著者は1945年以来内田教授指導の下に、北海道に於ける
コガネムシ類の研究に従事し、特に苗圃の一害虫であるナガヤコガネの生態学的研究を
内田教授と共同研究にて公表し、今更スジコガネ類9種———スジコガネ、オホスジコガネ、
キンスジコガネ、サクラコガネ、ツヤコガネ、ハラヒメコガネ、ヒメサクラコガネ、ヒメコ
ガネ、ドウガネブイブイ——の形態及びにこれ等の中、特に重要な数種の生態を明らかにする事
を得た際は、ここにその結果を公表し、もって北海道に於ける農林業上重要害虫である上記コ
ガネムシ類の防除に資せんとする次第である。

終りに、本研究をなすにあたり、常に懇篤な指導を奨了の内田教授及び渡辺千恒助教授に於て誠に感謝の意を表すると同様、現地調査及びに研究に努力の便宜を賜った前帯
広営林局長林行氏、本調査に絶大な援助を賜われた札幌・帯広・旭川・北見各営林局造林
課、各営林署、北海道営林道有林課及び林業課、各林務署、農業物理研究所芽室分室、北海道大学演替林の各位に深謝の意を表する。

尚本研究に対しては昭和24年度以来、内田教授と共に文部省科学研究所の補助を得て研究を行ったものである。よってこの事を明記し、謝意を表する次第である。

I. 北海道に於けるコガネムシ類研究の概要

北海道に於ては既に1884年（明治17年）頃にコガネムシ類（種名不詳）が大発生し、ヤマゾコレ、ヤチハンノキ等に大害のあった事が知られている。斯くの如く、以前は山野に発生していたものが、開拓の進捗に伴い、次第に造林地・林業苗圃及び農耕地に移行し来り、著しい被害を及ぼすに至った。

これ等コガネムシ類の種類に関しては、松村（1906年、1915年）、新島（1917年、1923年）、新島・栄・豊本（1917年）、新島・木下（1923年、1927年）、木下（1925年）、桑山（1937年）、澤田（1941年、1944年）、1950年）、中島（1948年）等の研究があり、就中、新島・木下（1923年、1927年）は北海道から6亜科、17属、35種を公表した。桑山（1937年）は7種が北海道に於ける特に重要な害虫である事を指摘した。木下（1925年）は卵7種、中島（1948年）は卵4種について述べた。

北海道に於ける生態統計に於ては、新島（1917年）、新島・栄・豊本（1917年）は北海道に発生が著しいナガヤコガネの生態の一端を明らかにし、木下（1925年）は北海道に於ける主要な害虫として認められる7種について、その発生時期、卵期間、幼虫の識別等を公表した。志村・原田（1927年）は森林害虫防範法の中でコガネムシ類4種に属し、みやわき（1934年）は幼虫防除法として水溶性クローールヒクリンの使用法を述べた。桑山は1934年より1939年により数度コガネムシ類に就いて報じ、1934年には、根白野原に大発生したスジコガネに就いて形態、生活史、性の概要を記述し、1936年には防除法を論じ（耕作・耕転）、機械的（捕殺・誘殺）、薬剤、天敵の各項に別けて述べ、さらに1937年には本道の農業上最も有害なコガネムシ類として4属7種を挙げ、その形態、経過習性、加害状況等の概要を明らかにすると共に、コガネムシ類発生の外的誘因に触れる所があった。桑1938年は根白原野に於ける幼虫捕殺年年にあたるために捕殺を督励し、根白・釧路頸兩支営務所及び幼虫約22,000貫（約13億貫）の捕殺を見た事を報じている（桑山・金子、1939年）。また桑山・山田・森（1939年）はコガネムシ類の発生と土壌との関係に就いて調査し、火山灰地の軽鬆にして且つ腐植多量の多い地帯に多数棲息する事を報告した。井上（1942年）、松下（1943年、1944年）はそれぞれ森林害虫防除法の中で数種

* 萬本文献表の篇頭。
のコガネムシ類に就いて述べた。樋井・中島（1943）は農機具使用によるコガネムシ類幼虫の殺
傷試験を行い、ブロア耕作後殿ズハローを3〜4回使用する事により約3割の殺虫率を得る事を報じた。内田（1943）は北海道にて生じた1942年度のコガネムシ類発生の概況を報告し、該箇に対する一般の注意を喚起した。内田・中島（1948）は苗圃の大害虫ナガチヤコガネ
の生態学的研究を発表し、詳細な生活史と2,3の習性を明記し、次いで中島はスジコガネ類の
卵の増大状況を測定し（1948），ヒメコガネ幼虫の土壌中に於ける棲息深度の変化と幼虫の温
度適応ととの関係について考察した（1949）。また最近の北海道における分布及び発生
状況を、道内各所に設置した誘殺箒により長期間調査して調査した（1950）。澤田（1949）
は幼虫の越冬状況を述べ、内田（1951）は苗圃の害虫としてコガネムシ類3種に就いて記述し
た。

以上諸氏の研究により、北海道に於けるコガネムシ類は、ほぼその概要を明かにしているが、さらに詳細に検討する時は、本道のコガネムシ類の内、最も重要なスジコガネ類に該当し
ても、各種相互に形態が似通するために、成果を収えさえ種の決定に困難を感じる個体がしばしば見出され、幼虫及び卵では不可能な場合が多く、さらに詳細で正確な研究を必要とする状態である。生態に関しては、単にその1生活環の完了に満1年或いは満3年を要する事が想像されるが、幼虫の地中における発生深度が季節により異なる及び種類の食草が明らかにされているのみであり、その生発の約8割を占め且つ最長生存期である幼虫期の生長及び習性に
関しては、全く明かにされていない。分布及び発生状況についても、太平洋岸の火山地域
に於ける被害の著しい事が知られているのみで、種の分布、発生量、発生消長等に関する正確
な調査は未だ行なわれていない。

コガネムシ類の害を免れんとする場合、種類による時は勿論、将来如何に農業薬剤が発達
しても、その施用法の根本には該害の生態に於ける詳細な知識を保有して居たらならばならぬ事は
論を侍たない。本研究は主としてこれ等の不明の点、特に各期に於ける種の識別、幼虫期の生
態及び発生分布状態を明らかにする目的を以て行つたものである。

II. 北海道産スジコガネ類の分類學的考察

スジコガネ属 Anomala SAMUELLE はコガネムシ科 Scarabaeidae，スジコガネ亜科 Rutelinae
に属する最大なもので、1915年の JUNK のカタログによると、当時までに約800種が知られている
おり、その分布は亜北区51種、東洋区394種、オーストラリア区51種、エチオピア区114種、
新熱帯圏173種、新北区16種となっている。
新島・木下（1923、1927）は日本本土からは約22種、北海道からは10種が産することを報じており、その中にはヒメゴナ、ツヤゴナ、サクラゴナ、スジコガネ等の如き農林業上重要な害虫が含まれている。筆者の研究によれば、北海道に棲息するスジコガネ類を次の9種に整理することが出来る。

Family Scarabaeidae

Subfamily Rutelinae

Tribe Anomalini

Genus Anomala

Anomala testaceipes Motschulsky, 1860.
Anomala costata (Hope), 1839.
Anomala holosterica (Fabricius), 1787.
Anomala daimiana Harold, 1877.
Anomala lucens Ballion, 1871.
Anomala multistriata (Motschulsky), 1861.
Anomala geniculata (Motschulsky), 1866.
Anomala rufocuprea Motschulsky, 1860.
Anomala cuprea (Hope), 1839.

以上9種の中には極めて類似する種類があり、時に種の同定困難な個体が見出される。しかしそ次に述べる成虫をはじめ、卵、幼虫、蛹等の各期の形態的特徴の縦断的比較によって容易に識別することが出来る。又各種は生態的にも相違がある。

1. 種の識別

北海道産の9種のスジガネ類は、下記の如く成虫、卵、幼虫及び蛹の各期の形態的特徴によって識別することが出来る。

a. 成虫による検索

従来の分類は単独成虫の一般的の外部形態によって行われていたが、勿論この方法は分類上の主軸をなすものではないが、同一種内にあっても個体間に相当変化があった。中には近縁の種類との識別困難な個体が見出される。この様々な場合には、雄にあっては交尾尾の形状によって容易に識別することができ、又体験の各部位を測定して比較検討すれば、更に種の識別は確実になることを発見した。本文に於ては、一般外部形態、雄交尾尾及び蛹の比較測定の各項に分けて種の識別を記述した。
i. 成螺の外部形態による検索表

1. 超薄に明かな螺数條を有する。 .. 2.
 — 超薄の螺数條は顕著でない。 ... 4.
2(1) 螺数條は合縁及び第1螺数條のみ明かで、金屬光沢を有する。問虫には強く、密に點刻がある。全体薄外縁緑色。体長16.5〜21.0 mm，体幅8.5〜11.5 mm。 ..
 — 螺数條は合縁と共に5本ある。 3.
3(2) 螺数條は合縁と共に5本共判然し、問虫は光沢がない。体色には淡黄褐色より緑色，緑紫色までの一連の変化がある。体長14.5〜18.0 mm，体幅8.5〜11.0 mm。 ..
 — 斯ジゴナメ Anomala holosericea (FAHREN)（第1圖版，3.）
4(1) 超薄の側縁中央より後方ににある褐色縄線は著明で稀。休体は銅色或は銅緑色で大形。
 体長18.5〜22.5 mm，体幅10.0〜13.0 mm。 ..
 — ドウガメブイブイ Anomala cuprea (Horn)（第1圖版，9.）
5(4) 背中板に著しく強い點刻がある。
 体色は黄緑色で鮮明光沢がある。体長12.5〜17.0 mm，体幅6.5〜9.5 mm。 ..
 — ハンノヒメガナ Anomala multistriata (MOTSCHUL)（第1圖版，6.）
6(6) 超薄の側縁螺条は超の突起部に達する。 7.
 — 超薄の側縁螺条は超の中央部の後方にて終る。 8.
7(6) 休体14.5〜18.0 mm，体幅7.5〜10.5 mm。
 頭部は比較的大，体色には変化多く，背面前淡黄褐色に鮮明光沢を有する個体より，順次淡色化して深緑色に至り，中には黒褐色の光沢を有するものもある。背面が淡色の個体は腹面が淡黄褐色となり，背面の淡色化に従い，腹面は側面より順次黒褐色を加え，淡黒褐色或は灰緑色に至る。 ..
 — サクラクガナ Anomala daimiana HAROLD（第1圖版，4.）
8(6) 休体は，背面前・腹面・側面共に同一色調で，その色彩には赤褐色，銅緑色，緑色，青緑色，緑色等一連の変化がある。胸中板に光沢を有する個体が多い。
 体長13.5〜16.5 mm，体幅7.5〜10.0 mm。頭部は比較的小さい。 ..
 — ヒメサクラクガナ Anomala genticulata (MOTSCHUL)（第1圖版，7.）
8(8) 休体は，背面前・腹面・側面共に同一色調で，その色彩には赤褐色，銅緑色，緑色，青緑色，緑色等一連の変化がある。胸中板に光沢を有する個体が多い。
 体長13.5〜16.5 mm，体幅7.5〜10.0 mm。頭部は比較的小さい。 ..
 — ヒメガナ Anomala Rufocuprea MOTSCUL（第1圖版，8.）
帯ぶるが、漸次濃色化し、膣背板・棲葉板部が緑色、翅着褐色の個体より、全背面変緑色、暗緑色の個体を経て黒緑色に至る。中には銅光色を帯ぶるものもある。腹部も、背面の変色化に従って淡褐色より褐色、濃褐色、黒褐色となり、銅録色の光津を帯ぶるものに至る。体長12.5～18.0 mm、体幅6.5～10.0 mm。頭部は比較的大きい。

ツヤコガネ Anomala ilicenes Ballon (第1図, 5.)

ii. 成蟲の雌の交尾器による検索表

1. 交尾器の靭質の外側は凹円に向けて開口する。……………………………… 2.
 — 交尾器の靭質の外側は側方に大きな開口を有する。……………………………… 3.
2 (1). 端板は腹方に屈曲しない。………………… キンスジガネ (第2図, 2.)
 — 端板は腹方に70～80度屈曲する。………………… スジガネ (第2図, 1.)
3 (1). 端板の先端は側方に突出部がある。……………………………… 4.
 — 端板の先端は側方に突出部がない。……………………………… 5.
4 (3). 端板の前端は側方に僅かに突出し、先端は尖る。………………… ヒメコガネ (第2図, 3.)
 — 端板の先端は板状に伸展し、腹方に曲曲する。………………… ツヤコガネ (第2図, 4.)
 — 端板の先端は板状に伸展し、側方に伸展している。………………… オロスジガネ (第2図, 5.)
5 (3). 端板の腹面開口部の縁辺には、稲穂より内方に向けて伸長せる面がある。……………… 6.
 — 端板の腹面開口部の縁辺は、稲穂が穂状か矢状はやや平らで、内方伸長していない。 7.
6 (5). 端板の先端腹面に舌状を呈する。………………… ドウガネブイブイ (第2図, 9.)
 — 端板の先端は薄片状で、僅かに腹方に曲曲する。………………… ハンノヒメコガネ (第2図, 8.)
7 (5). 端板は中片よりも短い。………………… サクラコガネ (第2図, 6.)
 — 端板は中片よりも長い。………………… ヒメサクラコガネ (第2図, 7.)

iii. 成蟲体の比較測定による識別

以上の9種は、雄に於ては交尾器の形態によって識別容易であるが、色彩は同一種内に於ても極大変異に富み、ツヤコガネの淡色の個体はヒメサクラコガネに、濃緑色のものはヒメコガネの緑色の個体に、ヒメサクラコガネの灰形のものはサクラコガネの淡色の小形の個体に各々酷似する等、単なる外形の特徴のみでは識別の頗る困難な場合が有る。兹に於て筆者是これ等9種の識別を容易ならしめるため、WOODWORTHの方法に従って、次の各部位の測定值の比較を行った。測定筒所，測定方法，比較方法は次の如くである。

測定筒所

A. 胸背板の中軸上の長さ。
B. 頭部の中軸上の長さ。
C. 胸背板の最も幅広い部分の幅。
D. 胸背板先端の幅。
E. 頭部の最も幅広い部分の幅。
F. 頭部基部の幅。
G. 糉状部の中軸上の長さ。
H. 糉状部の幅。
I. 糉状の長さ。
J. 前胸基部より腹部末端に至る長さ。
K. 前胸基部より翅状の最も幅広い部分の中軸上の位置に至る長さ。
L. 糉状の最も幅広い部分の幅。

然して、胸背板の中軸上の長さ（A）を100として（B）～（L）の（A）に対する比率を求める種類について比較すると第1表の如くである。又頭部と胸背板との大きさの比（E+F）B（C+D）A，稉状部の幅と長さの比（H/G），及び翅状の最も幅広い部分の中軸上の位置（K/I）の3項目を図示すると第2図の如くである。

第1表 胸背板の長さを100とせる各部分の比較値

<table>
<thead>
<tr>
<th>胸背板の長さ</th>
<th>頭部の長さ</th>
<th>胸背板の長さ</th>
<th>頭部の長さ</th>
<th>胸背板の長さ</th>
<th>糉状部の長さ</th>
<th>糉状部の幅</th>
<th>脇状部の長さ</th>
<th>脇状部の幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>スジコガネ</td>
<td>100</td>
<td>65</td>
<td>167</td>
<td>104</td>
<td>98</td>
<td>69</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>オオスジコガネ</td>
<td>100</td>
<td>64</td>
<td>167</td>
<td>106</td>
<td>98</td>
<td>70</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>キンシスジコガネ</td>
<td>100</td>
<td>73</td>
<td>170</td>
<td>102</td>
<td>93</td>
<td>62</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>サラサクラガネ</td>
<td>100</td>
<td>71</td>
<td>188</td>
<td>108</td>
<td>104</td>
<td>77</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>ツヤガネ</td>
<td>100</td>
<td>65</td>
<td>171</td>
<td>106</td>
<td>107</td>
<td>73</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>ハンノヒメガネ</td>
<td>100</td>
<td>67</td>
<td>178</td>
<td>111</td>
<td>104</td>
<td>71</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>ヒメサクラガネ</td>
<td>100</td>
<td>62</td>
<td>182</td>
<td>101</td>
<td>98</td>
<td>65</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>ヒメガネ</td>
<td>100</td>
<td>57</td>
<td>171</td>
<td>94</td>
<td>91</td>
<td>61</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>ドウガネブアイイ</td>
<td>100</td>
<td>57</td>
<td>167</td>
<td>90</td>
<td>85</td>
<td>59</td>
<td>32</td>
<td>42</td>
</tr>
</tbody>
</table>

即ち頭部の大きさを胸背板のそれに比較すると，サクラガネの場合が最も大きく，以下ツヤ，キンスジ，ハノヒメ，スジ，オオスジ，ヒメサクラ，ヒメ，ドウガネの順で小さくなる。稉状部の形状は，オオスジコガネが最も幅広く，スジ，キンスジ，ツヤ，サクラ，ハンノヒメ，ヒメサクラ，ドウガネ，ヒメの順で細長くなる。又翅状の最も幅の広い部分の中軸
上の位置は、ドウガネブイブイが最も前方にあり、ヒメサクラ、ヒメ、ハンノヒメ、ツヤ、サクラ、キンスジ、オホスジ、スジの順で後方に移行するため、鱗体を背面から見る時は、ドウガネが最も梢面に近く、オホスジ、スジは他と異なり著しく下折れの形状を呈している。又この順序は翅脈上の縦線線の鮮明度ともよく一致する。即ちスジコガネでは会合線と共に5本の縦線線が顕著であるが、オホスジコガネでは第4本目を後半がやや不明瞭であり、キンスジコガネでは会合線及び第1縦線線のみが明かである。サクラ、ツヤ、ハンノヒメ、ヒメの4種では、縦線線の位置は明らかであるが、隆起は個体により僅かに認め得るものと、然らざるもの

<table>
<thead>
<tr>
<th></th>
<th>ヒメ</th>
<th>ツヤ</th>
<th>サクラ</th>
<th>スジ</th>
<th>ハンノヒメ</th>
<th>ドウガネ</th>
<th>オホスジ</th>
<th>ヒメサクラ</th>
<th>キンスジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒメ</td>
<td>1.0000</td>
<td>0.9955</td>
<td>0.9970</td>
<td>0.9859</td>
<td>0.9776</td>
<td>0.9995</td>
<td>0.9868</td>
<td>0.9990</td>
<td>0.9935</td>
</tr>
<tr>
<td>ツヤ</td>
<td>0.9955</td>
<td>1.0000</td>
<td>0.9983</td>
<td>0.9923</td>
<td>0.9883</td>
<td>0.9943</td>
<td>0.9915</td>
<td>0.9950</td>
<td>0.9967</td>
</tr>
<tr>
<td>サクラ</td>
<td>0.9970</td>
<td>0.9983</td>
<td>1.0000</td>
<td>0.9932</td>
<td>0.9887</td>
<td>0.9958</td>
<td>0.9933</td>
<td>0.9968</td>
<td>0.9772</td>
</tr>
<tr>
<td>スジ</td>
<td>0.9859</td>
<td>0.9923</td>
<td>0.9932</td>
<td>1.0000</td>
<td>0.9911</td>
<td>0.9836</td>
<td>0.9887</td>
<td>0.9864</td>
<td>0.9961</td>
</tr>
<tr>
<td>ハンノヒメ</td>
<td>0.9976</td>
<td>0.9983</td>
<td>0.9987</td>
<td>0.9911</td>
<td>1.0000</td>
<td>0.9969</td>
<td>0.9926</td>
<td>0.9984</td>
<td>0.9971</td>
</tr>
<tr>
<td>ドウガネ</td>
<td>0.9995</td>
<td>0.9943</td>
<td>0.9968</td>
<td>0.9835</td>
<td>0.9869</td>
<td>1.0000</td>
<td>0.9853</td>
<td>0.9986</td>
<td>0.9934</td>
</tr>
<tr>
<td>オホスジ</td>
<td>0.9868</td>
<td>0.9915</td>
<td>0.9933</td>
<td>0.9987</td>
<td>0.9926</td>
<td>0.9853</td>
<td>1.0000</td>
<td>0.9884</td>
<td>0.9863</td>
</tr>
<tr>
<td>ヒメサクラ</td>
<td>0.9990</td>
<td>0.9950</td>
<td>0.9968</td>
<td>0.9864</td>
<td>0.9984</td>
<td>0.9986</td>
<td>0.9884</td>
<td>1.0000</td>
<td>0.9953</td>
</tr>
<tr>
<td>キンスジ</td>
<td>0.9935</td>
<td>0.9907</td>
<td>0.9972</td>
<td>0.9961</td>
<td>0.9971</td>
<td>0.9934</td>
<td>0.9986</td>
<td>1.0000</td>
<td>0.9963</td>
</tr>
</tbody>
</table>

第3図 各種相互間の形態の相関係数の系列（I）

第4図 各種相互間の形態の相関係数の系列（II）
とがある。ヒメサクラでは位置もやや不明瞭であり、ドウガネブイブイでは縦線は認められない。

以上記述した9種類間の類似性を明らかにするために、第1表に基づき各種相互間の相関係数（元村, 1935）を計算すると第2表及び第3, 4図の知くである。

もとより上記9種相互の間には非常に高い相関が存在するが、然しながら第3図に示した相関係数の系列により、9種を次の4群に別し得るものと考えられる。

A群 スジコガネ、オホスジコガネ
B群 キンスジコガネ
C群 サクラコガネ、ツヤコガネ、ハンノヒメコガネ
D群 ヒメサクラコガネ、ヒメコガネ、ドウガネブイブイ

この群別は前記の3項目に於ても明かに認められる。即ち第2図に就いて各種の配置状態を検討するに、C・D両群は殆んど相違することなく、且つ両群6種の配置順序はやや一致している。即ちサクラコガネ(C群)とドウガネブイブイ(D群)の2種はC・D 6種の両端に位置し、ハンノヒメコガネ(C群)とヒメサクラコガネ(D群)とは相隣接している場合が多い。A群はやや C群に近いが、C・D両群とあまり関係なく独自の位置を占めている様に考えられる。

B群は種1種のみで明らかに、A・C両群の間に位置している如くである。上記の各種間の形態の類似性の強弱は、第4図に於て、スジコガネでは右下に傾斜している系列が、B、C、D群と移るにつれて次第に右上に変化する状態によっても知る事が出来る。

前に挙げた種の識別困難な三つの場合、即ち

1) ヒメコガネの緑色の個体とツヤコガネの濃色の個体
2) ツヤコガネの淡色の個体とヒメサクラコガネ
3) ヒメサクラコガネの大形の個体とサクラコガネの淡色の小形の個体

の区別は、サクラコガネとツヤコガネがC群の種類で、ヒメコガネとヒメサクラコガネがD群の種類であることから、頭部の胸背板に対する比較の大小を検することにより容易に区別出来る。

b. 卵による検索

卵は一般に乳白色、卵円形で、外見上僅かにその光澤を異にするが、この光澤の相違は、卵殻表面の微細な形刻を異にするためである。卵殻を剥離してプレパラートに製作し、油浸接物鏡を用いて検視する時は、形刻を明らかに認める事が出来る。

卵殻は第5図版の如き構造を有し、卵殻の厚さは3〜7μ、その表面には小疣様の突起があ
卵の検索表

1. 堆積表面の突起は円錐形である。 ... 2.
 — 堆積表面の突起は円錐形である。 ... 4.

2(1). 堆積の厚さ6〜7μ, 突起は大形, 直径6〜12μ, 高さ5〜6μ, 小突起2〜4μ。
 — 堆積の厚さ5〜6μ, 突起は小形, 直径2〜6μ。

2(2). 突起の直径2〜6μ, 高さ1.5〜2.5μ, 小突起1.0〜1.5μ。
 — 突起の直径4〜6μ, 高さ3〜4μ, 小突起1.0〜1.5μ。 スジョガネに酷似するも, 突起の分布は稀薄である。

3. 突起は大形, 直径6〜9μ, 高さ8〜11μ, 小突起1.5〜4.0μ。 突起は数滴ずつ細い線で連絡される。 ヒメガネ (第V版, 8.)
 — 突起は小形, 直径2.5〜4.0μ, 高さ3〜5μ, 小突起1〜2μ。 細い線は認められない。

7(5). 突起の直径5〜8μ, 高さ5〜6μ, 突起の大きさ, 初期1.25mm (頸細) × 1.82mm (長径), 終期2.08mm × 2.31mm。 サクラタカガネ (第V版, 4.)
 — 突起の直径5〜8μ, 高さ4〜6μ, 突起の大きさ, 初期1.19mm × 1.63mm, 終期1.97mm × 2.35mm。 サクラヒメガネ (第V版, 6.)
 (但しサクラヒメガネとハンノヒメガネとは酷似し, 別の型名よ.)

8(4). 突起は小形, 直径4.0〜5.5μ, 高さ2.0〜3.5μ, 小突起1.0〜2.5μ。
 — 突起は大形, 直径7〜11μ, 高さ6〜7μ, 小突起2.5〜3.5μ。

8. 幼虫による検索

幼虫も各式共酷似し, 卵筒状にてやや扁平, 静止の際は常に体をC字状に腹方に転曲する。頭部は下口式, 頭蓋はほぼ半球形, 表面平滑, 黄褐色, 弱い光沢がある。単眼を缺く。口
器はよく発達し、大脳の先端黒褐色、小胞の摩擦齧は5～7個。体節は胸部の3節最も幅広く、
腹部の数節やや狭まり、尾節は甚だ大。若齢期には消化管の内容物が錦墨色に透視されるが、
生長するに従い順次胸部から乳白色調を加え、老熟幼虫にあたっては全身乳白色となる。胸部に
はよく発達した3対の胸脚があるも、腹脚を欠く。孵化当初は第3胸節の側背面に1対の褐色
の卵殻破碎器を有する。（VI, VII図版）。

幼虫検索表

1. 尾節対面の剛毛は長く、鈎毛配置区の前面から始まる。剛毛両は前部は短細、後部は長毛
から成る。 ... 2.

—— 尾節対面の剛毛は短く、鈎毛配置区の中に存在する。剛毛列は棘毛ののみを有する。…… 3.

2(1). 体は大形、老熟幼虫の体長35～47 mm。剛毛列は後部の20本内外が棘毛で、その前方は短
細である。前胸の翼腺輪は長形0.83 mm、短形0.67～0.68 mm。翼腺輪上の小孔数は、
長毛方に沿って約40個、短毛方に沿って32～35個。 ...

—— 老熟幼虫の体長23～27 mm。剛毛列は後部の10本内外が棘毛で、前方は短細から成る。前
胸の翼腺輪の長形0.50～0.57 mm、短形0.34～0.38 mm。小孔数は長毛方に沿って24～25個、
短毛方に沿って20～22個。ヒメオカガネ（第VI図版, 2, 7; 第VII図版, I, II, 7; III, 3）
（ヒメサクラオカガネも(2)の類に属するものと推定されるが、未だ孵化当初の幼虫を検した
のもので、詳細は不明のため未表から除外した。）

3(1). 剛毛列の長さは左右列の間隔の2倍より短い、棘毛は比較的短く、左右交錯することが少
ない。 ... 4.

—— 剛毛列の長さは左右列の間隔の2倍より短い、棘毛は長く、左右交錯する。……… 5.

4(3). 頭蓋幅3.9～4.0 mm。前胸周節管路の長径0.47～0.54 mm、短径0.32～0.40 mm。小孔数長
毛方に沿い20～25個、短毛方に沿い17個。サクラオカガネ（第VI図版, I, II, 3）

—— 頭蓋幅3.2～3.4 mm。前胸周節管路の長径0.41～0.45 mm、短径0.30～0.31 mm。小孔数長毛
方に沿い15～19個、短毛方に沿い11～16個。 ...

（サクラオカガネの幼虫の方が幾分化され、毛も短く、硬い欠点があるが、然しこれぞ類似し、
識別は甚だ困難である。ハンノヒメオカガネも(4)の類に属するものと考えられるが、孵化當
初の幼虫より検討出来ず、詳細不明である。）

5(3). 前胸周節管路の長径0.53～0.56 mm、短径0.35～0.38 mm。小孔数長毛方に沿い19～25個、
短毛方に沿い17～18個。 ショジョガネ（第VI図版, 3, 5; 第VII図版, I, II, 1; III, 1）

—— 前胸周節管路の長径0.48～0.50 mm、短径0.35 mm。小孔数長毛方に沿い19～21個、短毛
方に沿い17～18個。 オホスジョガネ（第VII図版, I, II, 2）。

（両種の幼虫類似、識別殆ど不可能である。キシショジョガネの幼虫は不明なるも、成虫、
卵等の近似性より考えて、幼虫は(5)の類に近いものであろうと思われる。）
d. 蜻蛉による検査

体は卵形にして時扁平、極めて微細な額狀毛を以て覆われ、僅かにピロード様の光輝を有する (第 VI 圖版, 9; 第 VIII 圖版). 蜻蛉化後は乳白色であるが、次第に乳黄色より褐色となり、羽化期が近づくにつれて先の眼が黑色となり、次いで頭部、胸部、背刻、翅脈、尾節け、脚等は成虫の色彩に着色し、淡黄色透明の翅皮を透して見ることが出来る。スジコガネ類の蜻蛉は常に背面が縦に裂けた幼虫の脱皮殻を被る。この脱皮殻の特微により種類を区別する事が出来る。脱皮殻には幼虫の検査表が適用される。体の大きさは、次表の如くである。

<table>
<thead>
<tr>
<th></th>
<th>体 長 (mm)</th>
<th>体 幅 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>スジコガネ</td>
<td>17～21</td>
<td>9～12</td>
</tr>
<tr>
<td>サクラコガネ</td>
<td>15～17</td>
<td>10～11</td>
</tr>
<tr>
<td>ツヤコガネ</td>
<td>14～15</td>
<td>9～10</td>
</tr>
<tr>
<td>ヒメコガネ</td>
<td>14～16</td>
<td>9～10</td>
</tr>
<tr>
<td>ドウガネフグイ</td>
<td>23～24</td>
<td>12～13</td>
</tr>
</tbody>
</table>

2. 種の記載
1. Anomala testaceipes MOTSCHULSKY スジコガネ

成虫 翅脈の線路線は向合線を含めて左右明瞭、間室は光沢を欠く。頭部は前線中央を強く四つ、縁部やや上反する。黒點を密布する。前頭の黒点は密、後頭は黒點小にして光沢がある。胸背板には中央に明らかな縫溝状の凹みがあり、両側線と近く不規則な凹凸部がある。稜狀部は背線四角、僅かに縦凹線が認められる。尾節核は褐色、稜線光沢を帯びる。

体色は褐色より深緑色に至る種々の変化がある。淡色の個体は全背面濃褐色、頭部に緑色部を認めのみなるも、濃緑色に従い、頭部、胸背板が先ず濃緑色化し、次いで稜状部及びその周囲の翅脈が濃緑色或は紫緑色化し、遂に全背面濃緑色或は濃緑色となる。淡色の個体では腹面は褐色を呈するも、濃緑色に従って腹部下部は黒褐色となる。雄交尾器は、端板は先端に向かい急に狭まり、先端直頭状を呈し、左右の端板の間隙は背腹面共同程度である。
り、器体は端板の基部に於て腹方に著しく屈折する。

<table>
<thead>
<tr>
<th>長度</th>
<th>雉</th>
<th>14.5～18.0 mm</th>
<th>平均</th>
<th>16.7 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>雄</td>
<td>14.5～16.0 mm</td>
<td>≃</td>
<td>15.2 mm</td>
<td></td>
</tr>
<tr>
<td>体幅</td>
<td>雉</td>
<td>8.5～11.0 mm</td>
<td>≃</td>
<td>9.9 mm</td>
</tr>
<tr>
<td>雄</td>
<td>8.5～9.5 mm</td>
<td>≃</td>
<td>9.1 mm</td>
<td></td>
</tr>
</tbody>
</table>

卵 乳白色、核同体、弱い光澤がある。初期の平均1.44 mm（短径）× 2.08 mm（長径）、終期2.36 mm × 2.62 mm。卵殻の厚さ5～6 μ、卵殻表面の突起は小円錐形、直形2～6 μ。高さ1.5～2.5 μ、頭には僅かに凹凸がある。細断面はやや歪んだ不規則な図で、周縁は滑かでない。

幼蟲 稍大形の幼蟲で、十分成長したものは乳黄色で尾節は緑色を帯びる。尾節腹面の剛毛列は長い棘毛から成り、左右相交わる。剛毛列の配列距離は両列の間隔の2倍より短かい。前胸の周気門輪は長径0.53～0.56 mm、短径0.35～0.38 mm。

蛹 稍大形、体長17～21 mm、体幅9～12 mm。

分布 北海道、本州、朝鮮、アムール。

著者の今日までの調査結果によれば、本種は北海道に於ては南南部、豊振、日高、北見地方に多い。幼蟲は針葉樹の茎木、各種農作物の果物を喰害する。根部原野に於ては昭和5年以來、大体4年目毎に大発生を繰返したが、現在ではツヤコガネがこれに代っている。成蟲は針葉樹の新葉を喰害するため、豊振、日高地方の針葉樹造林地は時にこの喰害により枯死することがある。

2. Anomala costata (HOPE) オホスコガネ

北海道官民農業, II, 2, 1928, p. 38.

成蟲 休形、色彩共にスコガネに酷似するも、翅鱗の間隔に強き光澤を有する事により個別し得る。

頭楯の前緣中央凹入し、縁邊やや上反する。頭楯、前頭共突刻は密、後頭の突刻は小にして稀雑。胸背軸は中央の線凹線が明かである。側線に弱き不規則なる凹凸部がある。縦には胸背軸に光澤を缺くものが多い。稜狀部は中央に僅かに稜凹線が認められる。翅鱗の縦隆線は著否線と共に5本明らかならず、側方より2本目は他の線より不明瞭。

休色は、淡色の個体は翅鱗褐色にて、頭部、胸背軸、稜状部、翅鱗の稜状部の周縁及び両側縁が緑色を呈するが、濃色化に従って全背面が順次濃緑色となり、翅鱗鱗または翅黒色の光澤
を帯ぶに至る。胸部腹面及び脚は黒褐色、腹部腹面は黒紫色を呈する。淡色の個体は腕節及び
腕節黒褐色にして腕節中央に黒線の縦線を有する。尾節板は淡色の個体にあって黄褐色な
るも、色調の濃化につれて中央部より次第に黒紫色の斑紋が増る。

雄の交尾器は、中片及び端板の基部短小なるも、端板は急激に狭まり、先端稜状に伸長
し、左右に鋭く尖る。

体長 雌 16.5～18.5 mm 平均 17.6 mm
 雄 15.5～18.0 mm ζ 16.6 mm

体幅 雌 9.5～11.0 mm ζ 10.3 mm
 雄 8.5～10.5 mm ζ 9.5 mm

卵 初期 1.60 mm × 2.32 mm。終期 2.66 mm × 3.05 mm。卵殻の突起は四角形、スジコ
ガネの突起に酷似するも、直径 4～6 μ、高さ 3～4 μにて、スジコガネよりやや大きく、分布
はやや狭である。

幼虫 スジコガネの幼虫と形状、大きさ共に酷似する。尾節腹面の刷毛列、頭蓋板の幅、
上鱗内面の毛の配列、小腿の摩擦歯の数等によるも鰭別し難く。僅かに前胸の周気門輪が長径
0.48～0.50 mm、短径 0.35 mm でスジコガネよりやや小さい。幼虫による鰭別は殆ど
不可能である。

姫 不詳。

分布 北海道、本州、支那中・北部。

北海道に於ては増振、日高地方に多数棲息し、スジコガネに混じてカラマツ、トドマツ等
の新葉を喰害する。スジコガネの幼虫は苗圃内にも棲息するが、オホスジコガネの幼虫は未だ
苗圃に於ては発見されていない。

3. Anomala holosericea (FABRICIUS) キンスジコガネ

Melolontha holosericea FABRICIUS, Mant. Ins., I. 1787, p. 21.

Mimela (Paramimela) holosericea OMUS, Deutsche Ent. Zeitschr., 1908, p. 635.

Anomala holosericea ARROW, Ann. Mag. Nat. Hist., XII, 1913, p. 396; 新島・木下,
北大演習林報, II, 2, 1923, p. 86。

成虫 背面純緑色、翅鞘の合縁及び第 1 縦縁線のみ明らかにして光澤があり、他は強
き點刻を有する。頭楯の前縁はやや黒紫色を帯び、直線か或はやや凹入する。頭楯、前頭共に
密に點刻がある。複眼に近く黄色毛を散生する。胸背板は強き點刻をやや不規則に有し、正中
縁に沿い點刻なき細線光澤ある縁が認められる。稜状部はやや半円形にして、基部に少數の點
刻がある。先端やや黒紫色を帯ぶ。翅鞘は合縁及び第 1 縦縁線のみ明らかにして光澤があり、
他の3線は極めて細く認め難い。間空には強き點刻を密布する。腹部は錦紫色にしてやや緑色光澤を帯ぶ。胸部には密に、腹部・脚には粗に黄色長毛を生する。尾節毛は黄緑色、やや銅色光澤があり、淡黄色長毛を生す。雌の尾足器の端経は、背面と腹面との間に著しい形態の相異なく、先端鋭頭状。

体長 雌 16.5〜21.0 mm 平均 18.3 mm
雄 17.1〜17.8 mm ≈ 17.6 mm
体幅 雌 8.8〜11.3 mm ≈ 10.2 mm
雄 9.7〜9.9 mm ≈ 9.8 mm

卵 卵径の厚さ6〜7 μ、卵表面の突起は大形にして直径6〜12 μ、高さ5〜6μ。図柱に近い図錐形、頂に弱い凹凸があり、滑かでない。横断面は不規則な図形で周囲は滑かでない。2〜4 μの小突起が混在する。

幼蟲・蛹 不明。

分布 聖太、北海道、本州、朝鮮、シベリア。
北海道に於ては営巣、日高地方の山岳地帯に少数分布する。成蟲はトドマツの葉を食する。

4. Anomala daimiana HAROLD サクラコガネ

Anomala daimiana HAROLD, Deutsche Ent. Zeitschr. XXI, 1877, p. 354; 新島・木下,
北大演習林研報, II, 2, 1925, p. 96.

成蟲 頭柄は前線直線状或はやや弧状を呈する。胸背枝、枝状部共に中央の細凹線は極めて細く、痕跡的である。胸背枝の両側に近く凹壁部がある。翅棒の側線線は後方の彎曲部に達する。縦線線は位置のみ認め得れども、降起は明らかでない。

色彩には種々の変化がある。淡色の個体は背面黄褐色にして僅かに緑色光澤を帯び、腹面淡黄褐色。色調の濃色化に従い、先ず後頭部、胸背枝に緑色或は銅緑色の斑紋が生じ、次に翅柄が枝状部の周囲より濃緑色化し、遂に全背面濃緑色乃至黒緑色を呈し、銅緑色の光澤を帯ぶに至る。然しながら濃化した個体も、頭柄、胸背枝、翅柄等の枝端部に黄褐色帯を残すものが多い。腹部は淡黄褐色を呈するが、翅柄上に濃緑色部の生するに従って両側より黒鋼紫色を加え、遂に全腹面真銅色を呈し、僅かに緑色光澤を帯ぶに至る。尾節柄は淡黄色なるも、背面の濃色化にて中央部より濃緑色の斑紋が現われる。雌には濃色化した個体が少なく、雄には淡色の個体は稀である。雌の交尾器は腹方に開口する。端経は中片より短く、その先端は僅かに銅状に腹方に彎曲する。
体長 雄 14.5～18.0 mm 平均 16.4 mm
雌 14.4～17.8 mm ≈ 16.0 mm
体幅 雄 7.5～10.5 mm ≈ 9.2 mm
雌 7.5～10.0 mm ≈ 9.0 mm

卵 初期 1.25 mm × 1.82 mm，終期 2.08 mm × 2.31 mm。卵の表面の突起はやや不正形な円柱形，直径5～8μ，高さ5～6μ。高さは直径より小，上底はやや半球形で滑らかであり，側面との間に稜線を認め難い。横断面は円形または指円形で周囲は滑らかである。2，3個連結して不規則な形状とされる突起を混在する。これ等の間に1～4μの小突起が散在する。

幼虫 第3齢幼虫の頭蓋の幅 3.9～4.6 mm，尾節腹面の剛毛列は棘毛から成る。この棘毛は比較的短く，左右交錯する事は少ない。剛毛列の長さは左右両列の間隔の2倍より長い。
前胸の周気門輪の長径 0.47～0.54 mm，短径 0.32～0.40 mm。周気門輪上の小孔数は長半径に19～25個，短半径に17個。
ツヤコガネの幼虫に酷似するが，頭蓋及び前胸周気門輪がやや大きく，小孔数も僅かに多数の場合が多い。尾節腹面の剛毛列は酷似して区別し難い。全体にツヤコガネより少し大形で，毛もやや硬い感じであるが，兩種の区別は甚だ困難である。

蛹 体長 15～17 mm，体幅 10～11 mm。
分布 北海道，本州，四国，九州。
北海道に於ては渡島，膽振，日高，十勝地方に多く，幼虫は苗塚の大害虫である。

5. Anomala lucens BALLION ツヤコガネ
Anomala lucens BALLION，Bull. Mosc.，XLIV，1871，p. 155；新島・木下，北海演習林研報，II，2，1923，p. 106；澤田，関西昆蟲學會報，XVI，1，1944，p. 14。
Anomala tokiensis 新島・木下，北海演習林研報，II，2，1923，p. 105。
Anomala difficilis OHAUS (nec WATERHOUSE)，Deut. Ent. Zeitschr.，1908，p. 655；新島・木下，北海演習林研報，IV，1927，p. 34。

成虫 頭節前縁は直線状或はやや弧状，縁邊は上反する。頭柄，前頭に黒點は密。胸背紋は前半部の中央に僅かに縫凹線が認められる。両側に近く僅かに凹凸部がある。稜状部の中央縫凹線は弱い，翅柄の側縁塚線は中央のやや後方にて終わる。縫凹線の位置は明瞭なれども，隆起は殆んど認め難い。

体色には，淡黄褐色のものより黒緑色に至るまで種々の変化がある。淡色の個体は全背面
淡黄褐色なも、濃色化に従い、先ず頭部、胸背歯、稜状部が緑色化し、次いで翅端が稜状部の周囲より緑色化し、遂に全背面濃緑色乃至黒緑色となり、銅色光澤を呈するに至る。腹面は、淡色の個体は淡褐色にして、濃色化に従い褐色、黒褐色を経て黒紫色となり、黒緑色の光澤を帯ぶるに至る。尾節歯は翅端と殆んど同色調。

雌の交尾器の先端は腹方に閉じる。端板の先端は板状に伸展し、且つ腹方に彎曲する。

ツヤコガネの淡色の個体はメサクラコガネに酷似するも、頭部は大、胸背歯の中綫がメサクラコガネより強く、翅色の側縁線が中央部で繋がっている事等により見分け出来る。又ツヤコガネの濃緑色の個体はメサクラコガネの緑色の個体と酷似するも、胸背歯に対する頭部の大きさが大なること、及びメサクラコガネに於ては背腹両面及び脚が同色調であるのにに対し、ツヤコガネでは腹部が黒褐色乃至黒紫色調を呈する事により見分け出来る。

休長	雄	13.8〜18.0 mm	平均	15.1 mm
休幅	雄	7.0〜10.5 mm	平均	8.3 mm
体長	雄	6.5〜8.9 mm	平均	7.7 mm

卵　初期 1.22 mm × 1.70 mm，終期 1.96 mm × 2.22 mm。卵殻表面の突起は同柱状で径 2.5〜4.0 μ，高さ 3.0〜5.0 μ，高さは径よりも大。上皮は半球状を呈し、横断面は滑らかな円形である。この間に 1〜2 μの小突起を混する。

幼虫　第3節幼虫の頭蓋幅 3.2〜4.3 mm，尾節腹面の剛毛列は軸毛から成る。この軸毛は比較的短かく、左右交錯する事が少ない。剛毛列の長さは左右両列の間隔の 2 倍より長い。

前胸の周縁線は長径 0.41〜0.45 mm，短径 0.30〜0.31 mm，小孔数は長径に 15〜19 個，短径に 11〜16 個。サクラコガネの幼虫に酷似するもやや小形である。

蛹　休長 14〜15 mm，休幅 9〜10 mm。

分布　北海道，本州，四国，九州。

北海道に於てはヒメコガネと共にその幼虫が農作物及びカラマツ，トマツ，エゾマツ等の苗木の根部を最も多く加害する種類であり，全道に棲息するが，特に根割原野に多い。根割原野のコガネムシは，昭和11年頃まではスジコガネの方が多かったが，現在は大部分がツヤコガネである。

6. Anomala multistriata (Motschulsky) ハンノヒメコガネ

成鱗　頭鱗緑色にして僅かに黄色を帯ぶ。頭鱗、前頭部前刻は密。胸背板緑色、側鱗に沿い黄色帯を有し、刻著しく強大にして全面に密布し、不規則に相連する。翅鱗は帯褐緑色にして、緑色或は霞緑色の光沢がある。側鱗隆線は後方の彎曲部に達する。縦鱗線の位置は明瞭なるぞど隆起は認め難い。

休下は胸部は褐色、腹部は黄色色或は黒紫色、脚は腹部腹面と同色調。

雄の前尾器は器形成長、端板は鬼耳状を呈し先端平滑にして僅かに腹方に彎曲する。端板の腹面開口部の内面には、縦鱗の稜線から内方に向って伸長させる面を有し、この面は数状に凹凸。

<table>
<thead>
<tr>
<th></th>
<th>体長</th>
<th></th>
<th>平均</th>
<th>14.9 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>体長</td>
<td>雄</td>
<td>13.5～17.0 mm</td>
<td></td>
<td>14.9 mm</td>
</tr>
<tr>
<td>体長</td>
<td>雌</td>
<td>12.5～13.3 mm</td>
<td></td>
<td>12.9 mm</td>
</tr>
<tr>
<td>体幅</td>
<td>雌</td>
<td>7.3～9.1 mm</td>
<td></td>
<td>8.1 mm</td>
</tr>
<tr>
<td>体幅</td>
<td>雄</td>
<td>6.8～7.7 mm</td>
<td></td>
<td>7.2 mm</td>
</tr>
</tbody>
</table>

卵　初期 1.19 mm × 1.63 mm、経期 1.97 mm × 2.35 mm。卵殻表面の突起は四柱形、直径 5～8 μ，高さ 4～6 μ，高さは直径より小、上底は滑らかな半球形で側面との間に稜線は認め難い。2～3 μの小突起を混在する。サクラコガネの卵殻と酷似し、區別し難い。

幼鱗　尾鱗腹面の剛毛列は棘毛から成る。棘毛は比較的短く、左右を交わる事が少ない。剛毛列の長さは左右両列の間隔の2倍より長い。サクラコガネ及びツヤコガネの幼鱗に類似するも、孵化直後の幼鱗より検討出来るため詳細不明。

発　不明。

分布　北海道、本州、九州、對馬、琉球。

北海道では道南部及び天塩地方に多いが、加害状況は明らかでない。

7. Anomala geniculata (MOTSCHULSKY) シメサクラコガネ

Rhinoplia geniculata MOTSCHULSKY, Bull. Mosc., XXXIX, 1866, 1, p. 171.

成鱗　体の上部淡黄褐色で光沢であり、やや緑色光沢を帯ぶ。頭部、胸背板に緑色帯は鈷色部を有するものがある。頭鱗の前縁弧状、縦鱗上反する。胸背板の刻刻小にして粗、中央に極めて細い縦間縁を認む。翅鱗の側鱗線は位置ののみ僅かに認め得るも極めて不明瞭。縦鱗線は後方の彎曲部に達する。尾鱗翅は翅鱗と同色調にしてやや緑色或は銅色光沢を帯ぶ。脱
部腹面は銅紫色または黒紫色を呈する。

雄の交尾器は腹面に開口する。端板は中片より長く、先端僅かに腹方に旋形に曲る。

体形、大きさ、色彩共にツヤガネの淡色の個体に酷似するも、胸背板の光澤が強く、胸
背板に対する頭部の大きさがツヤガネより小さく、翅 STOCK 線線が先端の舞曲部に達する事
等により區別し得る。又サクラガネの淡色の小形の個体に酷似するも、胸背板に対する頭部
の大きさが小さく、サクラガネの淡色の個体は腹面淡黄色であるが、同色調のヒメサクラガ
ネの腹面は黒褐色または黒紫色なる事等により區別出来る。

<table>
<thead>
<tr>
<th>体長</th>
<th>雄</th>
<th>13.5〜15.0 mm</th>
<th>平均</th>
<th>14.4 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>雌</td>
<td>12.3〜13.5 mm</td>
<td></td>
<td>12.9 mm</td>
</tr>
<tr>
<td>休幅</td>
<td>雄</td>
<td>8.0〜9.0 mm</td>
<td></td>
<td>8.4 mm</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>7.4〜8.2 mm</td>
<td></td>
<td>7.9 mm</td>
</tr>
</tbody>
</table>

卵 初期 1.35 mm × 1.76 mm、終期 2.04 mm × 2.30 mm。卵殻表面の突起は同柱形で直
径 4.0〜5.5 μ、高さ 2.0〜3.5 μ、上底はゆるやかな球面で、中には殆ど平坦にして近いものもあ
る。側面は卵殻の表面に垂直にして、突起全体の形状は整然する。1.0〜2.5 μの小突起が混在
する。

幼蠶 足節腹面の剛毛列は、棘毛の前方に短棘の長い列を有す。ヒメコガネ及びドウガ
ネブリイと同一形式と考えられるも、未だ飼育當初の幼蠶より検討出来るため詳細は明ら
かでない。

蛹 不明。

分布 北海道、本州、九州。

北海道では道南部、膽振地方に少数棲息する。損害は認められない。

8. Anomala rufocuprea MOTSCHULSKY ヒメコガネ

林研報, II, 2, 1923, p. 101; 桑山, 北大演習報, LXI, 1937, p. 20; 津田, 北大演
習報, XIV, 5-6, 1941, p. 227; 仲島, 北大演習報, III, 1, 1948, p. 21.

Anomala Motchulskyi HAROLD, Deutsche Ent. Zeitschr., XXI, 1877, p. 351; 新島・

成蠶 頭部前線弧状、縁邊上反する。頭繭、前頭共に點刻は密、胸背板は點刻小、中央
の横分線は認め難い。大多數の個体は胸背板の光澤を欠く。翅脈の線條線は、位置は明らかな
るも隆起は認め難い。
体色は背・腹面、尾節翅、脚共に同一色調にして、その色彩には、銅赤色、緑色光澤を帯びた銅赤色、銅緑色、緑色、緑色、黒緑色等の一連の変化がある。

雌の交尾器は、基片、中片共に太さ、端部は先端に向って狭狭し、先端は左右に短縁な突出部を有する。

緑色の個体はツヤコガネの濃色の個体に酷似するも、頭部が小さく、背・腹面・脚共に同一色調である事により区別し得る。

<table>
<thead>
<tr>
<th>種</th>
<th>蛹</th>
<th>雄</th>
<th>雌</th>
<th>体長</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>雄</td>
<td>13.7〜16.5 mm</td>
<td>15.1 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雌</td>
<td>7.6〜9.8 mm</td>
<td>8.7 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

卵　初期 1.27 mm × 1.63 mm、絶朝 2.22 mm × 2.42 mm。卵殻表面の突起は円柱形で大形、直径 6〜9 μ、高さ 8〜11 μ、上底は半球状で側面との間に稜線は認められない。側面は必ずしも卵殻に垂直ではなく、基部に比較して上方の膨大なるものもある。1.5〜4.0 μの小突起が混在する。各突起は数個ずつ極めて細い絲で連結されている。

幼虫　老熟幼虫の体長 23〜27 mm、頭蓋の幅 3.40〜3.95 mm。尾節腹面の剛毛列は長く、前部は短構、後部の十数本のみ棘毛からなる。前胸腺間膜は長径 0.50〜0.57 mm、短径 0.34〜0.38 mm。小孔数は長径に 24〜25 個、短径に 20〜22 個。

蛹　休長 14〜16 mm、体幅 9〜10 mm。

分布　栃太、北海道、本州、四国、九州。

北海道に於てはツヤコガネと共に全道的に最も多数棲息するが、十勝、日高、膽振に特に多い。成虫は農作物、果樹、潤葉樹を、幼虫は農作物、針葉樹苗木等の根部を甚だしく喰害する。

9. Anomala cuprea (HOPE) ドウガネブイブイ

成虫　やや大形のコガネムシなり。頭殻前縁やや弧状、縁邊上反する。頭殻、前頭の點刻やや大にして密。胸背板の點刻やや大、中央に点刻なき縁域部がある。翅膜の縁縁線は殆ど認め難い。側縁縁線は中央の少し後方で絶り、これにつづく黄褐色の膿線はやや幅広く明瞭。
体色は全背面銅錆色或は鈍緑色にて，腹面は銅黒色に紫光澤を帯ぶ。背・腹面・脚共に緑色味を加えるものもある。

雄の交尾器は，端板の先端腹方に円状に曲り，滑らかな球状を呈する。端板の腹面開口部の内面には，縦縁の稜線から内方に伸長した斜面がある。

<table>
<thead>
<tr>
<th>体長</th>
<th>雌</th>
<th>18.5〜22.6 mm</th>
<th>平均</th>
<th>21.4 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>雄</td>
<td>19.3〜20.7 mm</td>
<td>≪</td>
<td>20.0 mm</td>
</tr>
<tr>
<td>体幅</td>
<td>雌</td>
<td>10.3〜12.7 mm</td>
<td>≪</td>
<td>11.9 mm</td>
</tr>
<tr>
<td></td>
<td>雄</td>
<td>10.8〜12.0 mm</td>
<td>≪</td>
<td>11.4 mm</td>
</tr>
</tbody>
</table>

卵 初期 1.78mm × 2.40mm，成熟 2.86mm × 3.26mm。卵殻表面の突起は円柱形で大形，直徑 7〜11μ，高さ 6〜7μ，高さは直徑より小，上底はゆるやかな球面で，殆ど平面に近いものもある。側面は卵殻表面に垂直で，突起の形狀は整然する。2.5〜3.5μの小突起が混在する。突起の形狀はヒメサクラクガネに類似するも，はるかに大形。

幼蟲 老熟幼蟲の体長 35〜47 mm，頭蓋の幅 5.0〜5.3 mm。大形の幼蟲である。尾節腹面の剛毛列は長く，前部は短縮，後部は 20 本内外が棘毛から成る。ヒメコガネの剛毛列に類似するも，棘毛の数が多い。前胸気門輪の長径 0.83 mm，短径 0.57〜0.58 mm。小孔数は長半径に約 40 個，短半径に 32〜35 個。

蛹 体長 23〜24 mm，体幅 12〜13 mm。

分布 北海道，本州，四国，九州。

本州に於ては果樹の重要害蟲として知られているが，北海道に於ては，道南部に比較的多いが，その被害は殆ど問題とするに足らない。

3. 考察

以上記述した各階期の形態から，北海道に棲息するスジコガネ属 9 種の類縁関係を考察するに，これ等を次の 4 群に分ち得る様に考えられる。

A 群 スジコガネ，オホスジコガネ
B 群 キンスジコガネ
C 群 サクラコガネ，ツヤコガネ，ハンノヒメコガネ
D 群 ヒメサクラコガネ，ヒメコガネ，ドウガネブイブイ

先に成蟲の項で述べたと如く，成蟲の体験測定結果による相関係数の系列，及びに頭幅前縁の形狀，頭部の大きさ，稜端部の形狀，翅端の形狀，縦縁線の状態等の類似程度により上記の 4 群に別ら得るが，この類別は幼蟲にも適用され，尾節腹面の剛毛列は，A 群は棘毛長くして
左右相交わり、且つ棘毛の配列距離が左右両列の間隔の2倍より短かく、C群は棘毛やや短かくして左右相交わる事少なく、且つ配列距離は両列の間隔の2倍より長い。D群は棘毛の前方に短棘の長い列を有する。(B群は不明。) 又卵に於ても、卵殻表面の突起が、A群の2種は円錐形で類似し、B群(1種のみ)は卵殻と卵柱の中間形を示し、C・D両群の突起は卵柱形で、C群のサクラコガネとハンノヒメコガネとは識別し難く、D群のヒメサクラコガネとドウガネブイブイは、大差には相異はあるが同一形式である。

以上の如く、この群別は各期を通じて適用出来る故、各群内に夫々の種は甚だ近縁な種類であり、又各群間ではC・D両群が類似し、A群はやや異なるがC群に近く、B群はA・C両群の中間に位置している如くに考察される。

Anomala 属は前述した如く数百種を含む最大な1群である。又ごく近縁な Mimela 属との境界線も各研究者によって一時ではあるが、中には両属を包含するさらに大きな群を考える場合もあり(澤川、1950)，單なる成蟲の2、3の形態的特徵のみを以てして、その類縁関係の究明に困難を感じる場合が多い。筆者の僅か9種の研究結果から結論するのは、もとより早計であるが、卵・幼蟲等を含めた各期についての各種間の相関関係を検討する事により、各種間の、或は各群間の類縁関係の究明に何等かの裏付けを與え得るのではないかと考えられる。

III. 生態

1. 北海道に於ける経過の概要

スジコガネ類の経過は地方により著しく異なる、本州中部に於ては1世代を満1箇年を以て完結するが、北海道に於ては満3箇年、少なくとも満2箇年を要する。例をヒメコガネに取れば、成蟲の発生期間は7月上旬より9月上旬迄の2箇月間で、最盛期は地圏により多少の相違があるが、7月下旬〜8月上旬である。卵は地表下数稜の所に點々産卵される。卵期間は2〜3週間。8月中・下旬に孵化した幼蟲は、地表下数稜の浅層で、地中の窪植質を食して生長するが、秋季の地温の低下と共に漸次深層に移行し、10月下旬〜11月上旬に、第1齢末期または第2齢初期の状態で越冬に入る。第2年目には、5月上旬頃より再び摂食を始め、5月下旬に第2齢となり、早い個体は6月中旬、遅い個体では8月中旬より第3齢に入る。生長するにつれて生植物根に対する喰害が著しくなり、針葉樹の種苗に対しては第2年目の夏から加害が行われる。11月上旬より第2回目の越冬に入る。第3年目は喰害も著しく、淡墨色或は乳白色であった頭部は次第に乳黄色となり、同年秋迄には全身乳黄色で、消化管內に摂食物を留めない老熟幼蟲となって第3回目の越冬に入る。第4年目には殆ど摂食することなく土窟内に
出羽し、1週間内外の前蛹期を経て、6月上旬より蛹化する。蛹化期間は2週間内外。羽化後数日士壌内に留まった後地上に出現する。第1年目秋に第2期まで進んだ生長の早い個体では、第3年8月に羽化する場合も見られる。

ツヤコガネ及びサクラコガネの経過もヒメコガネと大差ないが、3年目に成熱となる個体は甚だ少なく、スジコガネはいずれの個体も4年目に羽化する様である。ドウネイプロは本州方面では1 pups年頃または2着年で羽化するが、北海道に於ける経過はキンスジコガネ、オホスジコガネ、ハンノヒメコガネ、ヒメサクラコガネ等と共に全く不明である。然しながら前記4種と同様に2〜3着年を要するものと推察される。

2. 卵

a. 産卵状況

母虫は地中を潜行して産卵する。産卵に際しては、1）卵が直径2〜3mmの塊をなして体外に突出する。2）突出した卵が徐々に体内に引込める。このため1)で押しのけた土壌との間の間隙が出来る。3）隣を越々体内に納入しながら、出来た空隙に卵を1着産附する。これ散にそこには卵を1着隠した形をなした小さな土壌が残る。4）母虫は隣を全く体内に納めて次の産卵の為に潜行する。而して土壌に卵を産状の大きさはヒメコガネでは長径2.4〜3.2mm、短径2.0〜2.3mmである。卵が土壌に接しているのは下層のみで、他は土壌との間に若干の空隙を有する。後述する様に卵はその生育中に容積の増加を来たすが、この空隙は卵の増大に十分な餘裕を残している。又この空隙のために、土壌の過湿状態からも左程の影響を受けないものと推察される。

b. 卵の増大

スジコガネ類の卵は乳白色卵円形であるが、産卵後2日目頃より周囲の土壌から水分を吸
収し、含水量、重量及び容積を増加すると共に、形状は著しく球形に近づく。卵の生長状態を観察するため、直径8cmのベトリシャレに十分満足した直径0.3mm内外の海砂を約7分目に盛り、容水量の約90％に含水せしめ、この様上に卵を24時間以内に卵を並べて蓋をなし、暗室中に静置して24時間毎にその長径及び短径をオクールミクロメーターによって測定した。又同一方法によって飼育した別の卵につき、毎日30個ずつ重量及び含水量を測定した。

1. 形状及び容積の変化

短径、長径及び容積の測定結果は第4表の如くである。又縦軸に容積を、横軸に短径の長径に対する比を取り、卵の24時間毎の容積及び形状の変化を図示すれば第7図の如くである。図によると方々に進むにつれて卵の形状は球形に近づき、上方に向うにつれて容積の増加を示す。卵は産卵直後は細長い楕円形であるが、3～4日の間に短径が著しく増大して卵は球形に近づく。その後形状には大なる変化なく、専ら容積を増加し、卵化に近づくにつれて再びやや細長くなる。卵の容積はツヤコガネ、ハンノヒメコガネ、ヒメコガネ及びヒメサクラコガネが殆んど同一で最も小さく、初期1.2～1.7mm³、終期4.0～5.1mm³、次いでサクラコガネ1.5～5.5mm³、スジコガネ2.2～7.7mm³、オホスジコガネ3.2～11.3mm³の順で大形となり、ドウガネブイブイの卵が最も大きく、初期3.9mm³、終期13.9mm³である。形状には種類による差はあまり認められず、短径の長径に対する比は初期69～77、最も球形に近い時は89～92、最終期87～90である。

第7図 卵の形状及び容積の変化

縦軸…容積 (mm³) 横軸…形状

tea. ……スジコガネ
cov. ……オホスジコガネ
dai. ……サクラコガネ
tue. ……ツヤコガネ
mul. ……ハンノヒメコガネ
gen. ……ヒメサクラコガネ
ruf. ……ヒメコガネ
exp. ……ドウガネブイブイ

1) 卵を隔室箱内と見做し、$V = \frac{\pi}{6} A^2 B$ の式により容積を算出した。但し V…容積、A…短径、B…長径。
第1表 甲の増大状況

<table>
<thead>
<tr>
<th>經過日数</th>
<th>短径</th>
<th>長径</th>
<th>容積</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947年8月(21.0~24.0℃,平均22.7℃)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950年7月(27.0~31.3℃,平均29.1℃)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>經過日数</th>
<th>A. costata</th>
<th>A. daimiana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947年8月(21.0~24.0℃,平均22.7℃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950年7月(27.2~31.3℃,平均29.4℃)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

孵化
3.

<table>
<thead>
<tr>
<th>經過日數</th>
<th>1947年8月 (21.0〜24.0°C, 平均 22.7°C)</th>
<th>1950年8月 (27.0〜32.5°C, 平均 29.2°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>短径</td>
<td>長径</td>
</tr>
<tr>
<td>0</td>
<td>1.22</td>
<td>1.70</td>
</tr>
<tr>
<td>1</td>
<td>1.24</td>
<td>1.70</td>
</tr>
<tr>
<td>2</td>
<td>1.33</td>
<td>1.69</td>
</tr>
<tr>
<td>3</td>
<td>1.45</td>
<td>1.70</td>
</tr>
<tr>
<td>4</td>
<td>1.54</td>
<td>1.75</td>
</tr>
<tr>
<td>5</td>
<td>1.63</td>
<td>1.81</td>
</tr>
<tr>
<td>6</td>
<td>1.69</td>
<td>1.87</td>
</tr>
<tr>
<td>7</td>
<td>1.74</td>
<td>1.93</td>
</tr>
<tr>
<td>8</td>
<td>1.78</td>
<td>1.99</td>
</tr>
<tr>
<td>9</td>
<td>1.83</td>
<td>2.03</td>
</tr>
<tr>
<td>10</td>
<td>1.89</td>
<td>2.09</td>
</tr>
<tr>
<td>11</td>
<td>1.92</td>
<td>2.14</td>
</tr>
<tr>
<td>12</td>
<td>1.94</td>
<td>2.17</td>
</tr>
<tr>
<td>13</td>
<td>1.94</td>
<td>2.19</td>
</tr>
<tr>
<td>14</td>
<td>1.96</td>
<td>2.20</td>
</tr>
<tr>
<td>15</td>
<td>1.96</td>
<td>2.22</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.

<table>
<thead>
<tr>
<th>經過日數</th>
<th>A. multistriata</th>
<th>A. geniculata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1950年8月 (23.3〜32.5°C, 平均 30.3°C)</td>
<td>1950年8月 (23.3〜31.3°C, 平均 28.5°C)</td>
</tr>
<tr>
<td></td>
<td>短徑</td>
<td>長徑</td>
</tr>
<tr>
<td>0</td>
<td>1.19</td>
<td>1.63</td>
</tr>
<tr>
<td>1</td>
<td>1.24</td>
<td>1.66</td>
</tr>
<tr>
<td>2</td>
<td>1.48</td>
<td>1.68</td>
</tr>
<tr>
<td>3</td>
<td>1.66</td>
<td>1.84</td>
</tr>
<tr>
<td>4</td>
<td>1.79</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>1.92</td>
<td>2.18</td>
</tr>
<tr>
<td>6</td>
<td>1.94</td>
<td>2.23</td>
</tr>
<tr>
<td>7</td>
<td>1.97</td>
<td>2.35</td>
</tr>
<tr>
<td>8</td>
<td>2.03</td>
<td>2.30</td>
</tr>
<tr>
<td>9</td>
<td>2.04</td>
<td>2.29</td>
</tr>
<tr>
<td>10</td>
<td>2.04</td>
<td>2.29</td>
</tr>
<tr>
<td>11</td>
<td>2.04</td>
<td>2.29</td>
</tr>
<tr>
<td>12</td>
<td>2.04</td>
<td>2.29</td>
</tr>
</tbody>
</table>
5. A. rufocuprea

<table>
<thead>
<tr>
<th>経過日数</th>
<th>1947年8月（21.0〜24.0°C，平均22.7°C）</th>
<th>1950年8月（27.7〜32.5°C，平均30.0°C）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>短径</td>
<td>長径</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>-mm</td>
</tr>
<tr>
<td>0</td>
<td>1.27</td>
<td>1.63</td>
</tr>
<tr>
<td>1</td>
<td>1.30</td>
<td>1.64</td>
</tr>
<tr>
<td>2</td>
<td>1.40</td>
<td>1.63</td>
</tr>
<tr>
<td>3</td>
<td>1.56</td>
<td>1.71</td>
</tr>
<tr>
<td>4</td>
<td>1.69</td>
<td>1.82</td>
</tr>
<tr>
<td>5</td>
<td>1.78</td>
<td>1.91</td>
</tr>
<tr>
<td>6</td>
<td>1.88</td>
<td>2.02</td>
</tr>
<tr>
<td>7</td>
<td>1.96</td>
<td>2.10</td>
</tr>
<tr>
<td>8</td>
<td>2.03</td>
<td>2.13</td>
</tr>
<tr>
<td>9</td>
<td>2.08</td>
<td>2.24</td>
</tr>
<tr>
<td>10</td>
<td>2.11</td>
<td>2.27</td>
</tr>
<tr>
<td>11</td>
<td>2.14</td>
<td>2.30</td>
</tr>
<tr>
<td>12</td>
<td>2.16</td>
<td>2.33</td>
</tr>
<tr>
<td>13</td>
<td>2.19</td>
<td>2.37</td>
</tr>
<tr>
<td>14</td>
<td>2.21</td>
<td>2.39</td>
</tr>
<tr>
<td>15</td>
<td>2.22</td>
<td>2.42</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. A. cuprea

<table>
<thead>
<tr>
<th>経過日数</th>
<th>1950年8月（27.7〜32.5°C，平均30.0°C）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>短径</td>
</tr>
<tr>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>1</td>
<td>1.90</td>
</tr>
<tr>
<td>2</td>
<td>2.23</td>
</tr>
<tr>
<td>3</td>
<td>2.42</td>
</tr>
<tr>
<td>4</td>
<td>2.59</td>
</tr>
<tr>
<td>5</td>
<td>2.72</td>
</tr>
<tr>
<td>6</td>
<td>2.81</td>
</tr>
<tr>
<td>7</td>
<td>2.86</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

（28）
ii. 重量の変化

測定結果は第5表の知くである。産卵直後の重量はサクラコガネ、ツヤコガネ、ハンノヒメコガネ、ヒメサクラコガネ及びヒメコガネが大凡1.5〜2.0 mg、スジコガネが2.9 mg、ドウガネブイブイが5.0 mgであり、最終重量はツヤコガネ、ハンノヒメコガネ、ヒメサクラコガネ及びヒメコガネが大凡5.0〜5.2 mg、サクラコガネ 6.3 mg、スジコガネ 8.9 mg、ドウガネブイブイ 15.8 mgで、産卵直後の2.6〜3.9倍に増加する。

第5表 卵の重量変化

<table>
<thead>
<tr>
<th>経過日数</th>
<th>Anomala testaceaipes</th>
<th>A. daimiana</th>
<th>A. lucens</th>
<th>A. multistriata</th>
<th>A. geniculata</th>
<th>A. rufocura</th>
<th>A. cuprea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg</td>
<td>指数</td>
<td>mg</td>
<td>指数</td>
<td>mg</td>
<td>指数</td>
<td>mg</td>
</tr>
<tr>
<td>0</td>
<td>2.87</td>
<td>100.0</td>
<td>1.90</td>
<td>100.0</td>
<td>1.60</td>
<td>100.0</td>
<td>1.89</td>
</tr>
<tr>
<td>1</td>
<td>2.80</td>
<td>97.6</td>
<td>2.15</td>
<td>113.2</td>
<td>1.93</td>
<td>120.6</td>
<td>1.89</td>
</tr>
<tr>
<td>2</td>
<td>3.34</td>
<td>116.3</td>
<td>3.10</td>
<td>163.0</td>
<td>2.60</td>
<td>162.5</td>
<td>2.86</td>
</tr>
<tr>
<td>3</td>
<td>4.26</td>
<td>148.2</td>
<td>3.95</td>
<td>207.9</td>
<td>3.00</td>
<td>187.5</td>
<td>3.22</td>
</tr>
<tr>
<td>4</td>
<td>5.13</td>
<td>178.8</td>
<td>4.95</td>
<td>290.5</td>
<td>3.73</td>
<td>233.1</td>
<td>3.67</td>
</tr>
<tr>
<td>5</td>
<td>6.46</td>
<td>225.0</td>
<td>5.45</td>
<td>287.0</td>
<td>4.27</td>
<td>266.7</td>
<td>4.63</td>
</tr>
<tr>
<td>6</td>
<td>7.53</td>
<td>262.5</td>
<td>5.80</td>
<td>305.5</td>
<td>4.40</td>
<td>275.0</td>
<td>4.80</td>
</tr>
<tr>
<td>7</td>
<td>8.00</td>
<td>278.5</td>
<td>6.00</td>
<td>316.0</td>
<td>4.53</td>
<td>238.2</td>
<td>*4.88</td>
</tr>
<tr>
<td>8</td>
<td>8.26</td>
<td>287.9</td>
<td>6.20</td>
<td>326.2</td>
<td>4.93</td>
<td>308.2</td>
<td>5.01</td>
</tr>
<tr>
<td>9</td>
<td>8.20</td>
<td>286.8</td>
<td>6.30</td>
<td>331.7</td>
<td>5.20</td>
<td>325.0</td>
<td>5.01</td>
</tr>
<tr>
<td>10</td>
<td>8.54</td>
<td>297.5</td>
<td>*4.80</td>
<td>292.2</td>
<td>*4.27</td>
<td>266.2</td>
<td>5.01</td>
</tr>
<tr>
<td>11</td>
<td>8.44</td>
<td>306.0</td>
<td>5.05</td>
<td>293.7</td>
<td>4.83</td>
<td>266.7</td>
<td>5.01</td>
</tr>
<tr>
<td>12</td>
<td>8.87</td>
<td>293.0</td>
<td>5.01</td>
<td>277.6</td>
<td>5.01</td>
<td>277.6</td>
<td>5.01</td>
</tr>
<tr>
<td>13</td>
<td>8.87</td>
<td>293.0</td>
<td>5.01</td>
<td>277.6</td>
<td>5.01</td>
<td>277.6</td>
<td>5.01</td>
</tr>
<tr>
<td>14</td>
<td>*7.67</td>
<td>220.0</td>
<td>4.83</td>
<td>266.7</td>
<td>4.83</td>
<td>266.7</td>
<td>5.01</td>
</tr>
</tbody>
</table>

* 幼化直前の卵

iii. 含水量の変化

含水量の測定はツヤコガネ及びヒメコガネについてのみ行った。測定結果は第6表の知く、含水量はツヤコガネでは産卵直前の39.6％から卵化直前の84.6％に、ヒメコガネでは45.0％から85.7％に増加する。乾燥重量はやや減少する傾向が認められる。

第6表 卵の含水量及び乾燥重量

<table>
<thead>
<tr>
<th>経過日数</th>
<th>A. lucens</th>
<th>A. rufocuprea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>含水量</td>
<td>乾燥重</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>mg</td>
</tr>
<tr>
<td>0</td>
<td>39.6</td>
<td>0.97</td>
</tr>
<tr>
<td>1</td>
<td>51.7</td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td>64.1</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>68.9</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>76.8</td>
<td>0.89</td>
</tr>
<tr>
<td>5</td>
<td>79.7</td>
<td>0.87</td>
</tr>
<tr>
<td>6</td>
<td>78.8</td>
<td>0.86</td>
</tr>
<tr>
<td>7</td>
<td>80.9</td>
<td>0.83</td>
</tr>
<tr>
<td>8</td>
<td>81.1</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>84.6</td>
<td>0.80</td>
</tr>
<tr>
<td>10</td>
<td>*84.4</td>
<td>*0.67</td>
</tr>
</tbody>
</table>

* 幼虫
c. 温度との関係

卵の発育に対する温度の種々の影響の内、卵殻期及び卵の増大状況に対する影響を知るために、卵を前記と同様に処理したベトリ皿内に並べ、各温度で飼育観察した。

i. 卵期間

温度と卵期間との関係は第7表及第8図に示す如く、各種とも29～30℃に於て卵期間は最短となる。又発育速度は大略17～30℃の間に於ては殆んど直線的変化を示している。直線の式及び実測値の差は次の如くである。

<table>
<thead>
<tr>
<th>腹物</th>
<th>v</th>
<th>Σ(v-v0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>スジコガメ</td>
<td>0.00330t-0.02695</td>
<td>-0.00027</td>
</tr>
<tr>
<td>サクラコガメ</td>
<td>0.00617t-0.08248</td>
<td>-0.00061</td>
</tr>
<tr>
<td>ツヤコガネ</td>
<td>0.00459t-0.04343</td>
<td>0.00039</td>
</tr>
<tr>
<td>ハンノヒメガメ</td>
<td>0.00665t-0.07348</td>
<td>0.00011</td>
</tr>
<tr>
<td>ヒメサクラコガネ</td>
<td>0.00614t-0.09493</td>
<td>-0.00016</td>
</tr>
<tr>
<td>ヒメガネ</td>
<td>0.00587t-0.07401</td>
<td>-0.00195</td>
</tr>
<tr>
<td>ドウガネブイブイ (17～27℃)</td>
<td>0.00579t-0.10961</td>
<td>0.00022</td>
</tr>
<tr>
<td>(27～35℃)</td>
<td>0.00458t-0.02701</td>
<td>-0.00024</td>
</tr>
</tbody>
</table>

尚、スジ、サクラ、ツヤ、ハンノヒメ、ヒメサクラ、ヒメの6種の卵は35℃に於ては発育を終了したが、ドウガネブイブイの卵のみは正常な発育をとげた。又ドウガネブイブイの卵の発育速度曲線は、27℃附近までやや方向を変じている。又これ等の直線から計算した各種類の卵の発育零点は、ヒメサクラコガネ、ドウガネブイブイ等の如く道南地方に棲息する種類のそれが15℃附近で最も高く、ツヤコガネ、スジコガネの様に道東地區又は山間多深い種類では8℃～10℃附近で最も低い現象は興味深い。
第7表 溫度と卵期間との関係

<table>
<thead>
<tr>
<th>Anomalala testaceipes</th>
<th>A. costata</th>
<th>A. daimiana</th>
<th>A. luensis</th>
<th>A. multistriata</th>
<th>A. genealata</th>
<th>A. rufocuprea</th>
<th>A. cuprea</th>
</tr>
</thead>
<tbody>
<tr>
<td>℃</td>
<td>H</td>
<td>℃</td>
<td>H</td>
<td>℃</td>
<td>H</td>
<td>℃</td>
<td>H</td>
</tr>
<tr>
<td>19.9</td>
<td>25.5</td>
<td>22.7</td>
<td>17.5</td>
<td>20.5</td>
<td>19.5</td>
<td>18.0</td>
<td>23.5</td>
</tr>
<tr>
<td>22.7</td>
<td>19.5</td>
<td>20.7</td>
<td>20.5</td>
<td>20.3</td>
<td>21.0</td>
<td>24.8</td>
<td>12.0</td>
</tr>
<tr>
<td>24.9</td>
<td>19.5</td>
<td>23.1</td>
<td>21.5</td>
<td>22.7</td>
<td>16.5</td>
<td>30.3</td>
<td>8.5</td>
</tr>
<tr>
<td>29.1</td>
<td>14.5</td>
<td>24.7</td>
<td>16.5</td>
<td>24.5</td>
<td>15.5</td>
<td>35.0</td>
<td>死</td>
</tr>
<tr>
<td>29.2</td>
<td>14.5</td>
<td>28.9</td>
<td>10.5</td>
<td>24.7</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.6</td>
<td>14.5</td>
<td>29.1</td>
<td>9.5</td>
<td>29.2</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>13.5</td>
<td>29.3</td>
<td>9.5</td>
<td>29.3</td>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>死</td>
<td>29.4</td>
<td>10.5</td>
<td>29.4</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>11.0</td>
<td>30.0</td>
<td>11.0</td>
<td>35.0</td>
<td>死</td>
<td>35.0</td>
<td>死</td>
</tr>
<tr>
<td>35.0</td>
<td>死</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ii. 増大値の相違

前述のごとく、卵はその発育中に容積及び重量を増加するが、この増大値には飼育温度の差により、同一種の卵にあっても相当の相違が見られる。即ちスジゴガネ、ツヤゴガネ及びヒメゴガネの3種の卵を22.7℃及び29.2℃で飼育した場合の24時間内の容積の変化を比較すると第9図の如くであり、3種共29.2℃の飼育に於ては22.7℃の場合よりも、卵期間を短縮すると共に小さな個体を生ずる。

温度の高低により生物体の大きさに相違を生ずる事については多くの報告があり、一般的に高温度の下で発育した個体は、低温度の下で発育したものよりも小さな個体を生ずる場合が多い（第8表）。

第9図 飼育温度の高低による卵の増大状況の相違
第8表 亀育温度の高低による体の大きさの相違

<table>
<thead>
<tr>
<th>試料</th>
<th>体の大きさ</th>
<th>観覧者</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramecium</td>
<td>></td>
<td>RUTMAN (1909)</td>
</tr>
<tr>
<td>Cladocerans</td>
<td>></td>
<td>MICHELSON (1923)</td>
</tr>
<tr>
<td>Daphnia</td>
<td>></td>
<td>PAPANICOLAU (1910)</td>
</tr>
<tr>
<td>Entomostraca</td>
<td>></td>
<td>W. OSTWALD (1904)</td>
</tr>
<tr>
<td>Colpoda</td>
<td>></td>
<td>O. HARTMANN (1919, a)</td>
</tr>
<tr>
<td>Foraminifera, 石灰質を作る種</td>
<td>></td>
<td>E. F. ADOLPH (1929)</td>
</tr>
<tr>
<td></td>
<td>></td>
<td>RHUMBER (1911)</td>
</tr>
<tr>
<td>Stentor の核数</td>
<td>15°C > 25°C</td>
<td>V. PROWAZEK (1910)</td>
</tr>
<tr>
<td>Rotifers の卵</td>
<td>></td>
<td>FITZINGER (1926)</td>
</tr>
<tr>
<td>ウ＝ 細胞容積及び核の大きさ</td>
<td>></td>
<td>MARCUS (1906), ERDMANN (1908), KOEHLER (1912)</td>
</tr>
<tr>
<td>ウ＝ 染色体の有無</td>
<td>></td>
<td>ERDMANN (1908)</td>
</tr>
<tr>
<td>ウ＝ 胚</td>
<td>9°C < 17°C > 25°C</td>
<td>VERNON (1936)</td>
</tr>
<tr>
<td>売</td>
<td>胚の大きさ</td>
<td>></td>
</tr>
<tr>
<td>カナダガミ (Helodea canadensis) の葉条状の大きさ</td>
<td>></td>
<td>O. HARTMANN (1919, b)</td>
</tr>
<tr>
<td>茎</td>
<td>原始核性細胞の容積</td>
<td>>18.0°C < 24.0°C</td>
</tr>
<tr>
<td>ウ＝ 括</td>
<td>>31.0°C < 26.0°C</td>
<td></td>
</tr>
<tr>
<td>ウ＝ 小核</td>
<td>>26.0°C < 24.0°C</td>
<td></td>
</tr>
</tbody>
</table>

d. 土壌酸性度との関係

地中に産卵されたコガネムシ類の卵は、前述の如く、その生長中に水分含量を増加するが、卵はこの水分を周囲の土壌から吸収する故、土壌水分の種々の条件により卵はその生育に各種の影響をうけている事は想像される。特に土壌水分の酸性度、卵殻の水分透濁性、卵の発育に対する酵素の作用等種々の生理現象に影響を及ぼすものと考えられる。その場合、混合結果として卵の増大率及び孵化率等に何等かの相違を表わすことは當然であろう。この見地から卵を種々異った酸性度を有する基で飼育し、その影響の有無を検した。

実験材料及び方法

実験材料としてはヒメコガネの卵を使用した。各種の水素イオン濃度を得るためには、McIlvaine's Standards を使用した。準備した水素イオン濃度は、pH 2.2, 2.8, 3.4, 4.0, 4.6, 5.2, 6.2, 7.2, 7.6, 8.0 の10種である。直径8cmのベトリシャレーに上記 Standards を含んだ脱脂紙を敷き、その上に産卵後24時間以内の卵を20個並べて蓋をし、暗室に入り静置して孵化率を検した。又 pH 2.2, 3.4, 4.6, 6.2, 7.2, 8.0 の6種は、24時間毎にオクライルミクロメーターにより卵の長短兩径を測定した。向飼育温度は 28.7～30.8°C，平均 29.2°C である。
実験結果

i. 解化率 pH 4.0 より 6.2 近の酸性域及び弱酸性域に於て最高の解化率を示し、特に酸性域では 100% 解化している。pH 3.4 以下の強酸性域及び pH 7.2 以上の塩基性域に於ては、明らかに解化率の低下が認められる。

ii. 卵期間 pH 2.2 より 3.4 近の強酸性域に於ては、いずれも産卵後 11 日で解化し、pH 4.0 より 6.2 近の最も解化率の高い域に於ても、大部分の卵が 11 日で解化したが、pH 7.2 以上の塩基性域に於ては卵化数が 12 日を要し、中には 13 日を要する個体も認められた。即も塩基性に近づくに従って卵期間はやや延長する傾向を有する。

第 9 表 環境の酸性度と卵期間並に解化率との関係

<table>
<thead>
<tr>
<th>pH</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>計</th>
<th>解化率</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>4.0</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>6.2</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>95</td>
</tr>
<tr>
<td>7.2</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>7.6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>---</td>
<td>2</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>8.0</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>70</td>
</tr>
</tbody>
</table>

iii. 増大状況 各 pH 域に於て正常に解化した個体につき、その卵期間中 24 時間毎の容積の変化を測定した結果は第 11 図の如くである。一見すると、pH 4.6 及び 6.2 の兩酸性域に於ける增大率が最も高く、強酸性域及び塩基性域は共に劣っている様に考えられるが、統計学的検定の結果は第 10 表の如くであり、本実験のみによつてはその差に有意性を認める事が出来なかった。尚強酸性域に於ては、3 日目頃より卵殻に褐色の明らかなる線を生じて増大を停止する卵が数個認められた。

以上の諸点から考察し、ヒメコガナの卵の発育には、pH 4.6〜6.2 の如き酸性域が最適なものと考えられる。この値は先に発表したナガチャコガナの卵の pH 4.6〜8.0 (内田・中島 1948) より少しく酸性側に偏っているが、この程度の酸性域は一般農耕地に最も良く見出される値であり、
卵は良好に適応しているものと言えよう。

第 10 表 各 pH 区の卵の容積の差の検定

<table>
<thead>
<tr>
<th>要因</th>
<th>通差平方和</th>
<th>自由度</th>
<th>不通差平方和</th>
<th>(F_0 = \frac{1496.97}{625.54} = 2.383)</th>
</tr>
</thead>
<tbody>
<tr>
<td>級間分布</td>
<td>7484.84</td>
<td>5</td>
<td>1496.97</td>
<td>(F(a=0.05, n_1=5, n_2=24) = 2.62)</td>
</tr>
<tr>
<td>級内分布</td>
<td>15012.9</td>
<td>24</td>
<td>625.54</td>
<td>(\therefore \ F > F_0)</td>
</tr>
<tr>
<td>全分配合</td>
<td>22497.81</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

故に各 pH 区の卵の容積の間には有意な差は認められない。

3. 幼蟲

a. 生長

1. 孵化状況

孵化に際しては、幼蟲は卵殻内で大脳を閉閉し、又体を前後左右に緩く動かす。この運動中、幼蟲の第 3 胸節背面にある 1 対の卵殻破砕器により卵殻に横裂が生じると、幼蟲は直ちに背部を突出し、次いで緩慢な蠕動を行いつつ腹部及び足部を脱出し、最後に頭に押つている卵殻を脚で押して脱き去る。孵化直後の幼蟲は甚だ活潑で、湿った砂上で孵化させた場合には、附近を這い渡り砂中に数頭潜行する。温度が適当であれば、孵化後何等食物を與えなくても約 3 日間は生存する。孵化直後の大きさを各種類に就いて測定した結果は第 11 表に示す如くである。

第 11 表 孵化直後の幼蟲の大きさ

<table>
<thead>
<tr>
<th>種名</th>
<th>頭幅 (mm)</th>
<th>附属 (mm)</th>
<th>腹幅 (mm)</th>
<th>体長 (mm)</th>
<th>体重 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomala testaceipes</td>
<td>1.56～1.70</td>
<td>1.67</td>
<td>1.62～1.70</td>
<td>1.67</td>
<td>1.32～1.39</td>
</tr>
<tr>
<td>A. daimiana</td>
<td>1.47～1.56</td>
<td>1.51</td>
<td>1.62～1.80</td>
<td>1.71</td>
<td>1.11～1.35</td>
</tr>
<tr>
<td>A. lucens</td>
<td>1.26～1.41</td>
<td>1.34</td>
<td>1.40～1.71</td>
<td>1.51</td>
<td>1.08～1.20</td>
</tr>
<tr>
<td>A. multistriata</td>
<td>1.39～1.41</td>
<td>1.40</td>
<td>1.50～1.59</td>
<td>1.55</td>
<td>0.99～1.17</td>
</tr>
<tr>
<td>A. genticulata</td>
<td>1.35～1.41</td>
<td>1.38</td>
<td>1.53～1.60</td>
<td>1.57</td>
<td>1.02～1.09</td>
</tr>
<tr>
<td>A. rufocuprea</td>
<td>1.33～1.39</td>
<td>1.36</td>
<td>1.39～1.63</td>
<td>1.47</td>
<td>0.97～1.14</td>
</tr>
<tr>
<td>A. cuprea</td>
<td>1.89～2.00</td>
<td>1.93</td>
<td>2.16～2.29</td>
<td>2.23</td>
<td>1.71～1.74</td>
</tr>
</tbody>
</table>

ii. 体験の伸長

幼蟲は 3 齢を経過するが、各齢期に於ける頭幅、胸幅、腹幅及び体長の測定結果は第 12 表の如くである。而して胸幅、腹幅及び体長はほぼ連続的に増大するが、頭幅は各齢期毎に階段的に生長する。この頭幅の増大の様相には、\(z = a t^{k-1} \) なる指数曲線がほぼ当てはまる。（但しそ \(z \) は第 \(n \) 齢幼蟲の頭幅、\(a \) は第 1 齢幼蟲の頭幅、\(k \) は恒数）。
スジコガネ類5種（スジコガネ、ザクラコガネ、ツヤコガネ、ヒメコガネ、ドウガネブイブイ）の頭幅の生長式及び実測値と計算値の比較は次の如くである。

生長式
\[z = a \times 1.655^{x-1} \]

\(a \) の値は

<table>
<thead>
<tr>
<th></th>
<th>スジコガネ</th>
<th>1.75 mm</th>
<th>ヒメコガネ</th>
<th>1.36 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ザクラコガネ</td>
<td>1.51 mm</td>
<td>ドウガネブイブイ</td>
<td>1.91 mm</td>
</tr>
<tr>
<td></td>
<td>ツヤコガネ</td>
<td>1.43 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第12表 幼蟲各期の大きさ

<table>
<thead>
<tr>
<th>種名</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>頭幅 (mm)</td>
<td>胸幅 (mm)</td>
<td>腹幅 (mm)</td>
<td>体長 (mm)</td>
<td>体重 (mg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>範囲</td>
<td>平均</td>
<td>初期</td>
<td>終期</td>
<td>初期</td>
<td>終期</td>
<td>初期</td>
</tr>
<tr>
<td>Anomala testaceipes</td>
<td>1</td>
<td>1.56~1.91</td>
<td>1.75</td>
<td>1.67</td>
<td>2.97</td>
<td>1.36</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.69~3.01</td>
<td>2.91</td>
<td>3.42</td>
<td>3.01</td>
<td>3.01</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.42~5.10</td>
<td>4.76</td>
<td>5.78</td>
<td>8.01</td>
<td>4.83</td>
<td>7.44</td>
</tr>
<tr>
<td>A. daimiana</td>
<td>1</td>
<td>1.47~1.58</td>
<td>1.51</td>
<td>1.71</td>
<td>2.83</td>
<td>1.21</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.18~2.33</td>
<td>2.53</td>
<td>3.45</td>
<td>4.25</td>
<td>2.85</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.86~4.62</td>
<td>4.23</td>
<td>6.41</td>
<td>7.52</td>
<td>4.81</td>
<td>6.83</td>
</tr>
<tr>
<td>A. lucens</td>
<td>1</td>
<td>1.26~1.54</td>
<td>1.43</td>
<td>1.51</td>
<td>2.56</td>
<td>1.14</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.35~2.49</td>
<td>2.39</td>
<td>2.83</td>
<td>3.92</td>
<td>2.35</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.61~4.25</td>
<td>3.85</td>
<td>4.72</td>
<td>7.07</td>
<td>4.45</td>
<td>6.73</td>
</tr>
<tr>
<td>A. rufocuprea</td>
<td>1</td>
<td>1.33~1.60</td>
<td>1.36</td>
<td>1.47</td>
<td>2.35</td>
<td>1.06</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.97~2.46</td>
<td>2.25</td>
<td>2.58</td>
<td>3.67</td>
<td>2.20</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.30~4.10</td>
<td>3.72</td>
<td>5.44</td>
<td>6.68</td>
<td>4.81</td>
<td>6.10</td>
</tr>
<tr>
<td>A. cuprea</td>
<td>1</td>
<td>1.89~1.93</td>
<td>1.91</td>
<td>2.23</td>
<td>—</td>
<td>1.73</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.50~2.60</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.23</td>
<td>4.23</td>
<td>4.23</td>
<td>4.23</td>
<td>4.23</td>
<td>4.23</td>
</tr>
<tr>
<td>A. multistriata</td>
<td>1</td>
<td>1.39~1.41</td>
<td>1.40</td>
<td>1.55</td>
<td>—</td>
<td>1.08</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A. geniculata</td>
<td>1</td>
<td>1.35~1.41</td>
<td>1.38</td>
<td>1.57</td>
<td>—</td>
<td>1.06</td>
<td>—</td>
</tr>
</tbody>
</table>

第13表 幼蟲の頭幅の実測値と計算値との比較

<table>
<thead>
<tr>
<th>種名</th>
<th></th>
<th>頭幅 (mm)</th>
<th>計算値 (mm)</th>
<th>誤差 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(v)</td>
<td>(v_1)</td>
<td>(v_1 - v)</td>
</tr>
<tr>
<td>Anomala testaceipes</td>
<td>1</td>
<td>1.75</td>
<td>1.75</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.91</td>
<td>2.89</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.76</td>
<td>4.79</td>
<td>+0.03</td>
</tr>
<tr>
<td>A. daimiana</td>
<td>1</td>
<td>1.51</td>
<td>1.51</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.53</td>
<td>2.50</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.23</td>
<td>4.14</td>
<td>-0.09</td>
</tr>
<tr>
<td>A. lucens</td>
<td>1</td>
<td>1.43</td>
<td>1.43</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.39</td>
<td>2.37</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.55</td>
<td>3.92</td>
<td>+0.07</td>
</tr>
<tr>
<td>A. rufocuprea</td>
<td>1</td>
<td>1.38</td>
<td>1.38</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.25</td>
<td>2.25</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.72</td>
<td>3.75</td>
<td>+0.03</td>
</tr>
<tr>
<td>A. cuprea</td>
<td>1</td>
<td>1.91</td>
<td>1.91</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.16</td>
<td>3.16</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.20</td>
<td>5.23</td>
<td>+0.03</td>
</tr>
</tbody>
</table>
iii. 体重の変化

北海道に棲息する前記9種のスジゴキゲ類の内, 同場に産卵の多いのは主としてヒメコガネ, ツヤコガネ, サクラコガネ及びスジコガネの4種であるが, その経過は本州に於ける場合と相違異なっている. 例えばヒメコガネは関東地方に於ては, 1世代を満1箇年を以って完了するが, 北海道に於ては滞3箇年, 少なくとも滞2箇年を要するため, 同一同場で同時に採集した幼蟲の中にも, 3世代に亘る各世代の個体が混在する. 又同1世代に属する個体であっても, 7月下旬に産卵された個体と8月下旬に産卵された個体とは, 盛夏の候の1箇月の差によって共の後の生育に多大の相違を生ずる. それ故同場には常に第1齢期より老熟期に至る各齢期の幼蟲が混在し, 被害地に於て採取した幼蟲の羽化期を判定するのに類る困難な場合が多い. 筆者は主として十勝原野の鹿追苗圃に於て, 1946年以降5箇年にわたり, 連続的に各季節に採集した幼蟲につき検討すると共に, 室内及び同圃に於て個々に同別に飼育観察し, 上記4種の北海道に於ける生育状況を明らかにする事が出来た. 本項に於ては, 幼蟲の体重変化を指標としてその週年経過を考察する.

幼蟲は3齢を経過するが, その発育状況を検討する便宜上, 幼蟲の生育期を次の6期に区分することとした.

1. 第1齢期
2. 第2齢期
3. 第3齢初期 体が半透明で, 胴部全体にわたり消化管の内容物が淡褐色に透視出来る時期.
4. 第3齢中期 体が不透明になり, 胴部が淡乳白色, 乳白色及び淡乳黄色を呈する時期.
5. 第3齢後期 胴部は乳黄色を呈し, 外観上は十分生長した状態に達しているが, 未だ摂食を続けていっているため尾節のみ黒褐色を呈する時期.
6. 老熟期 生長を完了して既に摂食を停止し, 腸内に摂食物を留めないため, 全体乳黄色で黒褐色を呈さない時期.（但し上記の内, 3・4・5の各期の境界は左程判然としたものではない.）

a. 野外幼蟲の体重測定結果

同場に於て各季節に採集した幼蟲を, 体験の外観から上記の6期に区別し, その体重を1個体ずつtorsion balanceによって測定した. 測定結果は第12, 13, 14, 15図に示す如くである. 尚本調査は主として鹿追苗圃に於て採集した幼蟲について行ったが, スジコガネのみは苦小牧
産の幼虫について調査した。

第1齢期　孵化直後の幼虫は4 mg内外であるが、野外において7～8 mg以下の個体は採集出来なかった。第1齢幼虫の体重をヒメコガネについて検討すれば、早春には14～15 mg内外の個体が多いが、5月よりやや体重が増加し、7月上旬に於ける体重が最も重く27～28 mg、中には35 mgの個体も存在した。然らに8月下旬には初期の幼虫のみが棲息し、11月の越冬直

![Graph 1](image1.png)

第12図　各季節毎に測定した野外幼虫の体重分布

![Graph 2](image2.png)

第13図　同前　ツヤコガネ
前には平均 14 mg である。ツヤコガネ、サクラコガネも大差はないが、スジコガネはやや重い。

第 2 期 ヒメコガネ、ツヤコガネの 2 種では、本齢期の体重は大凡 20 mg より 170 mg 迄、サクラコガネでは 200 mg 迄である。本齢期の初期の幼虫は、早春から 7 月下旬と 9 月以降とに認められ、成熟期の幼虫は 5 月下旬より 7 月上旬の間に多い。サクラコガネは採集頭数が少なく、スジコガネは第 2 齢幼虫が採集出来なかったため明らかでない。

第 14 図 同前 サクラコガネ

第 15 図 同前 スジコガネ
第3齢初期 ヒメコガネでは7月、ツヤコガネでは8月に初期の幼齢が多く、120〜300mg、平均187.6mgの体重を有するが、晩秋は数月に於て、体がやや不透明となる程度まで生長した時期には、160〜540mgの帯青の個体が出ている。然し250〜400mgの体重を有する個体が最も多く、サクラコガネは250〜550mg。スジコガネは300〜650mgの体重を有する。第3齢中期 ヒメコガネにては350mg近くに生長した頃から、順次皮下に脂肪を蓄積して体色は乳白色不透明になり、又に帯黄色となる。体重は300mgから650mg迄の帯青の範囲を占めるが、400〜500mgの個体が最も多い。春季には比較的軽い個体が多いが、速かに生長して、秋季なお第3齢中期に留まる個体は稀である。ツヤコガネの第3齢中期の幼齢は大凡200〜460mgの体重を有し、秋季に多数認められる。

第3齢後期 全身濃乳黄色を呈し、体形は既に十分生長した大きさを示しているが、盛んに摂食を続け、尾節は腸内容物が透視されるために黒褐色の特有な模様を呈する。体重は全幼齢期間を通じてこの時期が最も重く、ヒメコガネでは400〜650mg、ツヤコガネでは250〜600mg、サクラコガネ400〜750mg、スジコガネ550〜920mgの値を示す。

第3齢老熟期 十分生長して既に摂食を停止しているため全身濃乳黄色で、尾節の黒褐色の模様も消失し、その部分に淡黄色の液が滲留している。主に土壌内に留まってあり活動しない。体重はやや減少し、ヒメコガネでは400〜600mg、ツヤコガネでは300〜500mg、サクラコガネでは450〜700mg、スジコガネでは700〜850mgの個体が多い。この老熟期の幼齢は4〜5〜6月、即ち蛹化前の時期と秋季とにのみ多数認められる。

b. 飼育幼齢の体重変化

1）飼育方法

落葉松造林地の地面に、数枚の厚さに堆積せる未腐熟落葉を採集し、各葉片が2〜3mmの長さになる様に揉み絞り、これに顔別した硬土を葉片2、硬土1の割合（容積比）に混じ、60〜70％に含水（對飽和含水量）をしめして5〜6日間放置した後、100cc三角コルペンに7分目の充たし、各コルペンに幼齲を1頭宛放養し、室内飼育と野外に於て飼育した。野外飼育は2年生トマツ苗床の苗列間に幅15cm、深さ15cmの溝を掘り、この中に上記の三角コルペンを並べ、コルペンの口から2〜3cmの空間を残してこの溝に植の蓋をなし、その上を土壌を以て地面と平らになる様に鱗計。室内飼育の温度は自記室温計により、野外飼育の温度は溝内に装置した最高最低室温計により読み取った。以上の方法で飼育した幼齲を適時取出してtorsion balanceにより体重を測定すると共に、その都度飼育を新らしいものと取換えた。全飼育期間中の飼養は十分に與えられた。又第1齢幼齲に対しては上記落葉を乳鉢で微細に屑漿して與えた。
第14表　幼虫の飼育齢期及び飼育期間

<table>
<thead>
<tr>
<th>種</th>
<th>飼育開始時の齢</th>
<th>飼育開始時期</th>
<th>飼育場所</th>
<th>最終測定時まで生存した頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>孵化直後</td>
<td>8</td>
<td>室内</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>室内</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td>野外</td>
<td>5</td>
</tr>
<tr>
<td>Anomala rufocuprea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>初</td>
<td>7</td>
<td>室内</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>室内</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>野外</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Anomala tucens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>初</td>
<td>10</td>
<td>室内</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>野外</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>室内</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Anomala daimiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>初</td>
<td>11</td>
<td>室内</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>室内</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>野外</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Anomala testaceipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>初</td>
<td>9</td>
<td>室内</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14</td>
<td>野外</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>野外</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
（41）

ロ 飼育結果

ヒメコガネ（第16図）

第1齢幼鱻 早春4月上旬に第1齢であった幼鱻は、室内、野外共に6月下旬より7月
上旬の間に第2齢となり、8月上旬第3齢となった。然して第2回の越冬迄には、一部は第3
齢老熟期に達したが、大部分は乳黄色或は淡乳黄色の第3齢後期は後期に近い状態で止まっ
た。

夏季8月下旬に室内に於て孵化せしめた幼鱻は、11月上旬に47％が第2齢初期、平均体
重32mgに達したが、第1齢に止まった群の平均は15mgであった。

第2齢幼鱻 4月下旬、5月下旬、6月上旬及び7月上旬の各季節に第2齢であった幼鱻
の飼育結果は、室内飼育では、4月下旬に第2齢中期であった群は5月下旬より生長を開始し、
6月上旬第3齢となり、9月中旬には全個体が第3齢老熟期に達した。5月、7月にそれぞれ2
齢であった各群は、5月の群は6月下旬に、7月の群は8月中旬に大々第3齢に進み、越冬迄
に5月の群は一部が老熟期に、他は第3齢後期に達したが、7月の群には老熟期に達したもの
は認められなかった。

野外飼育に於ては、6月上旬に第2齢であった幼鱻は7月中旬第3齢となり、62%が越冬
迄に老熟期に、23%が第3齢後期に、15%が第3齢中期に達した。

第3齢幼鱻 野外飼育に於て6月上旬に第3齢初期であった個体は10月中旬に、第3齢
中期であった個体は8月中旬に大々第3齢老熟期に達し、6月上旬に老熟期にあった個体は7
月老熟し、7月下旬より8月上旬にかけて羽化した。以上記述した生長の様相は第16図に示
す如くである。

ツヤコガネ、サクラコガネ及びスジコガネの飼育経過は夫々第17、18、19図に示す如くで
あり、本質的にはヒメコガネとの間に相違は認められない。

第15表 各齢期の体重（mg）

<table>
<thead>
<tr>
<th>頭部</th>
<th>A. testaceipes</th>
<th>A. daimitana</th>
<th>A. lucena</th>
<th>A. rufocuprea</th>
</tr>
</thead>
<tbody>
<tr>
<td>頭部平均</td>
<td>範囲</td>
<td>初期</td>
<td>終期</td>
<td>範囲</td>
</tr>
<tr>
<td>耳連</td>
<td>7.3〜60</td>
<td>7.07</td>
<td>46.8</td>
<td>4.6〜38</td>
</tr>
<tr>
<td>耳連</td>
<td>87〜240</td>
<td>104.2</td>
<td>193.6</td>
<td>34〜193</td>
</tr>
<tr>
<td>耳連</td>
<td>210〜920</td>
<td>281.8</td>
<td>774.9</td>
<td>184〜734</td>
</tr>
<tr>
<td>筋節前</td>
<td>一〜60</td>
<td>〜</td>
<td>〜</td>
<td>〜</td>
</tr>
<tr>
<td>筋節後</td>
<td>〜</td>
<td>〜</td>
<td>〜</td>
<td>〜</td>
</tr>
<tr>
<td>筋節前</td>
<td>310〜920</td>
<td>514.3</td>
<td>793.2</td>
<td>250〜760</td>
</tr>
</tbody>
</table>
第16図 飼育幼齢の体重変化 ヒメコガネ
縦軸...体重（mg） 横軸...月別

第17図 同前 ツヤコガネ

第18図 同前 サクラコガネ

第19図 同前 サッコガネ
iv. 考察

a). 北海道に於ける経過

以上記述した採集結果及びに飼育結果から、スジガネ類の北海道に於ける経過を考察するに次の如きものと考えられる。

ヒメコガネ

第1年目 8月上旬より9月中旬の間に孵化した幼虫は、孵化直後の体重は3.7 mg 前後であるが、地中の腐植質を摂食して生長し、その一部は体重14 mg 前後で越冬に入る。然し第2年幼虫について検討すると、20〜30 mg の体重を有する初期の個体が、7月上旬と9月下旬の2回に亘り多数認められ、又第1年幼虫の中には、9月中旬に早くも30 mg 近く迄生長している個体が存在する故、9月下旬に認められる第2年初期の群は、當年早く（7月中・下旬）発生した成虫により産卵された個体と考えられる。

即ち第1年目には、7月下旬に産卵された個体と、8月下旬〜9月上旬に産卵された個体とでは、夏季の高湿期間に1箇月余の差を有する。同時期産卵された卵に於ても、食物の有無や土壌中の深さの相違による発育の差等の条件により、或は又各個体の特性によりその発育にある程度の相違を生する事は當然であろうが、主として上記の産卵時期の差により、初期に孵化した個体の一部は9月下旬に体重35 mg 前後で第2年に進み、70 mg 前後で越冬する。他の個体は第1年の中ままで14 mg 前後で越冬に入るものと考えられる。

第2年目 北海道南部では4月下旬〜5月上旬より、根鉢野方面では5月下旬〜6月上旬より活動を開始し、第1年で越冬した幼虫は35 mg 前後に達した個体から順次脱皮して第2年に進む。第1年幼虫の平均体重は7月上旬が最も重く、又第2年にあっても35 mg 前後の初期の幼虫がこの時期に多い故、第1年で越冬した幼虫の過半数は7月上旬に第2年になるものと考えられる。

7月上旬に於ける幼虫の体重は、第1年終期の30 mg から第2年初期の220 mg 位連続して分布しているが、特に30 mg、110 mg、190 mg の附近に3つの山が認められる。この内、最も重い第2年初期の190 mg 附近の群は、第1年目末に第2年に進んだ個体が、第2年目の4月下旬から摂食を再開し、5月中旬約100 mg、5月下旬約140 mg に生長し、6月中・下旬に170 mg 前後で第3年に進んだ幼虫により形成されているものと考えられる。中間の110 mg 附近の群は、第1年目末に第1年終期に達した幼虫が、第2年目の春、活動を開始すると間もなく脱皮して第2年になった幼虫により形成されているものであり、その他の幼虫はその発育度により順次越れて脱皮し、最後のものが6月下旬から7月上旬にかけて一斉に第2年に進
むため、これ等の個体より30 mg附近の1群が形成されるものと考えられる。これ等の第2齢幼虫も、9月中旬迄には第3齢に進むため、9月下旬には次世代に属する第2齢初期の幼虫が棲息するのみで、第2齢終期のものは認められない。

7月下旬に早くも第3齢に進んだ幼虫は、7・8・9月の高温な3筒月間隔食を続け、一部は10月上旬迄に570 mg前後の第3齢後期の幼虫に生長する。その他の幼虫も生植物根に顕著な加害を行いつつ生長するが、第3齢になる時期の迅速や摂食量等に影響されて、第2年目の末には、体重200 mg未満で、休休未だ不透明で消化管の内容物が淡黄色に透視出来る第3齢初期から、体重570 mg前後の乳黄色を呈する第3齢後期までの、各段階の発育状態にある個体が認められる。

第3年目　第3齢後期の状態で越冬した幼虫は、6月上中旬までなお摂食を続け、6月下旬より7月上旬にかけて蛹化し、8月羽化する。

第3齢中期及び初期の状態で越冬した幼虫は、この年に最も苦しい喫苦をなし、7月上旬より次第に乳黄色の第3齢後期の状態に入る。その後は休休し、体重共にあまり変化は認められず、摂食したエネルギーは専ら内部の成熟に用いられ、9月上旬より順次消化管内に摂食物を留めない第4齢幼虫となり、土壤内に留まってあまり活動しがならない。

第4年目　大部分の個体は土壤内に留まってあまり活動せず、生長の遅れた僅かの個体のみが少しく摂食した後、6月上旬より1週間内外の前蛹期を経て蛹化し、7月羽化する。

上述の発育過程を要約すれば、各齢期間は、第1齢は最も短かい場合は8月上旬より9月中旬迄の1筒月間、長い場合は8月下旬より次年7月上旬迄11筒月間、第2齢は第1年目の6月中旬より第2年目の7月上旬迄11筒月間、第3齢は第2年目の6月中旬より第3年目の7月迄13筒月間、第4年目の8月より次年4年目の6月迄22筒月間である。体重は、第1齢が平均3.7 mgより35 mg迄、第2齢が30 mgより170 mg迄、第3齢が150 mgより650 mg迄である。そして主として第2年目には休休形及び体重に顕著な増大が見られ、第3年目には休休が不透明から乳黄色に変化する等の内部の成熟が見られる。

以上記述した如く、ヒメゴマネにあっては、1世代を完了するのに、一部の個体は満2筒年を要して第3年目、大部分の個体は満3筒年を要して第4年目に羽化する。1世代に満2〜3年の長期間要するため、世代順にA，B，Cの番号を附ければ、各年越冬直前及び早春には、A世代の老齢期及び第3齢後期、B世代の第3齢後期、第3齢中期及び第3齢初期、C世代の第2齢初期及び第1齢の，3世代にわたる各齢期に属する幼虫が同一個場内に棲息する。
上記の生長の状態を図示すれば第20図の如くである。

ツヤラガネ、サクララガネ、スジコガネに於ても、本質的な相違はないものと考えられるが、第3年目に羽化する個体はヒメコガネに於て最も多く、ツヤラガネでは極く少数であり、サクララガネ、スジコガネでは第3年目に最も著しい体重増加が見られる故全個体が4年目に羽化するものと思われる。

尚 LUDWIG (1932) は、マメコガネ幼齢を20°及び25℃の恒温で飼育し、20℃で飼育した場合には、幼齢期間の長さには大差はないが、第2齢期に33日を要する群(40％)と70日を要する群(60％)との2群に分れ、25℃で飼育した場合には、これも幼齢期間の長さには大差はないが、最大重量に達するのに要する日数が50日の群(85.5％)、平均重量250 mg、65日の群(10.9％、平均180 mg)、90日の群(3.6％、平均140 mg)の3群に分れる。アメラに於けるマメコガネのPopulationは夫々の個体の大きさや生長速度の異なるところの若干の生理的品種によって組立てられている事を論じている。スジコガネ類に於ても、上記の様な生理的品種が存在するか否かは明らかでないが、ヒメコガネの野外飼育結果(第16図)から考察すれば、LUDWIGの言う様な生理的品種の存在も想定される。
b). 温度との関係

ヒメコガネ幼虫は本州に於ては、1世代を完了するのに満1箇年を以て足りるが、北海道に於ては前述の様に満2箇年乃至満3箇年を要する。関東地方に於ては4月には既に幼虫の活動が開始され、11月の末迄8箇月間の摂食期間があるのに反し、北海道に於ては、南部では4月下旬～5月上・中旬、根室・釧路方面では6月に入らなければ幼虫の活動は見られず、10月中旬には既に夏季の繁殖を去って越冬のために相当の深さまで移動しており、1年間の幼虫の活動期間は5箇月足らずにすぎない。又幼虫繁殖期の土壌温度は第16表に示す如くであり、関東地方では6月に既に20℃以上に上昇しているが、根騷原野では盛夏の候も18～19℃にすぎず、特に暖かい年の8月に20℃より僅か上昇する程度である（第17表）。

後述する様に、ヒメコガネ幼虫は、秋季は繁殖期の温度が9～11℃に下降した時に越冬に入る。春季は11～13℃に上昇した時から活動を開始する故、発育限界温度を11℃と仮定すると（LUDWIG, 1928, '30 はメガネの発育限界温度を10℃と発表している）、有効積算温度は第16表の様に、関東地方では1箇年で、札幌では2箇年で、根室では3箇年で1830～1890日度となり、3地點ともほぼ等しい値となる。生理学的品種により発育期間に長短があることも考慮に入れる必要があるも、1世代の完了に満1箇年から満3箇年の大きな開きを生ずる原因としては、土壌温度を第一義に挙げべきものと考えられる。

第16表 ヒメコガネ幼虫の発育限界温度を11℃とした場合の各地の有効積算温度

<table>
<thead>
<tr>
<th>地名</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>積算温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>関東地方</td>
<td>8月上旬</td>
<td>7月末</td>
<td>1850日度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>札幌</td>
<td>8月下旬</td>
<td>7月末</td>
<td>1868日度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>根室</td>
<td>8月下旬</td>
<td>7月末</td>
<td>1893日度</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第22図 北海道各地における土壌温度の比較
第 17 表 根室に於ける湿作年と畑作年の地中温度（10 cm）の比較（北島試，1951）

<table>
<thead>
<tr>
<th>昭和年</th>
<th>5月（℃）</th>
<th>6月（℃）</th>
<th>7月（℃）</th>
<th>8月（℃）</th>
<th>9月（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>種作年</td>
<td>上旬</td>
<td>中旬</td>
<td>下旬</td>
<td>上旬</td>
<td>中旬</td>
</tr>
<tr>
<td>8</td>
<td>7.3</td>
<td>7.6</td>
<td>11.3</td>
<td>13.2</td>
<td>14.7</td>
</tr>
<tr>
<td>19</td>
<td>2.0</td>
<td>4.8</td>
<td>5.8</td>
<td>8.7</td>
<td>11.8</td>
</tr>
<tr>
<td>21</td>
<td>4.0</td>
<td>5.8</td>
<td>8.3</td>
<td>12.5</td>
<td>15.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>円作年</th>
<th>7.5</th>
<th>4.7</th>
<th>10.1</th>
<th>2.1</th>
<th>14.2</th>
<th>15.8</th>
<th>14.6</th>
<th>14.4</th>
<th>17.3</th>
<th>16.6</th>
<th>19.3</th>
<th>18.7</th>
<th>17.2</th>
<th>15.3</th>
<th>12.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.5</td>
<td>11.8</td>
<td>16.5</td>
<td>18.0</td>
<td>14.6</td>
<td>14.7</td>
<td>17.7</td>
<td>17.7</td>
<td>17.9</td>
<td>17.9</td>
<td>16.7</td>
<td>14.1</td>
</tr>
<tr>
<td>20</td>
<td>2.2</td>
<td>2.9</td>
<td>6.7</td>
<td>6.2</td>
<td>10.4</td>
<td>13.1</td>
<td>14.7</td>
<td>12.5</td>
<td>15.7</td>
<td>17.4</td>
<td>19.2</td>
<td>18.3</td>
<td>17.0</td>
<td>15.6</td>
<td>13.8</td>
</tr>
<tr>
<td>平均</td>
<td>3.67</td>
<td>5.30</td>
<td>8.37</td>
<td>5.60</td>
<td>12.13</td>
<td>15.13</td>
<td>15.77</td>
<td>13.82</td>
<td>15.90</td>
<td>17.23</td>
<td>18.73</td>
<td>18.00</td>
<td>17.37</td>
<td>15.87</td>
<td>13.50</td>
</tr>
</tbody>
</table>

b. 嘮害状況

スジコガネ類の幼蟲による被害は、畑作物に於ては大豆、裸麦、燕麦、稗、甜菜、大豆、栢豆、亞麻、牧草等の多數に及び、その被害程度も著しく大で、根部原野に於ては、6月中旬の数日の間に麦畑数十町歩が一斉に黄変枯死するのを見る事がある。又林業苗圃に於てはカラマツ、トマツ等の苗木に対する加害が甚だしく、當年苗は主根を切断し、或は主幹を地中に引き込んで切断喫害する。2・3年生苗にあっては、細根は切断摂食し、太い根は剥皮喫害する。

北海道内の各地の苗圃で調査した幼蟲の発生状態は第 18 表の如くである。畑場に最も被害を及ぼしているのはヒメコガネ、ツヤコガネの二種であり、全幼蟲数の約 70% を占めている。十勝地方の圃場ではツヤコガネが約 10% 混じており、又ナガチヤコガネは札幌・小樽方面では苗圃の苗床内に発生する幼蟲の約 85% を占めるが、十勝地方では防風生垣の下にのみ多数発生し、苗床内にはあまり侵入していない。被害は根部・十勝地方に於て甚だしく、鹿追の落葉松苗圃では、樹高 75cm の健全苗の間に、全く枯死した区、樹高 20 cm の区、50 cm の区が明かな斑状を現し、中央台に於てはダイマツ 4 年生苗の被害が著しかったが、標高に於ては播種床に弱齢幼蟲の発生甚だしく、中沢別方面には主に生垣の下にスジコガネ及びヒメコガネが多かった。一般に出出し苗程度造生成育した苗でも、1 m²に第 3 齢幼蟲が30頭以上発生する時は、その苗群の苗は全部枯死を免れない。苗圃に於ては、1948年に大豆畑にヒメコガネ成蟲の大発生を見たが、同年秋には大豆畑跡に多数の弱齢幼蟲を認めた。
<table>
<thead>
<tr>
<th>気候区分</th>
<th>地名</th>
<th>採集総数</th>
<th>スジ</th>
<th>サクラ</th>
<th>ツヤ</th>
<th>ヒメ</th>
<th>マメ</th>
<th>ナガチ</th>
<th>種類別増殖率 (%)</th>
<th>1m²内の増殖数</th>
<th>調査場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>南端部</td>
<td>福島</td>
<td>37</td>
<td>32.4</td>
<td>18.9</td>
<td>16.2</td>
<td>18.9</td>
<td>5.4</td>
<td>8.1</td>
<td>23</td>
<td>—</td>
<td>福島(牧草、ヤブデー)</td>
</tr>
<tr>
<td></td>
<td>七飯</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>5</td>
<td>トドマツ3年生苗床</td>
</tr>
<tr>
<td>中部沿岸</td>
<td>小樽</td>
<td>560</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>97.9</td>
<td>75〜200</td>
<td>112.0</td>
<td>トドマツ播種3年播種全植床</td>
</tr>
<tr>
<td>日本海側</td>
<td>琴似</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>28.9</td>
<td>0.0</td>
<td>71.1</td>
<td>—</td>
<td>2〜4</td>
<td>大豆畑跡</td>
</tr>
<tr>
<td></td>
<td>札幌</td>
<td>970</td>
<td>0.9</td>
<td>1.8</td>
<td>2.3</td>
<td>9.6</td>
<td>9.0</td>
<td>84.8</td>
<td>—</td>
<td>43〜74</td>
<td>トドマツ2年生苗床全域</td>
</tr>
<tr>
<td></td>
<td>池田</td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>27.3</td>
<td>72.7</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>11</td>
<td>トドマツ播種床</td>
</tr>
<tr>
<td>鳥取沿岸</td>
<td>門別</td>
<td>25</td>
<td>36.0</td>
<td>16.0</td>
<td>12.0</td>
<td>36.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>4</td>
<td>カラマツ防風生垣模様</td>
</tr>
<tr>
<td></td>
<td>平</td>
<td>20</td>
<td>5.0</td>
<td>0.0</td>
<td>5.0</td>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>20</td>
<td>カラマツ播種床</td>
</tr>
<tr>
<td></td>
<td>吉山</td>
<td>174</td>
<td>3.4</td>
<td>6.3</td>
<td>26.4</td>
<td>1.1</td>
<td>0.6</td>
<td>62.1</td>
<td>—</td>
<td>6</td>
<td>加地</td>
</tr>
<tr>
<td></td>
<td>森内</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>50.0</td>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>2</td>
<td>カラマツ播種床</td>
</tr>
<tr>
<td>金剛沿岸</td>
<td>大根</td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>45.5</td>
<td>54.5</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>5</td>
<td>トドマツ山出し跡</td>
</tr>
<tr>
<td>洋</td>
<td>船室</td>
<td>57</td>
<td>0.0</td>
<td>3.5</td>
<td>57.9</td>
<td>38.6</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>5</td>
<td>森崎</td>
</tr>
<tr>
<td></td>
<td>新得</td>
<td>274</td>
<td>0.7</td>
<td>15.0</td>
<td>40.1</td>
<td>41.6</td>
<td>2.2</td>
<td>0.4</td>
<td>—</td>
<td>30</td>
<td>トドマツ2年生苗床</td>
</tr>
<tr>
<td>十勝沿岸</td>
<td>鹿追</td>
<td>4388</td>
<td>0.1</td>
<td>9.1</td>
<td>13.9</td>
<td>73.6</td>
<td>0.1</td>
<td>3.2</td>
<td>—</td>
<td>22〜36</td>
<td>カラマツ山出し跡</td>
</tr>
<tr>
<td></td>
<td>準別</td>
<td>73</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>193</td>
<td>カラマツ防風生垣跡</td>
</tr>
<tr>
<td>五所沿岸</td>
<td>桜井</td>
<td>83</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>ガイマツ4年生苗床</td>
</tr>
<tr>
<td>北部</td>
<td>遊の上</td>
<td>78</td>
<td>1.3</td>
<td>0.0</td>
<td>61.3</td>
<td>37.2</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>南部</td>
<td>道晩</td>
<td>58</td>
<td>0.0</td>
<td>0.0</td>
<td>13.8</td>
<td>86.2</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>上狩</td>
<td>29</td>
<td>5.0</td>
<td>0.0</td>
<td>5.0</td>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>中部沿岸</td>
<td>上通領</td>
<td>83</td>
<td>33.7</td>
<td>0.0</td>
<td>8.4</td>
<td>42.2</td>
<td>15.7</td>
<td>0.0</td>
<td>—</td>
<td>10</td>
<td>カラマツ防風生垣模様</td>
</tr>
<tr>
<td>北部</td>
<td>沼川</td>
<td>59</td>
<td>0.0</td>
<td>0.0</td>
<td>91.5</td>
<td>8.5</td>
<td>0.0</td>
<td>0.0</td>
<td>15〜26</td>
<td>22.1</td>
<td>トドマツ3年生苗床</td>
</tr>
<tr>
<td>内陸</td>
<td>鳥栖</td>
<td>6</td>
<td>16.7</td>
<td>0.0</td>
<td>83.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>金山</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>40.0</td>
<td>60.0</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>5</td>
<td>トドマツ2年生苗床</td>
</tr>
<tr>
<td></td>
<td>名寄</td>
<td>21</td>
<td>42.9</td>
<td>0.0</td>
<td>33.3</td>
<td>23.8</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>9</td>
<td>トドマツ山出し跡</td>
</tr>
<tr>
<td></td>
<td>晩照</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>66.7</td>
<td>33.3</td>
<td>0.0</td>
<td>0.0</td>
<td>—</td>
<td>3</td>
<td>トドマツ3年生苗床</td>
</tr>
</tbody>
</table>
ii. 摂 食 量

前述の様に幼齢による被害が甚だしいにもかかわらず、その被害部位がすべて根部であり、土壌中にはまだ発生が行われるために、その摂食量は未だ明らかにされていない。筆者は給与食物量の多少による幼齢の体重増加状況の相関を、自然状態における体重増加状況と比較観察することにより、幼齢の自然状態における摂食量の推定を試みた。

飼育方法

新鮮なトマツ苗の根部を手早く水洗して土を流し去り、瀬紙の間に上して附着した水分を取去り、この根部から直径凡そ 0.6 mm 以下の細根）を集めて飼料とした。

上記のトマツ細根を一定量入れた容積 100 cc の三角コルベットに幼齢を 1 頭ずつ入れ、含水量 60〜70％（対容水量）の海砂を充たし、前述した野外飼育用溝内に静置した。これを 2 週間毎に飼育して幼齢の体重を測定すると共に、飼料及び砂を新鮮なものと交換した。本観察にはヒメガネ幼齢を供試した。飼育期間及び与えたトマツ細根の量は第 19 表の如くである。

飼育結果

飼育開始時の体重を 100 として体重変化の状況を見るに、第 19 表延びに第 23, 24, 25, 26 園に示す如き結果を得た。

第 2 齢期（第 23 図）

6 月中旬に於て 62〜129 mg。平均 97.0 mg の体重を有する第 2 期中末の幼齢を供試した。

a）0.2 g 2 週間毎にトマツ細根を 0.2 g 與えた場合には、6 週間後まで生存した幼齢は 12 頭の内 2 頭であり、全期間を通じての体重の増加は僅か 5% にすぎず、8 週間後迄には全部斃死した。

b）0.5 g 2 週間毎に 0.5 g のトマツ細根を与えた場合には、体重は 6 週間後迄に 30% の増加を示し、平均 130 mg に達したが、8 週間後には再び減少し 10 週間後後に全部斃死した。

c）1.0 g 2 週間毎に 1 g のトマツ細根を与えた飼育に於ては、幼齢は順調に発育をとげ、供試時の 25％が 4 週

1）直径凡そ 0.6 mm 以下の細根を用いた理由は、幼齢はこの程度の細根は切断して、中心の木質部と共に咀嚼吸下するが、それより太い根は皮肉に害するのみで、木質部を食わない事が多いためである。
第 19 表 各区の飼育条件及び体重の変化

<table>
<thead>
<tr>
<th>区間</th>
<th>鳥類</th>
<th>飼育開始月月</th>
<th>飼育場所</th>
<th>飼育開始時と飼育終期の体重</th>
<th>経過時間（週）</th>
<th>体重の変化（指數）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>飼育開始時と飼育終期の体重</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>6.15</td>
<td>野外</td>
<td>0.2</td>
<td>70〜117</td>
<td>92.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2齢中期</td>
<td></td>
<td>0.5</td>
<td>87〜126</td>
<td>103.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3齢初期</td>
<td>室内</td>
<td>1.0</td>
<td>62〜129</td>
<td>95.6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>6.20</td>
<td>室内</td>
<td>0.5</td>
<td>190〜330</td>
<td>280.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3齢初期</td>
<td></td>
<td>1.0</td>
<td>248〜348</td>
<td>284.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.16</td>
<td>野外</td>
<td>1.5</td>
<td>227〜314</td>
<td>282.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3齢初期</td>
<td></td>
<td>2.0</td>
<td>197〜334</td>
<td>270.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3齢初期</td>
<td></td>
<td>2.5</td>
<td>227〜341</td>
<td>291.5</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>6.16</td>
<td>野外</td>
<td>1.0</td>
<td>238〜359</td>
<td>316.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3齢初期</td>
<td></td>
<td>2.0</td>
<td>227〜346</td>
<td>381.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.16</td>
<td>野外</td>
<td>3.0</td>
<td>249〜349</td>
<td>303.6</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>6.17</td>
<td>野外</td>
<td>1.0</td>
<td>433〜577</td>
<td>486.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3齢中期</td>
<td></td>
<td>2.0</td>
<td>405〜596</td>
<td>500.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3齢中期</td>
<td></td>
<td>3.0</td>
<td>420〜553</td>
<td>494.4</td>
</tr>
</tbody>
</table>
第20表 飼育及びに生存頭数

<table>
<thead>
<tr>
<th>区別</th>
<th>飼育頭数</th>
<th>継続 時 間（週）</th>
<th>生存 頭 数</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>2 4 6 8 10 12 14 16 18 20 22 24 26</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>10 9 2 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12 12 7 3 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10 9 6 4 2 0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>10 4 4 4 4 4 3 3 2 2 2 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3 2 2 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>7 5 5 5 3 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>4 4 4 4 4 4 3 3 2 2 2 2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>10 7 6 7 5 5 5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>7 5 5 3 3 1 1 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9 8 7 6 6 6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10 7 6 6 6 6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>10 10 10 10 8 7 6 5 5 5 5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10 10 10 8 7 7 6 5 5 5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9 8 6 5 5 5 5 5 5 5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10 10 6 3 3 3 2 2 2 2</td>
<td></td>
</tr>
</tbody>
</table>

* 内 2 頭飼育化

間後（7月中図）に、全供試ナメが6週間後（7月下旬）までに体重140〜150 mg 前後に第3頭に進んだ。然しながら脱皮後の急激な体重増加期には食糧の不足を来し、12週間後までに全部観察死した。

第3頭初期

- 室内飼育（第24図）
5月下旬に190〜348 mg。平均281.9 mg の体重を有する第3頭初期の幼蝋を供試した。
 a) 0.5 g 体重は2週間後に僅か1.7%の増加を見たのみでその後大差に減少し、供試蝋は最初の2週間で70% が、8週間後までに全幼蝋が観察死した。正常の幼蝋は消化管内容物が淡黒色に透視されるが、本飼育に於ける検査時には、消化管内に排泄物がないためで内外全体が淡い消黒色を呈し、弾力性を欠いた状態にあった。
 b) 1.0 g 体重の増加は10%内外にすぎず、12週間後までに全部観察死した。
 c) 1.5, 2.0, 2.5 g 2週間毎に1.5, 2.0 及び 2.5 g のトマト細粒を與えた各個に於て

第21表 幼蝋飼育温度

<table>
<thead>
<tr>
<th>月</th>
<th>旬</th>
<th>野外</th>
<th>室内</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>上</td>
<td>ー</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>19.2</td>
</tr>
<tr>
<td>6</td>
<td>上</td>
<td>ー</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>20.8</td>
</tr>
<tr>
<td>7</td>
<td>上</td>
<td>ー</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>24.4</td>
</tr>
<tr>
<td>8</td>
<td>上</td>
<td>ー</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>25.0</td>
</tr>
<tr>
<td>9</td>
<td>上</td>
<td>ー</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>23.8</td>
</tr>
<tr>
<td>10</td>
<td>上</td>
<td>ー</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>18.2</td>
</tr>
<tr>
<td>11</td>
<td>上</td>
<td>ー</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>ー</td>
<td>11.2</td>
</tr>
</tbody>
</table>

第24図 同前（室內）第3頭初期、281.9 mg

![第24図 同前（室內）第3頭初期、281.9 mg](image-url)
は、26週間後（11月上旬）に越冬に入るまで正常な発育をとげた。体重の変化は、14週間後（9月上旬）までは3週の間に大差はないが、それ以後は2.0及び2.5gを與えた両区の幼苗がやや顕著な体重の減少を来し、2.0gの区で1頭、2.5gの区で2頭が老熟期に達したが、1.5gの区では第3齢中期内に後期の状態まで持つ、老熟期には達しなかった。

ii. 野外飼育（第25図） 6月上旬に227～359mg、平均300.4mgの体重を有する第3齢初期の幼苗を供試した。
a) 1.0g 2週間毎に1.0gのトマツ細根を与えた場合の体重増加は10%にすぎず、18週間後までに全部鶉死した。
b) 2.0及び3.0g 2週間毎に2.0g及び3.0gを与えた両区に於ける体重の変化は、顕著な相違は認められず、36～40%の体重増加をなして22週間後（11月上旬）に越冬に入った。然して2gの区では20週間後に、3gの区では14週間後に体色が淡黄色となり、3gの区の4頭のみが越冬迄に第3齢中後の状態に達した。

第3齢中期内（第26図）
6月上旬に405～596mg、平均494.3mgの体重を有する第3齢中期の幼苗を供試した。飼育は野外に於て行った。
1.0, 2.0及び3.0gの各区に於て、飼育結果には顕著な相違が認められる。各区とも2～5%の体重を増加した後、6週間後よりやや体重を減し、10週間後（8月下旬）には各区とも消化管内に摂食物を留めない第3齢老熟期の状態に達した。

考察

以上の飼育結果から各齢期の大略の摂食量を探察すれば、次の如くである。
第2齢期 2週間毎に0.5g以下の摂食量では第3齢に進む事が出不来ないが、1g與えた場合には、7月中旬から下旬にかけて平均140～150mgの体重で第3齢に達した。この場合の体重の増加状況は、自然状態に於ける経過及び十分食物を与えた場合の飼育結果と良く一致した。
ており、又第3齢に達した季節も正常である故、第2齢中・後期に於ては、トマツ細根1gを摂食するのに2週間を要する程度の摂食活動を行っているものと考えられる。

第3齢初期 脱皮後数日にして急激に摂食量が増加するため、第2齢期より後續して2週間毎に1gを供えた区に於ては、脱皮後（脱皮時平均体重150mg）2週間は相当の体重増加を見るにもかかわらず、第23図に示す知く体重増加曲線は180mg附近から上昇し、4～6週間後までに全部殻死した。平均体重210mg。また第3齢初期（平均体重285mg）より飼育を開始した幼蟲に於ても、2週間毎に1gの食餌では体重の増加は著しく緩慢で、12週間後までに全部殻死している。以上の結果から推定し、体重凡そ180mg迄は2週間毎に1gの摂食で生長出来るが、それ以後は不足するものと考えられる。

室内飼育に於て、1.5, 2.0及び2.5gを供えた3区の体重変化の曲線の間には、8月下旬迄は何等の相違も認められないが、9月以降に於ては2.0, 2.5gの区が著著な体重の減少を示して老熟期に達したのに反し、1.5gの区ではなお体重の増加を続けて、越冬に至る迄に老熟期に達しなかった。野外飼育に於ては、2g及び3gの区のみが第3齢後期に近い状態に達した。本飼育に用いた第3齢初期の幼蟲は、前項（生長の項）の記述にも明らかなる様に孵化後第3年目にあり、翌夏羽化する個体である。即して自然状態にあっては、第3年目秋迄には老熟期に達くも第3齢後期には達している故、本飼育に於て第3齢中期の状態で止まっているのは、発育がやや遅れていると考えられる。即ち2週間毎に1.5gの摂食では、自然状態に於ける場合よりもはるかに不足であり、2.0gの摂食でも、野外飼育の結果から見ればやや不足せる様に感じられるが、不自然な飼育条件下にあるために幾分生長が遅延する事も考えられる故、第3齢初期（平均体重300mg）の幼蟲が正常な発育をとるには、トマツ細根を2週間毎に少なくとも2g摂食する事が必要であると考えられる。なお、室内飼育と野外飼育との生長の相違は、飼育温度が大きな原因の1つと考えられる。

第3齢中期 1g, 2g及び3gの各区に於て、生長には何等の相違も認められず、8月下旬から9月上旬にかけて老熟期に入っている。自然状態にあっても、凡そ9月より老熟期に入る故、本飼育に於ける最少摂食量であるところの2週間毎に1gの摂食でも十分な事を示している。

又よりコガネムシ幼蟲は、地中にあって単に生物栄養のみを食するものではなく、多くの半腐敗植物質や土壌有機分を摂取しているが、飼にトマツ細根のみを食するものとしてヒメコガネの全幼蟲期間の摂食総量を概算すると次の如くである。

8月上旬より下旬にかけて圃場に卵が産卵された卵は、周囲の土壌から約3mgの水分を吸收
して，約3週間後に孵化する。孵化直後の幼蟲は周囲の腐植質を食して生長するが，この量は極く少ない。第2年目には次第に摂食量を増加し，5〜6月の第2鰭中期の頃には，2週間毎に1gのトマツ細根を要する様になる。6月末より7月にかけて第3鰭に入るや，急速に摂食量を増加し，体重170〜400mgの頃には最も激しく摂食するため，2週間毎に2〜3gのトマツ細根を必要とする。この時期は幼蟲の発育程度によってやや異なるが，凡そ第2年目の7〜10月の間，或は第2年目の8月から第3年目の8月迄の間に相当する。又して第3鰭後期に近づくと，それ以後は内部の成熟に必要なエネルギーを摂取するのみとなり，2週間毎に1gの摂食で十分となり，老熟期に至って全く摂食しなくなる。以上の結果を図示すれば，第27図の如くである。

上記の計算によれば，全幼蟲期間の摂食総量は約50g(40gより55gまで)となる。トマツ細根の重量は季節によってもやや異なり，又同年生の苗でも根の張り方が苗の発育状態によって著しく異なるため，直径0.6mm以下の細根50gを摂取するに要する苗数は正確には求め得ないが，2年生トマツ苗では200本，山出し苗では約50本を要する。もとより幼蟲は地中にあって，更に0.6mm以下の細根の僅かではなく，さらに太い根の皮を摂食し，又腐植及び土壌有機質をも摂取するため，実際に加害する苗木の本数は上記の計算よりもはるかに少ないものと思われるが，被害地を実地に調査した結果から見れば，一般に1㎡に第3鰭幼蟲が30頭以上営巣する時は，同地区の苗木は若年苗は勿論，山出し苗であっても全滅を免がれず，10頭以上の営巣により著しく生長を阻害される。又播種苗にあっては，2〜3頭の営巣によっても数十本の枯死苗を生する。

c. 移動

i. 前進方法

コガネムシ類の地中に於ける前進方法に就いては，先に発表したため(内田・中島，1948)，
ここにはその要領のみを略記する。

幼虫は常に土壌を周囲に押し掘って作つた卵形の空洞内に棲息する。前進に際しては、

a) 前進方向の壁を大腿で借り、或は左右の大腿を合して1個のシャベルの如くに用い、
ある程度の土壌を崩し出し、これを胸部附近に集めて1つの山を作る。

b) この土壌と前方の壁との間に体を滑り込ませ（幼虫の向きは a の場合の逆になる）。
この土壌を頭部と腿脚とできえながら押移し、後方（進行方向に対して）の壁に強く
押し付ける。

c) ここで再び体を反転させて進行方向に向きなおり、前方の壁を崩す。

ii. 前 進 速 度

a）測 定 方 法

2枚のガラス板（凡そ 27 cm × 32 cm）を幼虫の体幅よりやや広い間隔で平行に保ち（7〜8
mm）、周囲を木枠で固定し、このガラス板の間に充分洗浄した直径 0.3 mm 内外の適湿の海砂
を充填し、幼虫を放した。この幼虫の位置を1時間毎に記録し、毎時間の前進距離を求めた。

b）測 定 結 果

ヒメコガネ、ツヤコガネ及びスジコガネ3種の幼虫についての測定結果は第22、23表の如
くである。前進方法が前述の如く複雑なためその速度は遅く、1時間の最高はヒメコガネ18
cm、ツヤコガネ15.5 cm、スジコガネ2.7 cm であり、又1時間の平均速度（実験開始より 6 時間
以内）はヒメコガネ6.4 cm、ツヤコガネ10 cm、スジコガネ1.9 cm にすぎない。これ等の値を
他のコガネムシ類幼虫の速度と比較すると第24表の如くである。

温 度 の 影 響

ヒメコガネ幼虫について、12.5〜14.9℃、18.4〜19.0℃、19.7〜20.0℃ の 3 温度区に於ける
前進速度を比較するに、12.5〜14.9℃ の様な低温の場合には速度の低下が顕著であるが、18.4
〜19.0℃、19.7〜20.0℃ の両温度区の間に明らかな相違は認められなかった。（第25表 a, b）

発育程度との関係

第25表 a, b の検定により、18.4〜20.0℃ の範囲内に於ては、温度の高低は速度の遅速に
顕著な影響を及ぼさないものと考えられるので、この温度範囲内で第 3 齢の初期、中期、後期
及び老熟期の各期（体重 200〜600 mg）に属する幼虫の前進速度を比較した。その結果は第25
表 c の如くであり、最初の6時間内に於ては、発育の程度（第3齢内に於ける）による前進速度
の顕著な相違は認められない。然しながら絶食状態においては、時間の経過と共に明らかな相
違が認められ、第3齢初期の幼虫は72時間後には前進運動を行わず、老熟期の幼虫は卵化の
ための完全な上昇を作つてその中に留まり、第3期中、後期の幼虫のみが前進を続けた。初期と中、後期の相違は体内貯蔵エネルギー量の相違によるものと考えられる。又前進速度の持続状態はツヤゴナネ幼虫の方がヒメゴナネよりもはるかに顕著であった。

<table>
<thead>
<tr>
<th>第22表</th>
<th>ヒメゴナネ第3齢幼虫の前進速度 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>季節</td>
<td>初期</td>
</tr>
<tr>
<td>温度 (℃)</td>
<td>18.4~19.0</td>
</tr>
<tr>
<td>平均体重 (mg)</td>
<td>203</td>
</tr>
<tr>
<td>継</td>
<td>1.5</td>
</tr>
<tr>
<td>過</td>
<td>7</td>
</tr>
<tr>
<td>通</td>
<td>8</td>
</tr>
<tr>
<td>時</td>
<td>9</td>
</tr>
<tr>
<td>経</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>第23表</th>
<th>スジョゴナ及びツヤゴナ幼虫の前進速度</th>
</tr>
</thead>
<tbody>
<tr>
<td>種</td>
<td>A. testaceipes</td>
</tr>
<tr>
<td>季節</td>
<td>第3齢中頃</td>
</tr>
<tr>
<td>平均体重</td>
<td>592.5 mg</td>
</tr>
<tr>
<td>温度</td>
<td>12.5~14.9℃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>走行距離 (cm)</th>
<th>平均 (cm)</th>
<th>範囲 (cm)</th>
<th>平均 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~6</td>
<td>0.0~0.8</td>
<td>0.3</td>
<td>2.0~15.5</td>
</tr>
<tr>
<td>24~30</td>
<td>0.0~2.7</td>
<td>1.9</td>
<td>0.0~15.0</td>
</tr>
<tr>
<td>48~50</td>
<td>0.0~1.8</td>
<td>1.0</td>
<td>0.0~13.0</td>
</tr>
<tr>
<td>72~77</td>
<td>--</td>
<td>--</td>
<td>0.0~11.5</td>
</tr>
<tr>
<td>96~100</td>
<td>--</td>
<td>--</td>
<td>4.0~11.0</td>
</tr>
<tr>
<td>120~126</td>
<td>--</td>
<td>--</td>
<td>0.0~10.0</td>
</tr>
</tbody>
</table>
第24表 各種幼鶏の前進速度の比較

<table>
<thead>
<tr>
<th>種名</th>
<th>齢期</th>
<th>体重 (mg)</th>
<th>温度 (℃)</th>
<th>最高時速 (cm)</th>
<th>平均時速 (cm)</th>
<th>実験者</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptopha/la picea</td>
<td>2</td>
<td>53</td>
<td>13.3</td>
<td>4.0</td>
<td>0.3</td>
<td>内田・中島 1948</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>241</td>
<td>21.8</td>
<td>11.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Anomala rufocupa</td>
<td>3. 初</td>
<td>203.0</td>
<td>18.4~19.0</td>
<td>9.5</td>
<td>5.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 中</td>
<td>311.3</td>
<td>19.7~20.0</td>
<td>14.5</td>
<td>7.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 後</td>
<td>450.0</td>
<td>18.4~18.0</td>
<td>17.0</td>
<td>11.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 吹</td>
<td>520.5</td>
<td>12.8~14.9</td>
<td>7.5</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 老熟</td>
<td>489.5</td>
<td>19.7~20.0</td>
<td>16.0</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 老熟</td>
<td>597.0</td>
<td>18.4~19.0</td>
<td>18.0</td>
<td>6.68</td>
<td></td>
</tr>
<tr>
<td>A. lucens</td>
<td>3. 初</td>
<td>310.7</td>
<td>20.0~23.2</td>
<td>15.5</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>A. testaceipes</td>
<td>3. 中</td>
<td>520.5</td>
<td>12.5~14.9</td>
<td>0.8</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Melolontha hippocastani</td>
<td>3</td>
<td>1590</td>
<td>19</td>
<td>8.2</td>
<td>4.7</td>
<td>SCHWERDPEFFER 1939</td>
</tr>
</tbody>
</table>

第25表 幼鶏の前進速度の差の検定

a) 12.5〜14.9℃と19.7〜20.0℃の二温度区間における前進速度の差の検定
（ヒメコガネ 第3齢後期）

<table>
<thead>
<tr>
<th>要因</th>
<th>偏差平方和</th>
<th>自由度</th>
<th>不偏分散</th>
</tr>
</thead>
<tbody>
<tr>
<td>幹間分散</td>
<td>318.208</td>
<td>4−1=3</td>
<td>106.0693</td>
</tr>
<tr>
<td>幹内分散</td>
<td>262.525</td>
<td>10+1=11</td>
<td>8.4172</td>
</tr>
<tr>
<td>全分散</td>
<td>570.733</td>
<td>34−1=33</td>
<td></td>
</tr>
</tbody>
</table>

b) 18.4〜19.0℃と19.7〜20.0℃の二温度区間における前進速度の差の検定
（ヒメコガネ 第3齢初期）

<table>
<thead>
<tr>
<th>要因</th>
<th>偏差平方和</th>
<th>自由度</th>
<th>不偏分散</th>
</tr>
</thead>
<tbody>
<tr>
<td>幹間分散</td>
<td>30.875</td>
<td>4−1=3</td>
<td>10.2917</td>
</tr>
<tr>
<td>幹内分散</td>
<td>307.568</td>
<td>4(6−1)=20</td>
<td>15.3792</td>
</tr>
<tr>
<td>全分散</td>
<td>338.453</td>
<td>4×6−1=23</td>
<td></td>
</tr>
</tbody>
</table>

c) ヒメコガネ 第3齢 初・中・後・老熟各齢幼鶏の前進速度の差の検定
（18.4〜20.0℃）

<table>
<thead>
<tr>
<th>要因</th>
<th>偏差平方和</th>
<th>自由度</th>
<th>不偏分散</th>
</tr>
</thead>
<tbody>
<tr>
<td>幹間分散</td>
<td>125.67</td>
<td>8−1=7</td>
<td>17.963</td>
</tr>
<tr>
<td>幹内分散</td>
<td>741.50</td>
<td>8(6−1)=40</td>
<td>17.863</td>
</tr>
<tr>
<td>全分散</td>
<td>846.17</td>
<td>8×6−1=47</td>
<td></td>
</tr>
</tbody>
</table>
d. 棲息深度の季節的変化

コガネムシ類幼虫の土壤中の棲息深度を詳細に追求することは、該当防除上重要な事柄である。夏季、地表下数層の深層で貪食。生長した幼虫は、秋季地温の低下と共に深層に移行して越冬に入り、翌春再び浅層に移動する事が多い研究者によって報告され、又夏期に激しい日照のために上層の地温著しく上昇する時にも、下層に移動することが知られている。

北海道全般に棲息するヒメコガネの幼虫について、札幌（石狩平野、洪積地）、沼川（宗谷、重粘土地）、鹿追（十勝原野、火山灰地）の3地点でその棲息深度を調査した結果は第28図の如くである、調査対象はいずれもトマト苗床で、札幌では地表下22cmから、沼川では地表下17〜18cmから重粘土の基盤となっている。鹿追は軽粘土火山灰土である。

幼虫棲息深度は第28図に明らかな様に、鹿追に於ては、夏季は地表下僅か1cm程の所から約25cmの深さまで分布するが、5〜15cmの間のトマト細根の繁殖している層に最も多く棲息する。秋季、上層の地温が下層のそれよりも低下する頃から次第に下層に移り、最も深く潜行する個体は45cm迄達するが、20〜30cmの間にも多くの幼虫が認められ、10月中旬（1948）には15cmより浅い層（9〜11℃以下）に、10月下旬（1947）には20cmより浅い層（7〜8℃以下）に止まる幼虫数が急激に減じている。春季、4月下旬には棲息層の地温が未だ7〜8℃にすぎず、幼虫の移動は認められない。5月中旬の棲息状況を見ると、12cmより浅い層（7〜19℃）に移動した群と、16cm以深の層に止まっている群とに別れている。而してその移行點の地温は凡そ11〜13℃を示している。

SCHWERDTFEGER (1939) によれば、Melolontha hippocastani 及び M. melolontha の幼虫は、
ドイツにおける夏は地表下5～9インチの間、冬は14～23インチの間に多数発見され、幼虫
の下層部への移行は9月中旬から10月中旬の間で、発虫層の温度が10～11℃の時に行われ
翌春の上層部への移行は4月中旬より5月中旬の間で、地温が7～10℃に達した時に行われる
という。KOSMACHEVSKII (1937) によれば、Voronezh では冬眠は地表下16～56インチの間で
行われ、5月前半期に地温が8.0～9.2℃に達した時に上層部に移行し、10月初旬、7.6～9.2℃
に達した時に再び下層に移るという。又 PRINZ (1928) は Polypylla alpina の移動は地表下 20
cm の温度が10～12℃に達した時に行われる事を報告している。

夏季は上層土部が下層土部よりも高温であるが、秋季気温の低下と共に次第にその差がな
くなり、北海道に於ては9月中・下旬より上層土の方が低温となる (第22図)。この逆転期の地
温は凡そ13～17℃を示す。メコガネ幼虫はこの頃より次第に下層に移り、10月下旬、発虫
層の温度が9～10℃に低下する頃迄には地表下20～30 cm 近移行して越冬に入り、翌春11～
13℃に上昇した時に再び活動を開始する様に観察される。

十勝地方は一般に積雪が少なく且つ気温が厳しいために、土壤の凍結は著しく、新得で32
cm、帯広で68 cm、本別で82 cm (1936年11月～1937年4月) の凍結を見ている (池田, 1945.
第29図)。然しながら帯広の平均積雪量は2月の32 cm が最も深いにたいし (1894～1947 の
統計)、筆者が検討した1947～1949年の間に第26表の様に2倍以上の積雪がある。

D = a + bs

但し D は凍結層の深さ、s は積雪量 (cm)、a, b は常数
第26表 帯状に於ける積雪量
（札幌管区気象庁）

<table>
<thead>
<tr>
<th>年</th>
<th>月</th>
<th>積雪量(cm)</th>
<th>最深</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均</td>
<td></td>
</tr>
<tr>
<td>1947</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>56</td>
<td>66</td>
</tr>
<tr>
<td>1948</td>
<td>1</td>
<td>72</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1949</td>
<td>1</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>63</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

なる関係があり、北海道於ては 1 月には約 60 cm, 2 月には約 90 cm 以上の積雪があれば土壌の凍結は起らない事を報告しているが、1947年 11 月より 1948年 3 月迄の芽室に於ける
実測結果第 30 圖の如くであり、土壌の凍結を見ていないために、数個の凍結を見る様々な場合に凍結の行動については知る事が出来なかった。

![第30図 芽室に於ける地中温度の変化（東, 1950）](image)

重粘土地帯の沼沢に於ても相當数のコガネムシ類の発生を見るが、幼虫の棲息地はいずれも表土が 10 cm 程度以上存在する場所に限られ、1〜2 cm より表土の存在しない地帯や、重粘土基盤の露出した部分には全く棲息しない。幼虫の潜行深度は一般に重粘土の基盤に達するまでで終っており、粘土層中に入れて土層を作った個体は 2〜3 頭より見受けられなかった。
札幌、沼沢共に積雪量が多く、土壤の凍結は、晩秋の積雪前に、年により数倍の凍結を見るのみで問題とするに足らない。

e. 溫 度 選 好

コガネムシ類の幼虫が土壤中に於て上述の様々な移行運動を行う要因としては、SCHWERDT-FEGER (1939) の指摘している如く、土壤温度の変化、幼虫体の生理的過程及び種の特性等が考えられる。これ等の内、土壤温度の変化と幼虫棲息深度との関係については、各時期特に春季及び秋季の土壤温度と幼虫棲息深度の観測値が多数報告されているが、幼虫体の温度選択性、選好温度及びその季節的変化等に関しては何等報告されていない様である。筆者はヒメコガネを材料としてこれ等の点に 2，3 の検討を試みた。

i. 材料及び方法

実験材料 1947, 1948年の 4 月上旬及び下旬, 7 月上旬, 8 月下旬, 10 月下旬に十勝国
清水郡林業部苗圃及び新得苗圃で採集したヒメコガネの幼虫について実験した。

実験方法　実験装置は第31図に示す如くである。両端のみ針板張りの木箱A
(15cm×15cm×50cm)に充分洗滌した温度約47%（対容水量）の海砂を満たし、この中
中に幼虫を一様に分散放置し（実験1回につき30頭以内）、B及びCにより夫々冷却
試びに加熱し、A内の温度変化はg1～g7に挿入した寒暖計により1時間毎に測定した。
A内の温度傾斜が一定の値を示す迄に5～6時間を要した。温度変化の状況は第32
図に示す如くである。而して一定時間後に
Aを取出し、一端より5cm毎に第1区（低温部）より第10区（高湿部）まで各區の幼虫
数を調査した。

i. 実験結果

a) 4月上旬

第1年後期（供試幼虫30頭、平均体重16.2mg、第33図、1）低温部に集まる傾向が明らかで、供試幼虫の87%が6.0～22.0℃（第1区～第6区）の間に集合した。然し最も多く（60%）集合したのは10.0～16.0℃
（第3、4区）の間であった。

b) 4月下旬

第1年後期（供試幼虫20頭、平均体重17.6mg、第33図、2、A）約85%の幼虫が19.5℃
以下に移行し、9.3～13.4℃（第2区）に最も多く集合した。

第3年中期（供試幼虫60頭、平均体重352.0mg、第33図、2、B）低温部に集まる傾向が
顕著であり、16.7℃以下（第3区以下）に83%が移行し、50%が最低温部5.0～9.2℃（第1区）
に発生した。

第3年老熟期（供試幼虫30頭、平均体重507.9mg、第33図、2、C）既に消化管内に摂食
物が認められず、体は乳白色となった前腹部に近い個体であるが、運動は未だ活発である。この場合は第3齢中期の場合とは趣を異にし、約73%が16.3〜24.0℃（第4〜第6区）の間に集合した。

c. 7月上句

第2齢後期（供試幼數180頭、平均体重113.8 mg、第33図、3、A・B）低温部に集まる傾向が顕著であり、温度傾斜17.2〜50.2℃の実験に於ては67%が最低温度17.2〜20.2℃（第1区）に集集し、温度傾斜4.2〜41.0℃の実験に於ては4.2〜7.5℃（第1・2区）に82%の幼虫の集合が見
第3齢初期（供試個数180頭、平均体重176.2mg、第33図、3、D・E）低温部に集まる傾向は第2齢幼鱗と同様であり、17.2〜50.0℃の温度傾斜内では80%が23.8℃以下（第3図以下）に、54%が20.2℃以下（第1図）に集合した。4.2〜41.0℃の温度傾斜内では83%が11.0℃以下（第4図以下）に、37%が6.5℃以下（第1図）に集合した。

第3齢後期（供試個数10頭、平均体重555.8mg、第33図、3、F）体は淡黄色を呈した個体である。供試個体は10頭で、低温部に集まる傾向は明らかで、40%が11.5℃以下（第1図）に集合し、22℃以上には幼鱗が認められなかった。

高温部に食餌した場合（第2齢後期、供試個数90頭、平均体重71.3mg、第33図、3、C）前記観察結果に於て、幼鱗はいずれも低温部に移行する傾向、高温部に食餌の存在する場合にも同様の行動を示すか否かを知るために、この実験を行った。食餌としては新鮮なトマト細根を用い、これを第7区（加熱壁より15〜20cmの間）に給した。給餌区の温度は28〜29℃を呈した。幼鱗の集団状態には2個の山が認められ、給餌区及びその附近に48%、低温部（17℃以下、第1・2区）に38%が集合した。

d) 8月下旬

第3齢中期（供試個数50頭、平均体重241.5mg、第33図、4、A）34%が10.1〜15.2℃（第2図）に、68%が20.4℃以下（第1〜第3図）に集合した。

第3齢後期（供試個数10頭、平均体重509.1mg、第33図、4、B）体は淡黄色を呈した個体である。供試個体は10頭についての結果であるが、80%が21.1℃以下（第3図以下）に集合した。

e) 10月下旬

第3齢中期（供試個数60頭、平均体重293.4mg、第33図、5、A・B）この時期における幼鱗の集団は非常に密であり、1.3〜41.4℃の温度傾斜に於ては供試個体の50%が10.0〜11.7℃（第5図）の5cmの間に発生し、67%が10.0〜14.4℃（第5〜6図）の間に見出された。温度傾斜1.0℃〜15.3℃の場合に於ても11.3〜12.5℃（第6〜7図）に47%の幼鱗が集合した。

第3齢老熟期（供試個数60頭、平均体重440.1mg、第33図、5、C・D）体は黄色で消化管内に捕食物を見ない老熟幼鱗である。集団状態は第3齢中期内の場合と同様で、37%が11.7℃〜14.4℃（第6図）に、73%が10.0〜17.3℃（第5〜第7図）の間に集合した。以上各季節に於ける各齢期の結果を要約すれば第27表に示す如くである。
第27表　幼齢の集合状況

<table>
<thead>
<tr>
<th>季節</th>
<th>齢別</th>
<th>供試頭数</th>
<th>平均体重 (mg)</th>
<th>実験開始時の温度 (°C)</th>
<th>実験前後</th>
<th>幼齢の集合の見られた温度範囲 (°C)</th>
<th>幼齢の集合の特殊顕著</th>
<th>幼齢の集合が特に顕著な温度範囲 (°C)</th>
<th>集合率 (%)</th>
<th>集合率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月上旬</td>
<td>1・未</td>
<td>30</td>
<td>16.2</td>
<td>13.9</td>
<td>24</td>
<td>3.1〜41.8</td>
<td>6.0〜22.0</td>
<td>87.0</td>
<td>10.0〜16.0</td>
<td>60.0</td>
</tr>
<tr>
<td>4月下旬</td>
<td>1・未</td>
<td>20</td>
<td>17.6</td>
<td>19.1</td>
<td>24</td>
<td>5.0〜38.0</td>
<td>18.5以下</td>
<td>85.0</td>
<td>9.3〜13.4</td>
<td>35.0</td>
</tr>
<tr>
<td>4月下旬</td>
<td>3・中</td>
<td>60</td>
<td>352.1</td>
<td>19.0</td>
<td>20</td>
<td>5.0〜39.0</td>
<td>16.7以下</td>
<td>83.3</td>
<td>9.2以下</td>
<td>50.0</td>
</tr>
<tr>
<td>4月下旬</td>
<td>3・老</td>
<td>30</td>
<td>507.9</td>
<td>18.2</td>
<td>20</td>
<td>5.0〜40.5</td>
<td>16.3〜24.0</td>
<td>73.4</td>
<td>16.3〜24.0</td>
<td>73.4</td>
</tr>
<tr>
<td>7月上旬</td>
<td>2・未</td>
<td>90</td>
<td>117.0</td>
<td>19.5</td>
<td>20</td>
<td>17.2〜50.2</td>
<td>23.0以下</td>
<td>80.0</td>
<td>20.2以下</td>
<td>66.7</td>
</tr>
<tr>
<td>7月上旬</td>
<td>2・末</td>
<td>90</td>
<td>110.5</td>
<td>18.5</td>
<td>20</td>
<td>4.2〜41.0</td>
<td>8.8以下</td>
<td>83.3</td>
<td>7.5以下</td>
<td>82.3</td>
</tr>
<tr>
<td>7月上旬</td>
<td>3・初</td>
<td>90</td>
<td>177.0</td>
<td>19.5</td>
<td>20</td>
<td>17.0〜49.1</td>
<td>23.8以下</td>
<td>79.9</td>
<td>20.2以下</td>
<td>54.3</td>
</tr>
<tr>
<td>7月上旬</td>
<td>3・初</td>
<td>90</td>
<td>175.4</td>
<td>18.0</td>
<td>20</td>
<td>4.0〜42.5</td>
<td>11.0以下</td>
<td>83.4</td>
<td>6.8以下</td>
<td>36.7</td>
</tr>
<tr>
<td>7月上旬</td>
<td>3・末</td>
<td>10</td>
<td>535.8</td>
<td>27.7</td>
<td>20</td>
<td>7.5〜38.6</td>
<td>22.0以下</td>
<td>100.0</td>
<td>11.5以下</td>
<td>40.0</td>
</tr>
<tr>
<td>8月下旬</td>
<td>3・中</td>
<td>50</td>
<td>241.5</td>
<td>26.4</td>
<td>8</td>
<td>5.3〜44.4</td>
<td>20.4以下</td>
<td>68.0</td>
<td>10.1〜15.2</td>
<td>34.0</td>
</tr>
<tr>
<td>8月下旬</td>
<td>3・末</td>
<td>50</td>
<td>509.1</td>
<td>25.1</td>
<td>8</td>
<td>8.0〜44.6</td>
<td>21.1以下</td>
<td>80.0</td>
<td>21.1以下</td>
<td>80.0</td>
</tr>
<tr>
<td>8月下旬</td>
<td>3・中</td>
<td>30</td>
<td>325.3</td>
<td>10.7</td>
<td>8</td>
<td>1.3〜41.4</td>
<td>10.0〜16.7</td>
<td>66.7</td>
<td>10.0〜11.7</td>
<td>50.0</td>
</tr>
<tr>
<td>10月下旬</td>
<td>3・末</td>
<td>30</td>
<td>262.5</td>
<td>12.0</td>
<td>8</td>
<td>1.0〜16.3</td>
<td>6.4〜12.5</td>
<td>79.9</td>
<td>11.3〜12.5</td>
<td>46.6</td>
</tr>
<tr>
<td>10月下旬</td>
<td>3・末</td>
<td>30</td>
<td>441.7</td>
<td>10.7</td>
<td>8</td>
<td>1.3〜41.4</td>
<td>10.0〜17.3</td>
<td>73.3</td>
<td>11.7〜14.4</td>
<td>36.7</td>
</tr>
<tr>
<td>10月下旬</td>
<td>3・末</td>
<td>30</td>
<td>438.4</td>
<td>12.0</td>
<td>8</td>
<td>1.1〜15.3</td>
<td>11.3〜13.3</td>
<td>66.7</td>
<td>11.3〜12.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

28〜29℃の間に給養した場合

| 7月上旬 | 2・末 | 90 | 71.5 | 26.3 | 7 | 5.8〜38.0 | 17.0以下 | 37.7 | 27.8〜29.4 | 26.7 |
|----------|------|----------|----------------|---------------------|---------|---------------------|---------|---------|-------------|

iii. 考察

以上記述した実験成績に基づき、ヒメダガネ幼齢の温度選好につき検討すると、次の如くである。

夏季　1年を通じ一般に比較的低温部に集まる傾向を有することが明らかである。即ち全供試動物（給養実験を除く）690頭の内、20℃以上の区に留まった個体は僅か6.3%にすぎない。然しながら特に7月上旬の実験に於ては、6.5℃或は7.5℃以下の低温部に多数の個体が雑集し、これ等の個体は低温のために感覚を消失し、体は弾力性を失なっていた。幼齢がこの様々な低温を選好するとは考えられず、むしろ実験開始当初に比較的低温を求めてこの区に集まった幼齢が、温度が々々低下するために動作が次第に緩慢になり、再び高温部へ移行する以前にこの区の温度が活動温度範囲以下に低下してしまったためであろう。然しながらこの様々な低温部に留まる傾向は、8月下旬以後の実験では減少する事実から、夏季に於ては、適温以下の温度を敏感に感受してこの地区から遠れる能力が、他の季節より微弱であると見ることが出来よう。
秋季 8月下旬以後の実験に於ては、最低温部(第1区)に留まる個体が減少して10〜15℃の間に多数集合し、越冬期前の8月下旬に於ては、10〜12℃の狭い範囲に過半数の幼蟲の集合が見られた。即ち秋季には相広高度の温度選択性を有するものと考察される。然しながら8月下旬に幼蟲が多数集合した地域の温度は10.0〜14.5℃であって、実験開始時の温度11〜12℃を中心とした狭い範囲である故、幼蟲が10.0〜14.5℃の範囲を選好してこの区に集まったものか、或は実験中の温度変化を嫌って、実験期間中に温度変化の少なかったこの区に集まったものか明らかでない。然し8月下旬の実験に於ても、実験開始時の温度が25〜26℃の高温であるにも拘らず、やや10.1〜15.2℃の如き、10月下旬の実験と大差のない温度地域に集合している事実から、秋季に於て幼蟲が選好する温度は10〜15℃の間であると思考される。

以上の如く、夏季には低温に対して鈍感な幼蟲が、深秋に近づきつれて低温に対して敏
感になる現象は、越冬期に近づくにつれて、幼蟲体生理的変化が起った結果に基づくものであろう。土壌温度は、夏季の間は上層の方が高温であるが、秋季の気温の低下と共にこの関係
は反転し、北海道に於ては第22図に明らかなる様に大体9月下旬から上層の方が低温となる。低
温に対して鈍感になった幼蟲は、特に朝夕の低温を避けて漸次下層に移るが、この頃の温度
は未だ平均14〜16℃を示している故、なお盛んに摂食を続け、10月末に至って越冬に入るも
のと考えられる。

春季 上記の選択性は、翌春4月上旬、地温がなお2〜4℃の低温を示し、幼蟲が未
だ活動を開始する以前までは保持されているが(第25図及び第33図、1参照)、4月下旬の実験
に見る如く、春季、摂食を開始した幼蟲に於ては、再び低温に対して鈍感になる様に観察さ
れる。

孵化期 コガネムシ類が孵化に際して、夏季の棲息層と越冬期のそれとの中間層に集ま
る傾向のあることが多数報告されているが、4月下旬の実験で明らかなる知く、第3齢中間期の個
体は低温部に留まるに拘らず、孵化期に近い個体は16.3〜24.0℃の温度区に集まる。この様
に孵化期に近い個体は温度に対する感受性が強いので、日中と夜間との温度変化の激しい上層
部を避けて中層に集まるのではないかと考えられる。又この時期に於ける選好温度は秋季に於
ける10〜15℃よりも約5〜10℃高い事が観察された。

食餌の存在する場合 7月上旬の実験に於て、第2齢幼蟲が、食餌の存在しない場合に
は低温部に集まる傾向が相営顕著であるにも拘らず、30℃附近の地域に食餌の存在する場合
には、幼蟲の集合状態に2個の山の認められた事は、実験開始時に給餌区より高温部にあった
幼虫がいずれも給餌区に移ってここに留まり、給餌区より低温部にあった幼虫が前記諸実験と同様にさらに低温の方が移行した結果であると考えられ、食餌の存在により温度選好性が複雑されたものと推定される。

4. 前蛹及び蛹

a. 経 過

老熟幼虫（5年目の幼虫の一部及び4年目の幼虫の全部）は土壌内で次第に体の弾力性を失い、外部より刺激を加えても腹部を動かすのみで、頭部、口器、脚等を動かし得なくなる。この時を以て前蛹期の始めとすれば、これ等の老熟幼虫は、6月上旬より7月上旬の間に、1週間内外の前蛹期を経て蛹化する。

b. 空気温度との関係

前蛹期より蛹期を経て羽化に至るまで、蛹体は地表下十数cmの土壌内に静止している。前蛹期は不良環境に対する抵抗性が著しく、土壌を破壊した場合には蛹化出来ず、時に蛹化した個体も幼虫の殻を破ったままの形態となり、1頭も羽化出来ない。土壌を破壊した場合には、土塊が直接蛹体に接触し、又は蛹体を破壊する事等が発生に至る最大の原因である。

ヒメコガネの前蛹及び蛹期の成長は、種々異なった空気温度中（温度調節にZWÖLFERの方法を用う）に於ける体重の変化を測定した結果は第34図に示す如くである。蛹化及び羽化の可能な範囲は空気温度100%，又は蛹体が温った基盤に直接接している場合（空気温度は勿論100%）のみで、70〜80%の空気温度中に於ては1個体も蛹化及び羽化出来ず、蛹虫の生存状況の時間的経過曲線は、前蛹期に於ては、常に温った温紙を乾燥させた場合の如くであり、水分の逸散に対して何等の調節作用も認められず、蛹期に於ては微弱ながら調節作用が認められ、経過曲線はほぼ直線を示している。然して前蛹期に於ては、前蛹初期の85%まで体重が減少した
場合には、蛹化の際に幼虫殻を脱する事が出来ず、60％迄減少した場合には発死した。

小泉（1934）は昆虫体からの水分発散と、それに伴う体発の脱水・調節作用との関係を研究し、体重の減少を時計時間経過から飛び出す発散を示す事により、水分発散に対する調節作用の程度を第35図に示す様々な5種類に区分した。笔者の観察によれば、コガネムシ類の前蛹はC型、蛹期はB型に属する。

c. 溫度と発育速度

蛹の発育速度と温度との関係は第36図に示す如くである。ヒメコガネ、ツヤコガネ、サクラコガネと共に約30℃の温度に於て最も発育が早く、7～8日で羽化するが、それより高温では発育が阻害され、35℃では100%の発育を示した。野外に於ては約3週間を要する。

低温部に於ける飼育結果が極めて正確な事はないと、第36図から考察するに、ツヤコガネの蛹の発育限界温度が最も低く、ヒメコガネのそれは最も高い、又温度の上昇につれて、ヒメコガネの蛹の発育速度がツヤコガネのそれよりも早くなる。即ちヒメコガネの蛹が発育されない10℃附近の低温でも、ツヤコガネの蛹は発育出来ると、30℃附近ではヒメコガネの蛹の方が早く蛹期を完了するものと考えられる。

十勝地方では、5月中旬にはツヤコガネの老熟幼虫の約13％が前蛹期に入っているが、ヒメコガネの老熟幼虫は未だ激変に活動し得る状態にある。又北海道各地のツヤコガネ及びヒメコガネの成虫の発生時期は、第34表（附表参照）に示す如くであり、一般にツヤコガネの方が数日前に発見している。この様々な相違を生する原因は、前章に述べた様にツヤコガネの老熟幼虫は孵化後4年目の幼虫であるのに対し、ヒメコガネの老熟幼虫には3年目の幼虫も混じっているために、ツヤコガネより少し遅れて蛹化する事も考えられるが、ツヤコガネの老熟幼虫、前蛹及び蛹の発育限界温度がヒメコガネのそれよりも低温である事が大きな原因と考えられる。
第28表 腹の発育速度

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>Anomala rufocuprea</th>
<th></th>
<th></th>
<th>A. lucens</th>
<th></th>
<th></th>
<th>A. daimitiana</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>腹期間 (H)</td>
<td>発育速度</td>
<td></td>
<td>腹期間 (H)</td>
<td>発育速度</td>
<td></td>
<td>腹期間 (H)</td>
<td>発育速度</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>23.8</td>
<td>0.042</td>
<td>24.5</td>
<td>0.041</td>
<td>25.7</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>25.0</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.5</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>16.0</td>
<td>0.059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>10.3</td>
<td>0.097</td>
<td>10.3</td>
<td>0.097</td>
<td>9.8</td>
<td>0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>7.6</td>
<td>0.132</td>
<td>8.2</td>
<td>0.123</td>
<td>7.9</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>死</td>
<td></td>
<td>死</td>
<td></td>
<td>死</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 成 蟲

本邦に於けるコガネムシ類の成虫の食性、産卵習性、繁殖性等に関しては既に多くの研究がある (改訂図説, 1933 b, '35 b, '38 e, '38 c, '39 a, '39 b; 神谷, 1933 a, b, '34, '37 a; 勝又, 1929; 村野, 1934; 桑名・田中, 1927; 柄山・山田・森, 1930 b; 松井, 1948; 村山, 1934; 澤, 1931 a, b, '35; 澤・寺田・大野, 1933; 澤・田村, 1949; 酒井・飯島, 1936; 佐藤, 1935; 清水・大野, 1949; 高井, 1939; 柳原, 1935). 而して成虫の諸性質には北海道としての特性を認め得る事は出来ない。

分布及びに発生消長等に関しては, 新島・木下 (1923, 1927), 桑山 (1937), 内田 (1943) によってその概況が報告せ

第37図 誘殺燈
A ガラス管 B 電球(60W) C 源流(直径60cm) D 鏡

第38図 北海道の気候区分及びに誘殺燈設置個所
(符号は第29表と同じ)
第29表 北海道の気候区分*並びに誘殺標設置箇所 (* 北海道管区気象監, 1948)

<table>
<thead>
<tr>
<th>區 分</th>
<th>気 温</th>
<th>降雨</th>
<th>降水量</th>
<th>その他</th>
<th>誘 殺 標 創 置 箇 所</th>
<th>採集年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年平均</td>
<td>最暖月</td>
<td>最寒月</td>
<td>特徴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>平均</td>
<td>平均</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>南端部</td>
<td>S</td>
<td>8〜9</td>
<td>21〜22</td>
<td>-2〜4</td>
<td>夏季・初秋に</td>
<td>1. 焼島苗圃 松前郡焼島町 1950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>少ない</td>
<td>松前郡焼島町</td>
<td>1950</td>
</tr>
<tr>
<td>日本海側</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松前郡焼島町</td>
<td></td>
</tr>
<tr>
<td>南部</td>
<td>Jsa</td>
<td>8内外</td>
<td>21〜22</td>
<td>-3〜5</td>
<td>晩春に少ない</td>
<td>2. 大中山苗圃 龟田郡七穂村字大中山 1949〜50</td>
</tr>
<tr>
<td>中部</td>
<td>Jm1</td>
<td>7内外</td>
<td>〜4〜6</td>
<td>-6〜7</td>
<td>少ない</td>
<td>3. 小樽苗圃 小樽市立 1949〜50</td>
</tr>
<tr>
<td>平野</td>
<td>Jm2</td>
<td>〜6〜7</td>
<td>〜5〜8</td>
<td>少ない</td>
<td>夏季に少ない</td>
<td>4. 北大演習林買駒苗圃 札幌市北区西1丁目 1948〜50</td>
</tr>
<tr>
<td>北部</td>
<td>Jn</td>
<td>〜6〜7</td>
<td>〜5〜8</td>
<td>少ない</td>
<td>5. 龟田苗圃 龟田郡龟田村 1950</td>
<td></td>
</tr>
<tr>
<td>後志火灰山地</td>
<td>Jv</td>
<td>〜5〜6</td>
<td>〜7〜9</td>
<td>少ない</td>
<td>杢露が多い</td>
<td>6. 北大演習林吉小牧派出所 吉小牧市外高丘 1949〜50</td>
</tr>
<tr>
<td>陵大滝沿岸</td>
<td>Pv</td>
<td>〜7〜8</td>
<td>〜5〜8</td>
<td>少ない</td>
<td>初夏に穏</td>
<td>7. 池 内 苗 圃 池内村字池内 1949〜50</td>
</tr>
<tr>
<td>藤沼・日高沿岸</td>
<td>Pw</td>
<td>〜7〜8</td>
<td>〜5〜8</td>
<td>少ない</td>
<td>初夏に穏</td>
<td></td>
</tr>
<tr>
<td>太平洋側</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>初夏に穏</td>
<td></td>
</tr>
<tr>
<td>十勝</td>
<td>Pm1</td>
<td>〜15〜20</td>
<td>-7〜10</td>
<td>冬季に多い</td>
<td>8. 大 湖 苗 圃 廣尾郡大湖村字上湖 1949〜50</td>
<td></td>
</tr>
<tr>
<td>平野</td>
<td>Pm2</td>
<td>〜20〜21</td>
<td>-10〜11</td>
<td>冬季に少ない</td>
<td>9. 農業試験所芽室分室 河西郡芽室村元新生 1948</td>
<td></td>
</tr>
<tr>
<td>横室</td>
<td>Pe1</td>
<td>〜17〜19</td>
<td>-5〜8</td>
<td>初夏に穏</td>
<td>10. 硫 黄 苗 圃 上川郡新得町上佐幌 1948</td>
<td></td>
</tr>
<tr>
<td>平野</td>
<td>Pe2</td>
<td>〜8〜10</td>
<td>-1〜10</td>
<td>冬季に穏</td>
<td>11. 疣 蛇 苗 圃 河東郡壱崎村 1948〜50</td>
<td></td>
</tr>
<tr>
<td>内陸</td>
<td>Os</td>
<td>〜5〜7</td>
<td>〜7〜9</td>
<td>冬季・春季に少ない</td>
<td>12. 上尾幌半業所 厚岸郡厚岸町字上尾幌 1949〜50</td>
<td></td>
</tr>
<tr>
<td>内陸</td>
<td>On</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-1〜11</td>
<td>冬季に穏</td>
<td>13. 横津苗圃 横津郡横津町 1949〜50</td>
</tr>
<tr>
<td>南部</td>
<td>Ic</td>
<td>〜5〜6</td>
<td>〜8〜11</td>
<td>-早春に少ない</td>
<td>北部に積雪が多い</td>
<td>14. 筒井苗圃 北海道中央管区海里 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-9〜11</td>
<td>北部に積雪多い</td>
<td>15. 北川苗圃 北海道中央管区海里 1949〜50</td>
</tr>
<tr>
<td>南部</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>16. 池谷苗圃 宗谷郡三内町字沼川 1949〜50</td>
</tr>
<tr>
<td>盆地</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>17. 原山苗圃 北海道中央管区海里 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>18. 予文苗圃 北海道中央管区海里 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>19. 予文苗圃 北海道中央管区海里 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>20. 北大演習林加平村字平地 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>21. 北大演習林加平村字平地 1949〜50</td>
</tr>
<tr>
<td>内陸</td>
<td>Ic</td>
<td>〜4〜5</td>
<td>〜20〜21</td>
<td>-11以下</td>
<td>北部に積雪多い</td>
<td>22. 咲留福山苗圃 上川郡朝日村 1949〜50</td>
</tr>
</tbody>
</table>
1948年度 札幌及び十勝地方のみ調査した。
1949年度 通年地を除いた各地域に於て調査した。誘殺線設置箇所は13箇所である。
この内、苦小牧、振内、金山、大樹、上尾幌、中標津及び中湧別の7箇所は採集開始期が成蟇
発生開始期よりも遅れたために、又喰留に於て採集した標本は、最盛期約2週間分を輸送途中
紛失したために、共に確実な数を知り得なかったが、その概況は知り得るものと考えられる。
1950年度 全期間、全道的に調査する事が出来た。
以上3箇年度の採集結果を地域別及び種類別に表示すると第30表の如くである。（未附
表参照。)

| | スジ | オホスジ | キンスジ | サクラ | ツヤ | ハンノドヴ | ヒメドヴ | ヒメサクラ | ドウガネ | ヒメスジ | ナガナメ | コクロ | 計 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 福島 | 120.8 | 1.0 | 1.0 | 136.0 | 374.0 | 123.0 | 75.0 | 0.0 | 206.0 | 0.0 | 53.0 | 1.0 | 1090.5 |
| 大中山 | 75.0 | 0.0 | 0.0 | 738.0 | 351.0 | 13.0 | 306.0 | 22.0 | 6.0 | 0.0 | 68.0 | 9.0 | 1581.0 |
| 札幌 | 42.0 | 0.0 | 0.0 | 3.0 | 248.0 | 0.7 | 475.0 | 0.7 | 0.3 | 0.0 | 7.3 | 1.0 | 788.0 |
| 苦小牧 | 39.0 | 80.0 | 1.0 | 0.5 | 790.5 | 5.0 | 232.0 | 16.0 | 15.5 | 36.0 | 30.0 | 49.0 | 1249.5 |
| 振内 | 379.0 | 5.0 | 3.5 | 434.0 | 575.0 | 133.5 | 287.5 | 0.0 | 36.5 | 1.0 | 30.9 | 0.5 | 1824.2 |
| 大樹 | 5.5 | 0.0 | 0.5 | 84.5 | 152.5 | 8.0 | 1800.0 | 0.0 | 15.5 | 0.5 | 32.0 | 0.0 | 3449.0 |
| 荒室 | 0.0 | 0.0 | 0.0 | 1270.0 | 3124.0 | 7.0 | 19693.0 | 0.0 | 1.0 | 0.0 | 99.0 | 0.0 | 24194.0 |
| 新得 | 1.0 | 0.0 | 0.0 | 323.0 | 170.0 | 21.0 | 1385.0 | 0.0 | 4.0 | 1.0 | 2.0 | 0.0 | 1907.0 |
| 避遠 | 0.0 | 0.0 | 0.0 | 443.7 | 863.7 | 2.0 | 1719.0 | 0.0 | 1.7 | 0.3 | 451.3 | 0.0 | 3481.7 |
| 上尾幌 | 10.5 | 0.0 | 0.0 | 0.0 | 509.0 | 0.0 | 106.0 | 0.0 | 0.5 | 17.0 | 0.0 | 0.0 | 643.0 |
| 中標津 | 31.5 | 0.0 | 0.0 | 0.0 | 5375.5 | 0.0 | 388.5 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 5813.5 |
| 美幌 | 2.0 | 0.0 | 0.0 | 21.0 | 2968.0 | 93.0 | 1541.0 | 0.0 | 4.0 | 0.5 | 15.0 | 0.0 | 4834.5 |
| 中湧別 | 26.5 | 0.0 | 0.0 | 0.0 | 176.0 | 38.0 | 139.5 | 0.0 | 13.0 | 0.0 | 0.0 | 0.0 | 393.0 |
| 金山 | 177.0 | 36.0 | 1.0 | 16.0 | 290.0 | 0.5 | 36.5 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 559.5 |
| 近支 | 39.0 | 0.0 | 0.0 | 42.5 | 91.0 | 49.5 | 140.0 | 0.0 | 6.5 | 0.0 | 148.5 | 0.5 | 517.5 |
| 名寄 | 49.0 | 0.0 | 0.0 | 12.0 | 123.0 | 126.0 | 66.0 | 0.0 | 8.5 | 0.0 | 32.0 | 0.0 | 425.5 |
| 上富野子館 | 0.5 | 0.0 | 1.0 | 11.5 | 167.0 | 202.5 | 592.5 | 0.0 | 69.5 | 4.0 | 0.0 | 0.0 | 1048.5 |
| 呑留 | 12.5 | 0.0 | 0.0 | 1.0 | 141.0 | 0.0 | 25.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 187.5 |
| 計 | 1006.5 | 122.0 | 8.0 | 3596.7 | 17838.2 | 822.7 | 28990.5 | 38.7 | 417.0 | 60.3 | 969.0 | 61.0 | 53870.6 |
| % | 1.87 | 0.23 | 0.01 | 6.57 | 33.11 | 1.53 | 53.82 | 0.07 | 0.77 | 0.11 | 1.80 | 0.11 | 100.0 |
第31表 卵巣別捕獲数
(スジョガネ鶏のみ)
1948年度（満月21/Ⅲ, 19/Ⅲ）

<table>
<thead>
<tr>
<th>月日</th>
<th>札幌</th>
<th>新得</th>
<th>鳥取</th>
<th>青森</th>
</tr>
</thead>
<tbody>
<tr>
<td>25～29</td>
<td>165</td>
<td>164</td>
<td>170</td>
<td>168</td>
</tr>
<tr>
<td>30～31</td>
<td>166</td>
<td>165</td>
<td>171</td>
<td>169</td>
</tr>
<tr>
<td>25～29</td>
<td>182</td>
<td>177</td>
<td>182</td>
<td>178</td>
</tr>
<tr>
<td>30～31</td>
<td>183</td>
<td>178</td>
<td>183</td>
<td>179</td>
</tr>
<tr>
<td>25～29</td>
<td>190</td>
<td>186</td>
<td>190</td>
<td>186</td>
</tr>
<tr>
<td>30～31</td>
<td>191</td>
<td>187</td>
<td>191</td>
<td>187</td>
</tr>
</tbody>
</table>

第32表 1949年度（満月10/Ⅲ, 9/Ⅲ, 7/Ⅲ）

<table>
<thead>
<tr>
<th>月日</th>
<th>札幌</th>
<th>新得</th>
<th>鳥取</th>
<th>青森</th>
</tr>
</thead>
<tbody>
<tr>
<td>25～29</td>
<td>195</td>
<td>194</td>
<td>195</td>
<td>194</td>
</tr>
<tr>
<td>30～31</td>
<td>196</td>
<td>195</td>
<td>196</td>
<td>195</td>
</tr>
<tr>
<td>25～29</td>
<td>212</td>
<td>207</td>
<td>212</td>
<td>208</td>
</tr>
<tr>
<td>30～31</td>
<td>213</td>
<td>208</td>
<td>213</td>
<td>208</td>
</tr>
<tr>
<td>25～29</td>
<td>220</td>
<td>215</td>
<td>220</td>
<td>216</td>
</tr>
<tr>
<td>30～31</td>
<td>221</td>
<td>216</td>
<td>221</td>
<td>217</td>
</tr>
</tbody>
</table>

第33表 1960年度（満月30/Ⅲ, 29/Ⅲ, 27/Ⅲ）

<table>
<thead>
<tr>
<th>月日</th>
<th>札幌</th>
<th>新得</th>
<th>鳥取</th>
<th>青森</th>
</tr>
</thead>
<tbody>
<tr>
<td>25～29</td>
<td>162</td>
<td>161</td>
<td>162</td>
<td>161</td>
</tr>
<tr>
<td>30～31</td>
<td>163</td>
<td>162</td>
<td>163</td>
<td>162</td>
</tr>
<tr>
<td>25～29</td>
<td>179</td>
<td>178</td>
<td>179</td>
<td>178</td>
</tr>
<tr>
<td>30～31</td>
<td>180</td>
<td>179</td>
<td>180</td>
<td>179</td>
</tr>
<tr>
<td>25～29</td>
<td>196</td>
<td>195</td>
<td>196</td>
<td>195</td>
</tr>
<tr>
<td>30～31</td>
<td>197</td>
<td>196</td>
<td>197</td>
<td>196</td>
</tr>
</tbody>
</table>

* 採集開始が成虫発生開始よりも遅れた事を示す。
** この間の観察結果
a. 発生消長

成蠅の発生消長は第31, 32, 33, 34表及び第39, 40図に示す如くである。発生の最も早いのは函館地方、石狩及び上川地方で、7月下句に早くも成蠅の認められる事があるが、発生初期（全飛来数の5%が飛来し終る時期）は7月中旬前半、最盛期は7月下旬〜8月上旬、発生終期（95%が飛来し終る時期）は8月中旬後半である。最も遅いのは根室地方及び内陸山岳部で、7月下旬前半から発生、8月中旬最盛、発生終期は9月上旬後半である。太平洋側の各地を比較すると、大中山、苦小牧、根内、大樹、上尾幌、中標津の順で南西部から北東部に向って発

第34表 ヒメコガネ・ツヤコガネ両種の発生期間（月・旬）

<table>
<thead>
<tr>
<th></th>
<th>A. rufocuprea</th>
<th></th>
<th>A. lucens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>南部</td>
<td>7・下</td>
<td>7・下〜8・上</td>
<td>8・中</td>
<td>7・中</td>
</tr>
<tr>
<td>日本海側中部</td>
<td>7・中</td>
<td>7・下</td>
<td>7・中</td>
<td>7・中</td>
</tr>
<tr>
<td>太平洋側</td>
<td>7・下</td>
<td>7・下〜8・中</td>
<td>8・下</td>
<td>7・中</td>
</tr>
<tr>
<td>十勝</td>
<td>7・下</td>
<td>7・下〜8・中</td>
<td>8・下</td>
<td>7・中</td>
</tr>
<tr>
<td>平野</td>
<td>7・下</td>
<td>7・下〜8・中</td>
<td>8・下</td>
<td>7・中</td>
</tr>
<tr>
<td>根室沿岸</td>
<td>7・下〜8・上</td>
<td>8・中</td>
<td>9・上</td>
<td>7・中</td>
</tr>
<tr>
<td>オホーツク海側南部</td>
<td>7・下</td>
<td>8・上〜中</td>
<td>8・下</td>
<td>7・下</td>
</tr>
<tr>
<td>内陸</td>
<td>南部</td>
<td>7・下</td>
<td>8・上〜中</td>
<td>8・下</td>
</tr>
<tr>
<td></td>
<td>北部</td>
<td>7・下</td>
<td>8・上</td>
<td>7・下</td>
</tr>
<tr>
<td></td>
<td>山岳</td>
<td>7・下</td>
<td>8・上</td>
<td>7・下</td>
</tr>
</tbody>
</table>

第35表 嗜蠅率（％）

<table>
<thead>
<tr>
<th>期 間</th>
<th>A. rufocuprea</th>
<th>A. lucens</th>
<th>A. daumiana</th>
</tr>
</thead>
<tbody>
<tr>
<td>新得</td>
<td>鹿追</td>
<td>新得</td>
<td>鹿追</td>
</tr>
<tr>
<td>Ⅳ10〜14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15〜19</td>
<td>33.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20〜24</td>
<td>42.6</td>
<td>30.7</td>
<td>87.1</td>
</tr>
<tr>
<td>25〜29</td>
<td>49.0</td>
<td>38.2</td>
<td>73.1</td>
</tr>
<tr>
<td>30〜Ⅳ 3</td>
<td>49.3</td>
<td>61.0</td>
<td>94.1</td>
</tr>
<tr>
<td>Ⅳ 4〜8</td>
<td>66.4</td>
<td>53.5</td>
<td>72.5</td>
</tr>
<tr>
<td>9〜13</td>
<td>64.2</td>
<td>69.0</td>
<td>95.0</td>
</tr>
<tr>
<td>14〜18</td>
<td>66.0</td>
<td>49.6</td>
<td>90.0</td>
</tr>
<tr>
<td>19〜23</td>
<td>56.7</td>
<td>52.2</td>
<td>100.0</td>
</tr>
<tr>
<td>全期間</td>
<td>62.5</td>
<td>53.4</td>
<td>81.4</td>
</tr>
</tbody>
</table>
生が遅れている。オホーツク海南部は日高方面とやや等しい発生消長を示す。内陸盆地では、
夏季に最も高温な中央部が最も早く発生し、名寄、上富良別府と北上するにつれて遅れる。南
端部の能登島における発生期が函館附近より約半旬遅れる原因は明らかでない。
各種類別に発生消長を比較すると、地域的に最も発生の早い大中山山に於ては、スジコガネ
が最初に出現し、それに続いてツヨガネ、サクラコガネ、ヒメコガネ、ハンノヒメコガネ、
ヒメサクラコガネ、ドウガネブアイブイの順で約半旬ずつ発生が遅れている。若し牧、札幌附近
ではツヨガネが最初に発生するが、種類間の差はあまり顕著ではなく、十勝、根室地方では
各種一斉に発生する。

性比は第35表に示す如くであり，発生初期には雄が多く飛来するが，最盛期に入ると雌が多くなる。

日週性は第41図の如くであり，日没の1時間後から1〜2時間の間に最も多くの飛翔する。2，3の報告では日出前に盛んに飛翔するごとく報せられているが，筆者の観察では認められなかった。

IV. 分布

誘灯火による成蟲の採集結果及び各被害地に於ける幼蟲採取結果に基づいて，北海道に於けるコガネムシ類の分布について考察する。尚，本項に於ては，スジコガネ属の各種の他に，ヒメピロドコガネ（Serica orientalis MOTSCHULSKY, 1857）、ナガチヤコガネ（Heptophylla picea MOTSCHULSKY, 1857）、コクリコガネ（Lachnosterna picea（WATERHOUSE）1875）、シロスジコガネ（Granida albolineata MOTSCHULSKY, 1861）、ヒメスジコガネ（Mimela flavilabris WATERHOUSE, 1875）、マメコガネ（Popilia japonica NEWMAN, 1838）等に關しても若干觸れるこ
ととした。

a. 発生量

i. 地区別捕獲總数

成蟲捕獲総数を地区別に比較すれば，第42図

に明らかなる如く，太平洋側の棚理，日高，十勝，

第42図 地区別捕獲総数（1948〜50年平均）及びに元村（1932）の方法によるコガネムシ群の比較*（* IV, 4, 5参照）
A 福島 E 菊川 I 中松津 M 近文
B 大和山 F 大橋 J 六郷 N 名寄
C 札幌 G 鹿追 K 亀田 O 上智威子府
D 苫小牧 H 上尾後 L 金山 P 咲留
釧路、根室及びオホーツク海側南部の各地域の火山灰地帯に於ける捕獲量が最も多い。次いで道南端部の渡島方面が多く、最も少ないのは内陸部であるが、ここに於ても一様に相当数の捕獲が見られた。

ii. 種類別捕獲状況

誘殺糸に飛来するコガネムシ類を、その捕獲量の順に表記すれば第 36 表の如くである。北海道全般に検息し、且つ最も発生量の多いのはヒメコガネ、ツヤコガネの 2 種であり、この 2 種で捕獲総数の 87% を占める。他の種類は遠かに少なく、第 3 位のサクラコガネに於ても僅か 7% に満たない。しかしながら第 3 位以下の各種は、分布地域がある程度極限されているので、分布の中心地附近に於ては相当高い生率を示していることは注意すべきである。北海道全般及び各地域に於ける種類別捕獲率は第 43 番の如くである。

第 36 表 各種捕獲量の順位

<table>
<thead>
<tr>
<th>順位</th>
<th>種 類</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anomala rufocuprea</td>
<td>53.82</td>
</tr>
<tr>
<td>2</td>
<td>A. lucens</td>
<td>33.11</td>
</tr>
<tr>
<td>3</td>
<td>A. daimiana</td>
<td>6.57</td>
</tr>
<tr>
<td>4</td>
<td>A. testaceipes</td>
<td>1.87</td>
</tr>
<tr>
<td>5</td>
<td>Heptophylla picea</td>
<td>1.80</td>
</tr>
<tr>
<td>6</td>
<td>Anomala multistriata</td>
<td>1.53</td>
</tr>
<tr>
<td>7</td>
<td>A. cuprea</td>
<td>0.77</td>
</tr>
<tr>
<td>8</td>
<td>A. costata</td>
<td>0.23</td>
</tr>
<tr>
<td>9</td>
<td>Mimela flavilabris</td>
<td>0.11</td>
</tr>
<tr>
<td>10</td>
<td>Lachnosterna picea</td>
<td>0.11</td>
</tr>
<tr>
<td>11</td>
<td>Anomala genticulata</td>
<td>0.07</td>
</tr>
<tr>
<td>12</td>
<td>A. holosericea</td>
<td>0.01</td>
</tr>
</tbody>
</table>

b. 種の分布

ヒメコガネ：北海道全般に棲息する。その数も甚だ多く、コガネムシ類全捕獲量の 54% を占める。最も発生の多い地域は十勝原野で、全道のヒメコガネの約 80% がこの地域で捕獲された。又十勝原野のコガネムシ類の約 69%
がヒメコガネである。次に多い地区は勇拂原野、日本海側中部平野及び内陸盆地北部である。分布の中心⑴ (第48図) は十勝原野北西部の新得の東北方海岸附にである。

ツヤコガネ：総捕獲量の33%がツヤコガネであって全道的に棲息するが、太平洋沿岸特に東部方面に於ける発生が著しく、根室原野に於ける捕獲量は全道のツヤコガネの91%に當り、根室原野のコガネムシの91%がツヤコガネである。つぎに多い地区は十勝原野、オホーツク海側南部及び棚振・日高地方で、これ等太平洋岸火山灰地帯に於て全道のツヤコガネの90%が捕獲された。分布の中心は雌阿寒岳の西南西、足寄川上流、上足寄附近である。

上記2種が北海道全体に亘って最も発生の多い種類であり、この2種でコガネムシ類総捕獲量の87%を占めている。

サクラコガネ：総捕獲量の6.6%がサクラコガネである。北海道南端部のコガネムシ類の約33%がサクラコガネで、同一地区種類別捕獲率の第1位を占めている。然しながら発生量は太平洋側の棚振、日高及び十勝原野の方が多く、全道のサクラコガネの79%がこれ等の地区で捕獲された。根室原野には産しないものと思われる。分布の中心は棚振・日高沿岸の鴨川の南約8kmの地帯である。

スジガネ：総捕獲量の1.9%を占め、棚振、日高地方に最も多く、北見地方にも多数見られる。7〜8年生落葉松1本に200頭前後の成虫の群集している現象がしばしば見受けられる。分布の中心は勇拂原野の上幌内附近である。

ハツヒメコガネ：道南南部及び天駒地方に多く、特に天駒地方では第2位を占めている。然しながらその被害状況に関しても明らかでない。分布の中心は道別の北東約10kmの地帯である。

ドウガネブイブイ：全道的に少數分布するが、道南端部には比較的多く（約8%）、第4位を占めている。分布の中心は棚振沿岸社豪附近である。

オホスジガネ：棚振・日高地方に多く、スジガネ成虫に多數混じて針葉樹の新葉を加害している。分布の中心は勇拂原野の早来東北方向方5kmの附近である。

ヒメサクラコガネ：北海道南西の半島部に産し、棲息数も極めて少ない。分布の中心は

1) ここに於ける分布の中心とは、季節に関する集中決定と同一の方法により算定した地である。即ち1平県（北海道）の各町（各漁場地）に作用する重力（捕獲流動）の影響の作用点である。而してこの中心は、その種の分布の密なる地域に近く、粗なる地域に遠く位置するもの、各種について夫々その中心を求めるならば、該調査時刻に於ける該調査区域内の種の分布状態を比較的容易に観察する宮が出来るものと考えられる。従、本調査に於ては新得・鹿追・芽室の3地點はどこ隔接しており、発生型も同様であるので、この3地点の平均値を十勝地方西半部の値として使用した。 (美欠，1948：北海道農業の研究；農作中心の意義、性質並びにこれ調査方法)
室蘭市の東南方8 kmの附近である。

キシスジコガネ：道南部、宮崎、日高及び十勝等の山岳地方にのみ少数棲息し、分布の中心は志賀島の赤鹿山の南方5 kmの附近である。

ニスジコガネ属以外の種類で誘殺に飛来した2,3の種類について述べる。

ヒメスジコガネ：宮崎、日高、根室及び天塩地方の山地に少数棲息する。被害塊とは明らかでない。

ナガチヤコガネ：本種の覇着性はスジコガネ属の如く顕著でないために、亜 Coil 比較は出来ないが、日本海側、内陸部及び十勝原野に多数認められ、特に針葉樹の防風生垣の根際に多い。

ヒメピロードコガネ：福島、大中島等の道南部に於て適当多数の飛来を見た。他の地区では全く飛来しないが、亜麻原には相当の発生を見ている。

誘殺燃に飛来しないが、マメコガネが亜鴻的に発生し、又道南及び太平洋沿岸にはシロスジコガネの発生が認められる。

スジコガネ類9種の分布地域は前述した如くであるが、この類似性を相関数法により比較すると第 45 図の如くである。即ち、スジコガネとキシスジコガネが類似の分布圏を有する以外は、各種独特の分布をなしている事が解る。敢えて類似を求めるならば、ハンノヒメ
コガネとドウガネの二見がスジコガネ・キンスジコガネの分布域に近く、サクラコガネ・ヒメコガネがやや類似し、ツヤコガネがこれに近い。オホスジコガネとヒメサクラコガネとが幾分類似している。

c. 各地区におけるコガネムシ群の組成

各地区のコガネムシ群の組成の類似性を相関係数法により比較すると、第46図の如くである。この系列により明らかな如く、北海道の各地区はそのコガネムシ群の組成により、福島、若狭、振内、上尾幌、中標津、美幌、中浦別、金山、名寄、鰡留（太平洋岸、オホーツク海岸及び内陸の1部）から成る1群と、札幌、大樹、芽室、蘇月、鹿追及び上音威子府（十勝原野、日本海側平野及び内陸の1部）から成る1群とに2大別出来る。然してこの相違は主として前者に於てはツヤコガネが後者ではヒメコガネが優占種である事によって生する。近文はナガチヤコガネが優占種であるが、ヒメコガネの多い群に近く、大中山はサクラコガネが優占種で、他の地区とやや異なっている。

元村（1932）は、群集を形づくつっている生物の各種群の個体数の間には

\[\log y = ax + b \]

なる関係がある事を見出し、且つ \(\log y \) を縦軸に取った場合、 \(a \) の大小即ち直線の傾きの大小は、その群集の組成が単純であるか、複雑であるかを示す係数である事を明らかにした。北海道各地区のコガネムシ群（誘殺像に飛来したもの）の組成を元村の方法に従って作図し、これを直線の傾斜の繊細に従って配列すると第47図の如くである。又、地図に図示すれば第42図の如くである。即ち北海道南端部及び内陸盆地の中央部に於けるコガネムシ相が最も複雑であり、根室、釧路、十勝各原野が最も単純
である事を示している。

北海道においてコガネムシ類の発育を制限している要因は多数あるが、その主要因として夏季の温湿度不足、生育可能期間の短かい事及び夏季の土壌の凍結を挙げるべきが、関東地方においては満1年を以て1世代を完了する種類が、北海道において満2年または満3年を要する事実は、特に有効積算温度の点のみからもある程度の説明を興え得る事は、既に報告の項に於て述べた如くである。而して発育限界温度がある特定の温度以上の種類は、北海道においては早春迄は越冬の態勢に入り事が出来ずに淘汰される事が考えられる。第48図に明らかなる様に、南端部及び内陸盆地中央部は夏季の気温が北海道内でも最も高い地帯である事は、該地区のコガネムシ相が最も複雑である事の原因の1つと考えられる。又第48、49図に明らかなる様に、北海道太平洋沿岸は冬季の積雪が少なく、且つ寒気が厳しい為に、地表下数十数の深層まで凍結する。八鎌・齋藤(1944)によれ
ば、北海道各地の土壌凍結の状態は第50図の如くである。根室、釧路、十勝及び網走方面のコガネムシ相が、殆んどツヤガネ及びヒメガネの2種から成る単純な相である原因は、この地方の土壌の凍結が他種の侵入を阻止しているのによることは大きいものと考えられる。更に根室原野と十勝原野とを比較すれば、前者は殆んどツヤガネのみから成り、後者よりもさらに単純な組成であるが、これは夏季の著しい低温の影響による點が大きいものと考えられる。

第49図 北海道各地の気候図 (札幌管区分気象局 1949年の表示により作図)
縦軸 気温(℃) 横軸 降水量(mm)

第50図 土壌凍結の深度及び積雪 (八郷・豊藤, 1944)
即ちヒメオガネの発育限界温度がツヤオガネよりも高温であるために（卵・幼虫・蛹の項参照）、
ヒメオガネの棲息が制限されているためであろう。又十勝原野のみに於ても大潮、新得、鹿追、
茅室の4地点を比較すると、土壤凍結の深度（第23図参照）に比例してオガネミシ相は単純にな
っている。

採集継続年数が僅か3箇年である事及び各誘殺装置設置箇所の周囲の状況の相違、電圧の強
弱等のために採集条件にある程度の差が見られ、又1949年度の採集開始期が各地区同一で
ないため、捕獲数を以て直ちに地区別の発生量を比較する事は出来ないが、大体の傾向は察知
し得るものと考えられる。又オガネミシの種類による趣光性の相違が明らかでないため、種類
別捕獲数を以て直ちに種別別の発生量を云々するのは早計であるが、現地調査の結果や幼虫の
項に於て記述した各地の棲息状況等から考察し、この捕獲結果は凡そ発生量に比例しているも
のと考えて差支えない様である。但しナガチュオガネは発生量に比較して捕獲数がはるかに少
ない。これはその趣光性による事は既に述べたところである。

d. 考察

以上成虫、幼虫両面から行った棲息地の調査結果を要約すれば第37表の如くであり、最も
発生の多いのはヒメオガネ、ツヤオガネの2種で、全道各地に棲息しているが、特に十勝原
野、根剣原野に多い。道南部及び日高・十勝地方ではサクラオガネが相営数これに混じ、又瞼
振・日高地方のカラマツ・トドマツ等の造林地に於ては、スジオガネ、オホスジオガネの害が
甚だしい。日本海側、内陸部及び十勝地方ではナガチュオガネの発生も顕著であり、これ等6
種が北海道の農林業に最も深い関係のある種類である。

<table>
<thead>
<tr>
<th>種類</th>
<th>主な棲息地</th>
<th>幼虫による被害地</th>
<th>成虫による被害地</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. rufocuprea</td>
<td>北海道全般の小野</td>
<td>農耕地及び林業苗圃（針葉樹）</td>
<td>農耕地・果樹園及び 港業樹林</td>
</tr>
<tr>
<td>A. lucens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. dainiana</td>
<td>南部及び十勝地方の平野</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. testaceipes</td>
<td>超高・日高地方の山麓</td>
<td>針葉樹林？</td>
<td></td>
</tr>
<tr>
<td>A. costata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptophylla picea</td>
<td>日本海側、内陸部、十勝地方の平野</td>
<td>林業苗圃（針葉樹）</td>
<td>ナシ</td>
</tr>
</tbody>
</table>

上記の外に、ハンノヒメオガネ、ドウガネブイブイ、ヒメサクラオガネ、キンスジオガネ、
ヒメスジオガネ、コクロオガネ、マメオガネ、ヒメビロードオガネ、シロスジオガネ等の発生
が観られるが、それ等の加害は果樹園に対するマメオガネ、及び亞麻に対するヒメビロードコ
ガネの害以外はあまり問題とするに足らない。

次に地域的に検討すると，北海道全般に亘りコガネムシ類の発生を見ない所はないが，特に勇払，十勝，釧路，根室等の太平洋側の各平野及び網走原野に於ける発生が甚だしい。第38表に示す様に，これ等の原野は有珠，樽前，十勝，釧河沿，摩周及び餘佐等各町の火山灰地帯であり，これ等軽微な土壤に覆われた原野一帯に棲息するコガネムシ類が，近年開拓の進捗に伴い漸く有機物の施用の増加して来た畑地・苗圃に来襲産卵する。北海道東部地方の様に，気候冷涼にして地味も亦不良であり，且つ夏季に濃霧の来襲を見る等，農作物の生育上に多くの悪条件を娶している地域に，さらにこの多数棲息するコガネムシ類の害が相乗される時はその害は恐るべきものがあり，同地方開拓上の一大障害となっている。又林業苗圃に於ても，一般に火山灰地帯の苗圃に被害の多い事は事實であるが，全道各地の苗圃にその発生を認め，沼川の様な重粘土地帯に於ても，地表面に十数種の腐植土層の存在する場合には，そこに幼虫が棲息する。

第38表　農牧適地の土壤分布状態（北農試，1936）

<table>
<thead>
<tr>
<th>地域</th>
<th>支倉</th>
<th>農牧適地</th>
<th>普通土壌地</th>
<th>泥炭地</th>
<th>火山灰地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>町</td>
<td>(町)</td>
<td>(町)</td>
<td>(町)</td>
<td>%</td>
</tr>
<tr>
<td>南西</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>波島</td>
<td>98066</td>
<td>72202</td>
<td>2418</td>
<td>23476</td>
<td>23.9</td>
</tr>
<tr>
<td>檜山</td>
<td>77551</td>
<td>55054</td>
<td>2475</td>
<td>20012</td>
<td>25.8</td>
</tr>
<tr>
<td>豺原</td>
<td>120682</td>
<td>344</td>
<td>1289</td>
<td>118944</td>
<td>98.6</td>
</tr>
<tr>
<td>五高</td>
<td>131244</td>
<td>29342</td>
<td>2052</td>
<td>99850</td>
<td>76.1</td>
</tr>
<tr>
<td>南東</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>士勝</td>
<td>417514</td>
<td>100127</td>
<td>4504</td>
<td>312883</td>
<td>74.9</td>
</tr>
<tr>
<td>鍋路</td>
<td>293518</td>
<td>20211</td>
<td>31334</td>
<td>241973</td>
<td>82.4</td>
</tr>
<tr>
<td>根室</td>
<td>223470</td>
<td>35458</td>
<td>8197</td>
<td>177815</td>
<td>80.3</td>
</tr>
<tr>
<td>北西</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>徳志</td>
<td>124441</td>
<td>75590</td>
<td>201</td>
<td>48650</td>
<td>39.1</td>
</tr>
<tr>
<td>石狩</td>
<td>131124</td>
<td>44847</td>
<td>29457</td>
<td>49390</td>
<td>38.7</td>
</tr>
<tr>
<td>留萌</td>
<td>126423</td>
<td>109415</td>
<td>17008</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>空知</td>
<td>183814</td>
<td>160045</td>
<td>28116</td>
<td>15663</td>
<td>8.1</td>
</tr>
<tr>
<td>上川</td>
<td>241283</td>
<td>229378</td>
<td>9819</td>
<td>2086</td>
<td>0.9</td>
</tr>
<tr>
<td>北東</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>網走</td>
<td>268146</td>
<td>173920</td>
<td>9410</td>
<td>34836</td>
<td>31.6</td>
</tr>
<tr>
<td>宗谷</td>
<td>108942</td>
<td>95749</td>
<td>13193</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

しかししてこれ等コガネムシ類は，生態の項に於て述べた如く，その生済の約8割を占める34Downloads数を土壤中に於て生活するために，明治の初期よりその被害を喫受されながらも，今なお適切な防除法の確立を見ない状態である。もとより製造大な原野一帯に棲息しているコガネムシ類を，全面的に防除する事は不可能であり，またその必要もないであろうが，極めて集約
的に作業されている畑地及び林業苗圃に於ては、その防除は必ずしも不可能ではないものと考えられる。しかしながら耕作の時期を遅延して該病の加害を免れるとする試みは、幼虫の棲息期間が6〜7週年に及ぶ故、何等の効果も期待出来ない。耕作による方法も、該病の好食する作物が非常に多種である事と、幼虫の生長期が長い事から、一般農家に於ても、又小面積を極度に利用している苗圃に於ても、その経営は非常に難かしいものと考えられる。耕作時幼虫を捕撃する方法は、一見確実の様に考えられるが、一般の農業に於ては表土は7〜8cmより耕やされ、北海道に於ける春耕時には未だそれぞれの深層に留まる幼虫が多い事及び捕撃の努力の點等から考えて、必ずしも良法とは云い得ない。生物学的防除も、従来から検討しているこれ等害虫に対しては、その天敵の利用にも自ら限度がある。残る唯一の方法は化学的防除であり、従来幾多の薬剤が試みられたが、土壌中に棲息するという特殊な条件のために、唯砒硫酸鉛に僅かの希望を繋ぎ得るのみであった。しかしながら近年有機農業薬剤の進歩に伴い、特にDD(Dichloropropan-dichloropropylene)の出現によって漸く光明を見出し得た様である。即ち幼虫の移動能力は従来であって、大衆発時と雖も夜敵の如き大移動を行う事はない故、晩秋又は早春にDDによる土壌塗蒸を行って該地域の幼虫を全滅せしめるならば、その後は成虫発生初期にBHC(Benzen-hexa-chloride)の適當量を地表面に散布して産卵を防止する事をにより、相当の効果を挙げ得るものと考えられる。土壌内で羽化した成虫が地上に出現するために、必ず一度地面を通らねばならず、又産卵のために潜行する場合にも暫時地表面を覆うる故、薬剤を土壌に散布する場合が最も接触の機会が多いであろう。また成虫は出現後産卵までに数日の期間があり、また産卵も数天以内に終える故、即効性の薬剤でなくとも成虫を産卵開始前に斃す事が出来よう。もとより本法がコゲネミ症防除の唯一の方法ではない。また実際にはあたっては多くの解決すべき点があるが、この方法を最も効果的に且つ経済的に農業経営及び苗圃経営に繋める事が今後の大きな問題と考えられる。
<table>
<thead>
<tr>
<th>月期</th>
<th>半旬別</th>
<th>Anomala hectorica</th>
<th>Anomala contorta</th>
<th>Anomala korisciana</th>
<th>Anomala maculata</th>
<th>Anomala giglioliana</th>
<th>Anomala cucuica</th>
<th>Mecolea cupreata</th>
<th>Eucolisia tibialis</th>
<th>Lachnosterna picea</th>
<th>Syrca orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>(I/VI-31/V)</td>
<td>25 1 1</td>
<td>374 1 1</td>
<td>136 1 1</td>
<td>75 1 1</td>
<td>206 1 1</td>
<td>53 1 1</td>
<td>144 1 1</td>
<td>7 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 採集期間</td>
<td>2) 満月</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月期</th>
<th>半旬別</th>
<th>Anomala hectorica</th>
<th>Anomala contorta</th>
<th>Anomala korisciana</th>
<th>Anomala maculata</th>
<th>Anomala giglioliana</th>
<th>Anomala cucuica</th>
<th>Mecolea cupreata</th>
<th>Eucolisia tibialis</th>
<th>Lachnosterna picea</th>
<th>Syrca orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>(I/VI-31/V)</td>
<td>25 1 1</td>
<td>374 1 1</td>
<td>136 1 1</td>
<td>75 1 1</td>
<td>206 1 1</td>
<td>53 1 1</td>
<td>144 1 1</td>
<td>7 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 採集期間</td>
<td>2) 満月</td>
<td></td>
</tr>
<tr>
<td>月別</td>
<td>旬別</td>
<td>Anomalodesmata testaceipes</td>
<td>Anomalodesmata costata</td>
<td>Anomalodesmata calva</td>
<td>Anomalodesmata liciniae</td>
<td>Anomalodesmata multistriata</td>
<td>Anomalodesmata orientata</td>
<td>Anomalodesmata sayacerea</td>
<td>Malaonyx pygmaea</td>
<td>Hapalobranchus platypleura</td>
<td>Labbeasterina</td>
<td>Sericostomina</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>VI</td>
<td>6月</td>
<td>25—29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>30—4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>5—9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>10—14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>15—19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>20—24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>25—29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>30—3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>4—8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>9—13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>14—18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>19—23 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>24—28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>29—3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>3—7</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月別</th>
<th>旬別</th>
<th>Anomalodesmata testaceipes</th>
<th>Anomalodesmata costata</th>
<th>Anomalodesmata calva</th>
<th>Anomalodesmata liciniae</th>
<th>Anomalodesmata multistriata</th>
<th>Anomalodesmata orientata</th>
<th>Anomalodesmata sayacerea</th>
<th>Malaonyx pygmaea</th>
<th>Hapalobranchus platypleura</th>
<th>Labbeasterina</th>
<th>Sericostomina</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>6月</td>
<td>25—29</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>30—4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>5—9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>10—14</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>15—19</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>20—24</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>25—29</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>30—3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>4—8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>9—13</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>14—18</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>19—23</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>24—28</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>29—3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>3—7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>V</td>
<td>66</td>
<td></td>
<td>684</td>
</tr>
<tr>
<td>月別</td>
<td>Anomala castanea</td>
<td>Anomala�</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Anomala</td>
<td>Lachnaia</td>
<td>Serica</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>茄 姿</td>
<td>1950 (30/6-12/1K)</td>
<td></td>
</tr>
<tr>
<td>VI (30)</td>
<td>25〜29</td>
<td>30〜4</td>
<td>5〜9</td>
<td>10〜14</td>
<td>15〜19</td>
<td>20〜24</td>
<td>25〜29</td>
<td>30〜3</td>
<td>4〜8</td>
<td>9〜13</td>
<td>14〜18</td>
<td>19〜23</td>
<td>24〜28</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>26</td>
<td>3</td>
<td>8</td>
<td>250</td>
<td>64</td>
<td>188</td>
<td>48</td>
<td>188</td>
<td>2</td>
<td>33</td>
<td>102</td>
<td>255</td>
</tr>
<tr>
<td>VII (29)</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>8</td>
<td>86</td>
<td>1</td>
<td>46</td>
<td>109</td>
<td>36</td>
<td>45</td>
<td>20</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>84</td>
<td>1</td>
<td>66</td>
<td>1</td>
<td>188</td>
<td>46</td>
<td>109</td>
<td>36</td>
<td>45</td>
<td>20</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>VIII (27)</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>48</td>
</tr>
<tr>
<td>K (7)</td>
<td>3〜7</td>
<td></td>
</tr>
<tr>
<td>X (7)</td>
<td>3〜7</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>58</td>
<td>722</td>
<td>2</td>
<td>2</td>
<td>702</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>1105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月別</th>
<th>Anomala castanea</th>
<th>Anomala�</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Anomala</th>
<th>Lachnaia</th>
<th>Serica</th>
</tr>
</thead>
<tbody>
<tr>
<td>茄 小</td>
<td>1949 (6〜3/30/1K)</td>
<td></td>
</tr>
<tr>
<td>VI (10)</td>
<td>25〜29</td>
<td>30〜4</td>
<td>5〜9</td>
<td>10〜14</td>
<td>15〜19</td>
<td>20〜24</td>
<td>25〜29</td>
<td>30〜3</td>
<td>4〜8</td>
<td>9〜13</td>
<td>14〜18</td>
<td>19〜23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>106</td>
<td>5</td>
<td>11</td>
<td>288</td>
<td>36</td>
<td>15</td>
<td>138</td>
<td>390</td>
<td>665</td>
<td>243</td>
<td>158</td>
</tr>
<tr>
<td>VII (9)</td>
<td>9〜13</td>
<td>36</td>
<td>56</td>
<td>1</td>
<td>105</td>
<td>1</td>
<td>8</td>
<td>48</td>
<td>15</td>
<td>20</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>14〜18</td>
<td>13</td>
<td>16</td>
<td>3</td>
<td>108</td>
<td>8</td>
<td>3</td>
<td>15</td>
<td>243</td>
<td>158</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19〜23</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24〜28</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (7)</td>
<td>8〜12</td>
<td></td>
</tr>
<tr>
<td>X (7)</td>
<td>13〜17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15〜22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25〜27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28〜2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3〜7</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>115</td>
<td>1</td>
<td>1</td>
<td>1195</td>
<td>9</td>
<td>19</td>
<td>141</td>
<td>26</td>
<td>58</td>
<td>6</td>
<td>1645</td>
</tr>
<tr>
<td>月別</td>
<td>Anomala testacrescens</td>
<td>Anomala eoscula</td>
<td>Anomala hobsornina</td>
<td>Anomala damaiona</td>
<td>Anomala pacifica</td>
<td>Anomala minutaera</td>
<td>Anomala rufocupo</td>
<td>Anomala cuprea</td>
<td>Minella yamadori</td>
<td>Heptapyilla piza</td>
<td>Lachnosterna pieza</td>
<td>Sarcia orientalis</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>50～44</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5～9</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>10～14</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>15～19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>20～24</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>30～3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4～8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9～13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14～18</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>19～23</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>24～28</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>29～2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>3～7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>4</td>
<td>45</td>
<td>1</td>
<td>386</td>
<td>1</td>
<td>13</td>
<td>323</td>
<td>5</td>
<td>14</td>
<td>54</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 月別 | 抑内 | | | | | | | | | | | | |
|-------|------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------| | | | | |
| VI | 25～29| 174 | | | | | | | | | | | |
| 30～4 | 339 | | | | | | | | | | | | |
| 5～9 | 227 | | | | | | | | | | | | |
| VII | 18 | 470 | | | | | | | | | | | |
| 10～14| 491 | | | | | | | | | | | | |
| 15～19| 327 | | | | | | | | | | | | |
| 20～24| 67 | | | | | | | | | | | | |
| 25～29| 1878 | | | | | | | | | | | | |
| VIII | 4～8 | 174 | | | | | | | | | | | |
| 9～13 | 339 | | | | | | | | | | | | |
| 14～18| 227 | | | | | | | | | | | | |
| 19～23| 491 | | | | | | | | | | | | |
| 24～28| 327 | | | | | | | | | | | | |
| 29～2 | 1878 | | | | | | | | | | | | |
| K | 3～7 | 67 | | | | | | | | | | | |
| 8～12 | 1878 | | | | | | | | | | | | |
| 13～17| 1878 | | | | | | | | | | | | |
| 18～22| 1878 | | | | | | | | | | | | |
| 23～27| 1878 | | | | | | | | | | | | |
| X | 2～7 | 1878 | | | | | | | | | | | |
| 合計 | 647 | 9 | 246 | 732 | 24 | 186 | 32 | 1 | 1 | | | | 1878 |</p>
<table>
<thead>
<tr>
<th>月別</th>
<th>6月下旬</th>
<th>7月上旬</th>
<th>7月中旬</th>
<th>7月下旬</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>25-29</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VII</td>
<td>20-24</td>
<td>29</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>VIII</td>
<td>19-23</td>
<td>24</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>IX</td>
<td>23-27</td>
<td>28</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>3-7</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>合計</td>
<td>103</td>
<td>1</td>
<td>7</td>
<td>622</td>
</tr>
</tbody>
</table>

大 樹 1949 (10/VI~12/K)

<table>
<thead>
<tr>
<th>月別</th>
<th>25-29</th>
<th>30-4</th>
<th>4-9</th>
<th>9-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>11</td>
<td>72</td>
<td>113</td>
<td>5</td>
</tr>
<tr>
<td>VII</td>
<td>43</td>
<td>208</td>
<td>386</td>
<td>25</td>
</tr>
<tr>
<td>VIII</td>
<td>4</td>
<td>13</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>IX</td>
<td>2</td>
<td>27</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>67</td>
<td>507</td>
<td>2</td>
<td>692</td>
</tr>
<tr>
<td>月期</td>
<td>Anomala eurycera</td>
<td>Anomala costata</td>
<td>Anomala holosericea</td>
<td>Anomala dunetiana</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>VI (30)</td>
<td>25〜29</td>
<td>3</td>
<td>190</td>
<td>3</td>
</tr>
<tr>
<td>30〜4</td>
<td>1</td>
<td>287</td>
<td>3</td>
<td>133</td>
</tr>
<tr>
<td>5〜9</td>
<td>2</td>
<td>437</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>VII (29)</td>
<td>10〜14</td>
<td>1</td>
<td>271</td>
<td>1</td>
</tr>
<tr>
<td>15〜19</td>
<td>1</td>
<td>478</td>
<td>1</td>
<td>563</td>
</tr>
<tr>
<td>20〜24</td>
<td>5</td>
<td>14</td>
<td>235</td>
<td>4</td>
</tr>
<tr>
<td>25〜29</td>
<td>1</td>
<td>178</td>
<td>1</td>
<td>354</td>
</tr>
<tr>
<td>30〜3</td>
<td>11</td>
<td>33</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>VIII (27)</td>
<td>4〜8</td>
<td>14</td>
<td>178</td>
<td>1</td>
</tr>
<tr>
<td>9〜13</td>
<td>19</td>
<td>61</td>
<td>171</td>
<td>2</td>
</tr>
<tr>
<td>14〜18</td>
<td>7</td>
<td>58</td>
<td>106</td>
<td>3</td>
</tr>
<tr>
<td>19〜23</td>
<td>3</td>
<td>32</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>24〜28</td>
<td>11</td>
<td>33</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>29〜2</td>
<td>1</td>
<td>297</td>
<td>2</td>
<td>314</td>
</tr>
<tr>
<td>3〜7</td>
<td>10</td>
<td>102</td>
<td>14</td>
<td>2998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月期</th>
<th>Anomala eurycera</th>
<th>Anomala costata</th>
<th>Anomala holosericea</th>
<th>Anomala dunetiana</th>
<th>Anomala lucasana</th>
<th>Anomala miliaria</th>
<th>Anomala maximiliana</th>
<th>Anomala rufescens</th>
<th>Anomala cuprea</th>
<th>Heptopila pica</th>
<th>Lachnostera pica</th>
<th>Serica orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI (21)</td>
<td>25〜29</td>
<td>1</td>
<td>36</td>
<td>12</td>
<td>578</td>
<td>627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30〜4</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>37</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5〜9</td>
<td>353</td>
<td>207</td>
<td>33</td>
<td>215</td>
<td>1</td>
<td>29</td>
<td>421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII (19)</td>
<td>10〜14</td>
<td>178</td>
<td>113</td>
<td>2</td>
<td>811</td>
<td>20</td>
<td>1480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15〜19</td>
<td>33</td>
<td>237</td>
<td>2</td>
<td>877</td>
<td>5</td>
<td>1688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20〜24</td>
<td>113</td>
<td>167</td>
<td>656</td>
<td>333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25〜29</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30〜3</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII (7)</td>
<td>14〜18</td>
<td>38</td>
<td>37</td>
<td>414</td>
<td>1</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19〜23</td>
<td>29</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24〜28</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29〜2</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3〜7</td>
<td>964</td>
<td>1247</td>
<td>3</td>
<td>4544</td>
<td>3</td>
<td>669</td>
<td>7250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月期</th>
<th>Anomala eurycera</th>
<th>Anomala costata</th>
<th>Anomala holosericea</th>
<th>Anomala dunetiana</th>
<th>Anomala lucasana</th>
<th>Anomala miliaria</th>
<th>Anomala maximiliana</th>
<th>Anomala rufescens</th>
<th>Anomala cuprea</th>
<th>Heptopila pica</th>
<th>Lachnostera pica</th>
<th>Serica orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI (21)</td>
<td>25〜29</td>
<td>1</td>
<td>36</td>
<td>12</td>
<td>578</td>
<td>627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30〜4</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>37</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5〜9</td>
<td>353</td>
<td>207</td>
<td>33</td>
<td>215</td>
<td>1</td>
<td>29</td>
<td>421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII (19)</td>
<td>10〜14</td>
<td>178</td>
<td>113</td>
<td>2</td>
<td>811</td>
<td>20</td>
<td>1480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15〜19</td>
<td>33</td>
<td>237</td>
<td>2</td>
<td>877</td>
<td>5</td>
<td>1688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20〜24</td>
<td>113</td>
<td>167</td>
<td>656</td>
<td>333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25〜29</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30〜3</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII (7)</td>
<td>14〜18</td>
<td>38</td>
<td>37</td>
<td>414</td>
<td>1</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19〜23</td>
<td>29</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24〜28</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29〜2</td>
<td>17</td>
<td>27</td>
<td>165</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3〜7</td>
<td>964</td>
<td>1247</td>
<td>3</td>
<td>4544</td>
<td>3</td>
<td>669</td>
<td>7250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>月別</td>
<td>月別別</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30～4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5～9</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>10～14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15～19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20～24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25～29</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>30～3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4～8</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>9～13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14～18</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>19～23</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>24～28</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>29～3</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>8～12</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>13～17</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>18～22</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>23～27</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>38～2</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>3～7</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>9～13</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>14～18</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>19～23</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>24～28</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>29～3</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8～12</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>13～17</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>18～22</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>23～27</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>28～2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3～7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>9～13</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>14～18</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>19～23</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>24～28</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>29～3</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>8～12</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>13～17</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>18～22</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>23～27</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28～2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3～7</td>
<td></td>
</tr>
</tbody>
</table>

1960 (1/7～31/7):

<table>
<thead>
<tr>
<th>月別别</th>
<th>年</th>
<th>年</th>
<th>年</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>25～29</td>
<td>1950 (1/7～31/7)*</td>
<td>1950 (1/7～31/7)*</td>
<td>1950 (1/7～31/7)*</td>
</tr>
<tr>
<td></td>
<td>30～4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5～9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI (30)</td>
<td>10～14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15～19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20～24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25～29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII (29)</td>
<td>30～3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI (29)</td>
<td>4～8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9～13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI (27)</td>
<td>14～18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19～23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24～28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI (27)</td>
<td>29～2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII (27)</td>
<td>8～12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13～17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18～22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23～27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>28～2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>9～13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>14～18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>19～23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>24～28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>29～3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8～12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>13～17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>18～22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>23～27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28～2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>9～13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>14～18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>19～23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>24～28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>29～3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>8～12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>13～17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>18～22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>23～27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28～2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1949年15/11～27/11の標本に異常多し。1/7～31/7以後の標本検定不能。
<table>
<thead>
<tr>
<th>月別</th>
<th>牛別</th>
<th>180側</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>(21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180側</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180側</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>(19)</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K</td>
<td>23～28</td>
<td>3～7</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28～27</td>
<td>3～7</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>323</td>
<td>170</td>
<td>21</td>
<td>1385</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1907</td>
</tr>
</tbody>
</table>

資料 1943 (10/Ⅶ～10/Ⅹ)

<table>
<thead>
<tr>
<th>月別</th>
<th>牛別</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>180側</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>(19)</td>
<td></td>
</tr>
<tr>
<td>25～29</td>
<td>30～4</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～3</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K</td>
<td>23～28</td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X</td>
<td>28～27</td>
<td>3～7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>1270</td>
<td>3124</td>
<td>7</td>
<td>19693</td>
<td>1</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>月別</td>
<td>午前半</td>
<td>午後半</td>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>25～29</td>
<td>30～3</td>
<td>1</td>
<td>305</td>
<td>6</td>
<td>3</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>25～29</td>
<td>30～3</td>
<td>1</td>
<td>214</td>
<td>8</td>
<td>4</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15～19</td>
<td>14～18</td>
<td>8</td>
<td>52</td>
<td>37</td>
<td>3</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18～22</td>
<td>23～27</td>
<td>1</td>
<td>38</td>
<td>3</td>
<td>6</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19～23</td>
<td>23～27</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24～28</td>
<td>29～33</td>
<td>3</td>
<td>233</td>
<td>72</td>
<td>6</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>16</td>
<td>1</td>
<td>776</td>
<td>150</td>
<td>30</td>
<td>973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>月別</td>
<td>午前半</td>
<td>午後半</td>
<td>合計</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>25～29</td>
<td>30～3</td>
<td>1</td>
<td>305</td>
<td>6</td>
<td>3</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>25～29</td>
<td>30～3</td>
<td>1</td>
<td>214</td>
<td>8</td>
<td>4</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15～19</td>
<td>14～18</td>
<td>8</td>
<td>52</td>
<td>37</td>
<td>3</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18～22</td>
<td>23～27</td>
<td>1</td>
<td>38</td>
<td>3</td>
<td>6</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19～23</td>
<td>23～27</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24～28</td>
<td>29～33</td>
<td>3</td>
<td>233</td>
<td>72</td>
<td>6</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>5</td>
<td>242</td>
<td>62</td>
<td>1</td>
<td>4</td>
<td>314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>月</td>
<td>A. testacea</td>
<td>Am. ventosa</td>
<td>Am. nodosa</td>
<td>Am. daniana</td>
<td>Am. lacera</td>
<td>Am. mulleri</td>
<td>Am. geniculata</td>
<td>Am. spongiosa</td>
<td>M. flabellata</td>
<td>H. triops</td>
<td>L. oliva</td>
<td>S. orientalis</td>
<td>合計</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>VI</td>
<td>25~29</td>
<td>163</td>
<td>1</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>30~34</td>
<td>77</td>
<td>7</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>35~39</td>
<td>401</td>
<td>29</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>4~8</td>
<td>1734</td>
<td>54</td>
<td>1801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>9~13</td>
<td>764</td>
<td>28</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>14~18</td>
<td>2609</td>
<td>138</td>
<td>3039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>19~23</td>
<td>1215</td>
<td>60</td>
<td>1276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>24~28</td>
<td>69</td>
<td>15</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（7）</td>
<td>29~2</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3~7</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>32</td>
<td>7375</td>
<td>333</td>
<td>3</td>
<td>7744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月</th>
<th>A. testacea</th>
<th>Am. ventosa</th>
<th>Am. nodosa</th>
<th>Am. daniana</th>
<th>Am. lacera</th>
<th>Am. mulleri</th>
<th>Am. geniculata</th>
<th>Am. spongiosa</th>
<th>M. flabellata</th>
<th>H. triops</th>
<th>L. oliva</th>
<th>S. orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>25~29</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>30~34</td>
<td>1333</td>
<td>234</td>
<td>1597</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(29)</td>
<td>35~39</td>
<td>661</td>
<td>123</td>
<td>793</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>4~8</td>
<td>1335</td>
<td>2</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（27）</td>
<td>9~13</td>
<td>66</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>14~18</td>
<td>25</td>
<td>21</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（9）</td>
<td>19~23</td>
<td>24~28</td>
<td>25</td>
<td>23~27</td>
<td>23~27</td>
<td>3~7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3~7</td>
<td></td>
<td>3~7</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>31</td>
<td>3376</td>
<td>444</td>
<td>33</td>
<td>3884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1~18/VI 設備故障。
| 月 | Anomalodonta tectipes | Anomalodonta cernua | Anomalodonta holosericea | Anomalodonta dainiensis | Anomalodonta lucens | Anomalodonta mulleriida | Anomalodonta rigidicosta | Anomalodonta cuprea | Mytilus edulis | Hypsiplana pieza | Laciniastrum pieza | Serica orientalis | 合計 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| VI 30 | 25〜29 | 25〜29 | 1 | 3 | 2937 | 39 | 359 | 13 | 2752 |
| 30〜4 | 1 | 3 | 1 | 7 | 17 | 19 | 11 | 2 | 821 |
| 5〜9 | 1 | 3 | 2937 | 39 | 359 | 13 | 2752 |
| 10〜14 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 15〜19 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 20〜24 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 25〜29 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 30〜3 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 4〜8 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 9〜13 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 14〜18 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 19〜23 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 24〜28 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 29〜2 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 3〜7 | 1 | 8 | 329 | 27 | 462 | 2 | 2 | 821 |
| 合計 | 2 | 21 | 2937 | 39 | 359 | 13 | 2752 |

* 20〜28/VII 停電

<p>	月	Anomalodonta tectipes	Anomalodonta cernua	Anomalodonta holosericea	Anomalodonta dainiensis	Anomalodonta lucens	Anomalodonta mulleriida	Anomalodonta rigidicosta	Anomalodonta cuprea	Mytilus edulis	Hypsiplana pieza	Laciniastrum pieza	Serica orientalis	合計
VI 49	25〜29	25〜29	6	37	2	5	3	44						
30〜4	15	2	5	3	44									
5〜9	15	2	5	3	44									
10〜14	15	2	5	3	44									
15〜19	15	2	5	3	44									
20〜24	15	2	5	3	44									
25〜29	15	2	5	3	44									
30〜3	15	2	5	3	44									
4〜8	15	2	5	3	44									
9〜13	15	2	5	3	44									
14〜18	15	2	5	3	44									
19〜23	15	2	5	3	44									
24〜28	15	2	5	3	44									
29〜2	15	2	5	3	44									
3〜7	15	2	5	3	44									
合計	7	107	8	77	5	204	</p>							
<table>
<thead>
<tr>
<th>Month</th>
<th>"Hokaido"</th>
<th>"Shikoku"</th>
<th>"Kanto"</th>
<th>"Chubu"</th>
<th>"Tohoku"</th>
<th>"Chugoku"</th>
<th>"Kinki"</th>
<th>"Kansai"</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>25~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>125</td>
<td>154</td>
<td>103</td>
<td>43</td>
</tr>
<tr>
<td>VII</td>
<td>24~28</td>
<td>29~2</td>
<td>3~7</td>
<td>8~12</td>
<td>13~17</td>
<td>18~22</td>
<td>23~27</td>
<td>28~3</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>VIII</td>
<td>25~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>125</td>
<td>154</td>
<td>103</td>
<td>43</td>
</tr>
<tr>
<td>IX</td>
<td>24~28</td>
<td>29~2</td>
<td>3~7</td>
<td>8~12</td>
<td>13~17</td>
<td>18~22</td>
<td>23~27</td>
<td>28~3</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>X</td>
<td>25~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>125</td>
<td>154</td>
<td>103</td>
<td>43</td>
</tr>
</tbody>
</table>

Total: 582

<table>
<thead>
<tr>
<th>Month</th>
<th>"Hokaido"</th>
<th>"Shikoku"</th>
<th>"Kanto"</th>
<th>"Chubu"</th>
<th>"Tohoku"</th>
<th>"Chugoku"</th>
<th>"Kinki"</th>
<th>"Kansai"</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>23~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>122</td>
<td>151</td>
<td>156</td>
<td>79</td>
</tr>
<tr>
<td>VII</td>
<td>24~28</td>
<td>29~2</td>
<td>3~7</td>
<td>8~12</td>
<td>13~17</td>
<td>18~22</td>
<td>23~27</td>
<td>28~3</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>VIII</td>
<td>25~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>122</td>
<td>151</td>
<td>156</td>
<td>79</td>
</tr>
<tr>
<td>IX</td>
<td>24~28</td>
<td>29~2</td>
<td>3~7</td>
<td>8~12</td>
<td>13~17</td>
<td>18~22</td>
<td>23~27</td>
<td>28~3</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>25~29</td>
<td>30~4</td>
<td>5~9</td>
<td>10~14</td>
<td>15~19</td>
<td>20~24</td>
<td>25~29</td>
<td>30~3</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>122</td>
<td>151</td>
<td>156</td>
<td>79</td>
</tr>
</tbody>
</table>

Total: 909
<table>
<thead>
<tr>
<th></th>
<th>Anomala testaceipes</th>
<th>Anomala coarctata</th>
<th>Anomala obrusata</th>
<th>Anomala labiata</th>
<th>Anomala lucens</th>
<th>Anomala multiterata</th>
<th>Anomala norbiculata</th>
<th>Anomala rapaeformis</th>
<th>Anomala cuprea</th>
<th>Memela flavida</th>
<th>Psectra</th>
<th>Lachnosterna orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>金山 1950 (25/VI～25/K)</td>
<td></td>
</tr>
<tr>
<td>VI (30)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>VII (29)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>VIII (27)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>K</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>X</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>近江 1949 (1/IV～15/K)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VI (30)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>VII (29)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>VIII (27)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>K (7)</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>X</td>
<td>25～29</td>
<td>30～39</td>
<td>5～9</td>
<td>10～14</td>
<td>15～19</td>
<td>20～24</td>
<td>25～29</td>
<td>30～39</td>
<td>4～8</td>
<td>9～13</td>
<td>14～18</td>
<td>19～23</td>
<td>24～28</td>
</tr>
<tr>
<td>月腕</td>
<td>旬割</td>
<td>Anomala testaceipes</td>
<td>Anomala coarctata</td>
<td>Anomala holosericea</td>
<td>Anomala rhodina</td>
<td>Anomala bicolorata</td>
<td>Anomala multifasciata</td>
<td>Anomala mesei</td>
<td>Anomala eximia</td>
<td>M. sinuata plantipennis</td>
<td>Hoplophylax picea</td>
<td>Lachnoderma picea</td>
<td>Syniscus orientalia</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>VI (30)</td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td>30~3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5~9</td>
<td>30~4</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>5</td>
<td>112</td>
<td>1</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10~14</td>
<td>30~9</td>
<td>18</td>
<td>38</td>
<td>8</td>
<td>29</td>
<td>49</td>
<td>4</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15~19</td>
<td>30~14</td>
<td>24</td>
<td>27</td>
<td>32</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20~24</td>
<td>30~19</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td>30~24</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>23</td>
<td>1</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII (29)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10~14</td>
<td>14~18</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15~19</td>
<td>19~23</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20~24</td>
<td>24~28</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td>29~33</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII (27)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>9</td>
<td>14</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10~14</td>
<td>15~19</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16~20</td>
<td>20~24</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21~25</td>
<td>25~29</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX (35)</td>
<td></td>
</tr>
<tr>
<td>3~7</td>
<td>8~12</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13~17</td>
<td>18~22</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23~27</td>
<td>28~32</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X (35)</td>
<td></td>
</tr>
<tr>
<td>3~7</td>
<td>8~12</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13~17</td>
<td>18~22</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23~27</td>
<td>28~32</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>13</td>
<td>54</td>
<td>141</td>
<td>74</td>
<td>221</td>
<td>5</td>
<td>216</td>
<td>1</td>
<td>33</td>
<td>788</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>名称</th>
<th>1949 (16/VI~30/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI (30)</td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td>30~4</td>
</tr>
<tr>
<td>5~9</td>
<td>30~9</td>
</tr>
<tr>
<td>10~14</td>
<td>30~14</td>
</tr>
<tr>
<td>15~19</td>
<td>30~19</td>
</tr>
<tr>
<td>20~24</td>
<td>30~24</td>
</tr>
<tr>
<td>25~29</td>
<td>30~29</td>
</tr>
<tr>
<td>VII (29)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>10~14</td>
<td>14~18</td>
</tr>
<tr>
<td>15~19</td>
<td>19~23</td>
</tr>
<tr>
<td>20~24</td>
<td>24~28</td>
</tr>
<tr>
<td>25~29</td>
<td>29~33</td>
</tr>
<tr>
<td>VIII (27)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>10~14</td>
<td>15~19</td>
</tr>
<tr>
<td>16~20</td>
<td>20~24</td>
</tr>
<tr>
<td>21~25</td>
<td>25~29</td>
</tr>
<tr>
<td>IX (35)</td>
<td></td>
</tr>
<tr>
<td>3~7</td>
<td>8~12</td>
</tr>
<tr>
<td>13~17</td>
<td>18~22</td>
</tr>
<tr>
<td>23~27</td>
<td>28~32</td>
</tr>
<tr>
<td>X (35)</td>
<td></td>
</tr>
<tr>
<td>3~7</td>
<td>8~12</td>
</tr>
<tr>
<td>13~17</td>
<td>18~22</td>
</tr>
<tr>
<td>23~27</td>
<td>28~32</td>
</tr>
<tr>
<td>合計</td>
<td>65</td>
</tr>
<tr>
<td>月別</td>
<td>Anomola testaceipes</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
</tr>
<tr>
<td>VI</td>
<td>25-29</td>
</tr>
<tr>
<td>VII</td>
<td>9-13</td>
</tr>
<tr>
<td>VIII</td>
<td>25-29</td>
</tr>
</tbody>
</table>

| 合計 | 33 | 16 | 124 | 180 | 103 | 14 | 20 | 490 |

上野橘子府 1949 (27/VI～27/K)

<table>
<thead>
<tr>
<th>月別</th>
<th>Anomola testaceipes</th>
<th>Anomola costata</th>
<th>Anomola hallerioides</th>
<th>Anomola daniana</th>
<th>Anomola multicostata</th>
<th>Anomola japonica</th>
<th>Mima fujifabris</th>
<th>Hepholontha picea</th>
<th>Lycosa picta</th>
<th>Sericinus orcuttii</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>25-29</td>
<td>30-4</td>
<td>5-9</td>
<td>10-14</td>
<td>15-19</td>
<td>20-24</td>
<td>25-29</td>
<td>30-33</td>
<td>3-7</td>
<td>8-12</td>
<td>845</td>
</tr>
</tbody>
</table>

<p>| 合計 | 1 | 1 | 17 | 223 | 155 | 423 | 22 | 3 | 845 |</p>
<table>
<thead>
<tr>
<th>月別</th>
<th>一</th>
<th>二</th>
<th>三</th>
<th>四</th>
<th>五</th>
<th>六</th>
<th>七</th>
<th>八</th>
<th>九</th>
<th>十</th>
<th>十一</th>
<th>十二</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>6月</td>
<td>25~29</td>
<td>11</td>
<td>14</td>
<td>4</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>30~34</td>
<td>17</td>
<td>20</td>
<td>1</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>35~39</td>
<td>41</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>40~44</td>
<td>23</td>
<td>34</td>
<td>1</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>45~49</td>
<td>61</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>50~54</td>
<td>45</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>55~59</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>六月</td>
<td>10~14</td>
<td>11</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>15~19</td>
<td>11</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>20~24</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>六月</td>
<td>25~29</td>
<td>23</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>30~34</td>
<td>41</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>35~39</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>40~44</td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>六月</td>
<td>45~49</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>六月</td>
<td>50~54</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>六月</td>
<td>55~59</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>1</td>
<td>6</td>
<td>112</td>
<td>250</td>
<td>764</td>
<td>117</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>咲留</th>
<th>1949 (8/6~8/9)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td></td>
</tr>
<tr>
<td>30~34</td>
<td></td>
</tr>
<tr>
<td>35~39</td>
<td></td>
</tr>
<tr>
<td>40~44</td>
<td></td>
</tr>
<tr>
<td>45~49</td>
<td></td>
</tr>
<tr>
<td>50~54</td>
<td></td>
</tr>
<tr>
<td>55~59</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>10~14</td>
<td></td>
</tr>
<tr>
<td>15~19</td>
<td></td>
</tr>
<tr>
<td>20~24</td>
<td></td>
</tr>
<tr>
<td>25~29</td>
<td></td>
</tr>
<tr>
<td>30~34</td>
<td></td>
</tr>
<tr>
<td>35~39</td>
<td></td>
</tr>
<tr>
<td>40~44</td>
<td></td>
</tr>
<tr>
<td>45~49</td>
<td></td>
</tr>
<tr>
<td>50~54</td>
<td></td>
</tr>
<tr>
<td>55~59</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>9</td>
</tr>
</tbody>
</table>

* 9/6~23/9 檜木粉矢
<table>
<thead>
<tr>
<th>月別</th>
<th>半旬別</th>
<th>Anomala testaceipes</th>
<th>Anomala coelesta</th>
<th>Anomala holosericea</th>
<th>Anomala gazilliana</th>
<th>Anomala metallica</th>
<th>Anomala pseudasedula</th>
<th>Anomala cuprea</th>
<th>Anomala fuscodora</th>
<th>Hesperocharis pieana</th>
<th>Lachnosterna pica</th>
<th>Scirca orientalis</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>(30)</td>
<td>25〜29</td>
<td>30〜4</td>
<td>5〜9</td>
<td>10〜14</td>
<td>15〜19</td>
<td>20〜24</td>
<td>25〜29</td>
<td>30〜3</td>
<td>4〜8</td>
<td>9〜13</td>
<td>14〜18</td>
<td>19〜23</td>
</tr>
<tr>
<td>VII</td>
<td>(29)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>15</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>VIII</td>
<td>(27)</td>
<td>3〜7</td>
<td>8〜12</td>
<td>13〜17</td>
<td>18〜22</td>
<td>23〜27</td>
<td>28〜2</td>
<td>3〜7</td>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>3〜7</td>
<td>3〜7</td>
<td>合計</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3〜7</td>
<td>3〜7</td>
<td>合計</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>喜留</td>
<td>1950 (1/Ⅳ〜8/Ⅲ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（190）
要 約

北海道に於て農耕地、林業苗圃及び森林に大害を及ぼしている Anomala (スジコガネ属) 9 種に就いて、分類学的及びに生態学的研査を行い、下記の如き結果を得た。

I. 分 類

従来、北海道からはスジコガネ類 10 種が記載されたが、本研究によって下記の 9 種に整理することが出来た。而してこの 9 種は、成蟲のみならず卵、幼蟲及び蛹を比較検討して次の 4 群に分ける事が出来る。

A 群
卵 卵殻表面の突起は円錐形。

幼蟲 尾節腹部の剛毛列の長さは、両列の間隔の 2 倍より短かい。剛毛は長くして左右相交わる。

成蟲 翅鞘の縦線は合縁と常に 5 本明瞭。体の最も幅広い部分は、翅鞘の中央部より後方にある。頭部は比較的大きい。

Anomala testaceipes MYTSCHULSKY, 1860. スジコガネ
Anomala costata (HOPE), 1839. オホスジコガネ

B 群
卵 卵殻表面の突起は円柱に近い円錐形。

幼蟲 不明。

成蟲 翅鞘の縦線は合縁と常に 2 本明瞭、体の最も幅広い部分は、翅鞘の中央部附近にある。頭部は比較的大きい。

Anomala holosericea (FABRICIUS), 1787. キンスジコガネ

C 群
卵 卵殻表面の突起は円柱形状或は棍棒状。

幼蟲 尾節腹部の剛毛列の長さは、両列の間隔の 2 倍より長い。剛毛はやや短かく、殆ど相交わらない。

成蟲 翅鞘の縦線は不明瞭。体の最も幅広い部分は、翅鞘の中央部附近にある。頭部は比較的大きい。

Anomala daimiana HAROLD, 1877. サクラコガネ
Anomala lucens BALLION, 1871. ツヤコガネ
D 類
卵 卵袋表面の突起は円柱形または棍棒状。
幼虫 尾節腹面の剛毛列は、前方に短棘の長い列を有する。
成虫 翅鞘の縦縦線は不明瞭。体の最も幅広い部分は、翅鞘の中央部附近にある。頭部は比較的小さい。

Anomala geniculata (MOTSCHLUSKY), 1866。 ヒメサクラコガネ

Anomala pleurimargo REITTER, 1903。

Anomala rufocuprea MOTSCHLUSKY, 1860。 ヒメコガネ

Anomala Motschulskyi HAROLD, 1877。

Anomala cuprea (HOPE), 1839。 ドウガネブルイ

II. 生態
1. 生活史
北海道に産するスジコガネ類の生活史を略記すれば次の如くである。

成虫は7月上旬より9月上旬に亘って出現するが、その最盛期は7月下旬〜8月中旬である。卵は地表下数cmの所に群々と産卵される。2〜3週間を経て孵化した幼虫は、地中の雑植質を食して僅かに生長し、10月下旬〜11月上旬に、第1齢末期または第2齢初期の状態で地表下20〜40cmの深層に移って越冬する。翌春4月下旬〜5月上旬頃より再び活動を開始し、2回の脱皮を経て10月下旬迄に第3齢中末期または後期の状態に達して再び越冬に入る。第3年目に至って生長の早い1部の個体は8月に羽化するが、大部分の幼虫はさらに摂食を続け、9月上中旬頃から老熟幼虫となり三度び越冬する。幼虫の喰害の著しいのは第2年目後半及び第3年目である。第4年目には殆ど摂食せず、6月下旬孵化、7月中下旬羽化する。成虫の壽命は4週間内外である。第3年に羽化する個体は、ヒメコガネには相当認められるが、ツヤガネでは遂かに少なく、サクラコガネ、スジコガネ等は全部4年目に羽化する様である。

2. 卵
卵は産下された当時は長柱円形であるが、育期間中に水分を吸収して、孵化直前に、容積及び重量は初期の3〜4倍に、含水量は約2倍に達し、球形に変る。飼育内内の温度が大
略 17〜30℃の間では、温度と発育速度との関係は殆ど直線的である。一般に高温で飼育した個体は低温で飼育した個体より小さい。pH 4.0〜6.2 の酸性度を示す飼育条件が卵の発育には好適である。

3. 幼 鳖

頭稜は各脱皮毎に増大する。この増大は指数曲線で大略示す事が出来る。ヒメヨガネ 1 世代の有効発育温度は 1830〜1890 日度（発育限界温度を 11℃と假定）と推定される。生活環を完了するのに、本州中部では満 1 筲年、北海道では満 2 筲年または満 3 筲年を要する事実は、上記の有効発育温度によって凡そ説明する事が出来る。

幼鶏の総摂取量は、トマツズ細根（直径約 0.6 mm 以下）のみを給餌した場合には約 50 g を要した。これを苗木数に換算すれば、上記の細根を 50 g 集めるのには、2 年生トマツ苗では約 200 本、山出し苗では約 50 本を要する。苗木に於ては、1 m² に 10 頭以上棲息する場合には、その区の苗木は著しく生長を阻害され、30 頭以上の場合には山出し苗でも全滅する。

幼鶏は夏季には主として地表下 3〜15 cm の間の、苗木や作物の根の良く発達している層に棲息するが、な月下観から、上層の地温が低下するにつれて次第に深く潜行し、10 月下旬〜11 月上旬頃に越冬に入る。十勝地方に於ては 20〜45 cm の深さで越冬する。翌春、棲息個所の温度が 11〜13℃に上昇した頃（4 月下旬〜5 月上旬）から再び活動を開始する。

幼鶏の土壌中における季節的移動は、幼鶏の密度増大に大きな関係を有するものと考えられる。即ち夏季の観察に於ては、有害な高温部から避れる能力は明らかに認められたが、低温部からは避れる事が出来なかった。しかしながら 8 月下旬頃より次第に低温に対しても敏感になって選好する温度範囲が明らかになり、10 月下旬の観察では 10〜13℃の間を選好した。このような選好力は翌春 4 月上旬の観察ではなお認められたが、4 月下旬の既に摂取を開始した幼鶏では弱弱になる様に観察された。春季、前鶏期に近い老熟幼鶏は明らかに温度選好能力を有し、16〜24℃の間を選好した。

4. 鳖

前鶏及び飼鶏期共に乾燥に対する抵抗性が甚だ微弱であり、空気温度 100% の場合にのみ正常に飼育状態に至る例も見出される。飼期間は 30℃の恒温器内では 7〜8 日間であるが、野外に於ては約 3 週間を要する。

5. 成 鳖

成鶏は 7 月上旬より 9 月上旬に至る期間に発生する。その発生最盛期は北海道の南部及び中央盆地では 7 月下旬より 8 月上旬迄で、北部及び東部地区では 8 月中旬である。成鶏は日没
1時間後頃から飛翔を開始し、約1〜2時間が最も活動的である。

III. 分 布

ヒメコガネ及びツヤコガネの2種は北海道全般に広く分布し、誘殺燈による捕獲数の54%がヒメコガネ、33%がツヤコガネによって占められていた。他の各種の主なる分布地域は次の如くである。即ちサクラコガネは渡島、日高及び十勝地方；スジコガネは前振、日高、上川及び北見地方；ハンノヒメコガネは天塩、渡島及び日高地方；ドウガネブイブイは渡島地方；オホスジコガネは前振及び日高地方；ヒメサクラコガネは渡島及び前振地方；キッスジコガネは日高地方；ヒメスジコガネ Minela flavilabris WATERHOUSE, 1875. は前振及び釧路地方；マメコガネ Popillia japonica NEWMAN, 1838. は全道；ヒメビロードコガネ Serica orientalis MOTSCHULSKY, 1857. は渡島地方；ナガチャコガネ Heptophylla picea MOTSCHULSKY, 1857. は石狩、上川及び十勝地方；コクリコガネ Lachnosterna picea (WATERHOUSE), 1875. は渡島地方；シロスジコガネ Granida albolineata MOTSCHULSKY, 1861. は渡島及び前振地方に分布する。

北海道に於けるコガネムシ類の発生は、一般に前振、日高、十勝、釧路、根室及び網走地方の火山灰地帯に於て激発である。南部及び内陸盆地の様に、夏季は比較的高温で且つ冬季にも殆ど土壌の凍結を見ない地方には10種内外のコガネムシ類が繁殖するが、東部及び北部の様に夏季の気温が冷涼で、冬季には数極その深さまで土壌が凍結する地方に於ては、僅か3〜4種より見出されない。両地帯の間のこの相違は、夏季の温度と冬季の土壌凍結の深さとに影響される点が大きいものと考えられる。
文 献

邦文の部

1) 明 永久次郎 1925 : 梵切扇の薬理作用 (林業報, 15号, 13)。
2) 秋田大林協會 1918 : 梵切枝切枝薬理作用に関する調査 (同報, 3号, 165)。
3) 竹野利雄 1935 : コガネムシ Mimela splendidens GYLLENHALIの生活史に就いて (植物. VII (3), 116-117)。
4) 福 永 智 1922 : 梵切扇 (高林, LXIX, 30)。
5) 岡 原 廣治 1930 : 梵切扇殺虫作用に関する調査 (農業の興隆, I (11), 22-23)。
6) 北海道立農試 1930 : 梵室の薬理。
7) 補 術 注 1933 : 金亀子幼虫に対する赤の効果 (同報, 第25号, 29〜30)。
8) 北海道農試 1933 : 姫金亀子幼虫に関する調査 (病報, XX (10), 805〜807)。
9) 1934 : 姫金亀子幼虫に対する接種試験 (病報, XXI (10), 796〜798)。
10) 1935 : 姫金亀子幼虫に対する接種試験 (病報, XXII (11), 883〜885)。
11) 1935 : 姫金亀子幼虫に対する接種試験 (病報, XXII (11), 885〜888)。
12) 1935 : 姫金亀子幼虫に対する接種試験 (病報, XXII (12), 965〜971)。
13) 1938 : ヒメカゲ幼虫に対する赤の薬理作用と薬力材料の併用試験 (病報, XXV (7), 558〜560)。

14) 1938 : ヒメカゲの産卵巣巣の薬理作用に関する調査 (病報, XXV (8), 698〜699)。
15) 1938 : ヒメカゲの産卵巣巣の薬理作用に関する調査 (病報, XXV (9), 717〜718)。
16) 1938 : ヒメカゲの産卵巣巣の薬理作用に関する調査 (病報, XXV (11), 860〜861)。
17) 1939 : ヒメカゲの孵化作用に関する調査 (病報, XXVI (2), 198〜199)。
18) 1939 : ヒメカゲの産卵巣巣の薬理作用に関する調査 (病報, XXVI (3), 199〜200)。
19) 1939 : ヒメカゲ幼虫に対する藻類系薬用の薬物作用と薬力作用 (病報, XXVI (9), 669〜675)。

20) 池田倉之助 1945 : 木の土壌処理 (北海道林業統計, 第37号, 31〜34)。
21) 今永 千代吉 1924 : 梵の薬理作用に関する調査 (林業, 24号, 55)。
22) 輪上 元則 1943 : 梵防腐林生物被害防止施設 (北海道林業)。
23) 若松 嵐夫 1931 : 梵腐蝕の発生 (林報, 1号, 65)。
24) 胡 黒 友三 1922 : 梵切扇の1種について (林報, 6号, 28)。
25) 1922 : まめこがね鈍鉄 (林報, 79号, 19)。
26) 1925 : 梵切扇薬理作用に関する調査 (林報, 17号, 57)。
27) 1933 : キイロカゲの成虫薬理作用 (林業報, 14号, 105〜109)。
28) 砲谷 一男 1933 : 金亀子類の食性に関する調査, 第一報 菓子及び果に寄る金亀子の種類並びに季節的消長 (昆鳥, VII (1), 6〜12)。
29) 1933 : 金亀子類の食性に関する調査, 第二報 愛知県地方に於る薬用に来集する金亀子の種類並びに季節的消長 (昆鳥, VI (5), 236〜239)。
30) 1934 : 金亀子類の食性に関する調査, 第三報 東京地方の薬用に来集する金亀子の種類並びに季節的消長 (昆鳥, VI (3), 105〜109)。
31) 1937 : ヒメカゲの産卵巣巣の薬理作用に関する調査 (病報, 9号, 149〜150)。
32) 玖 水 1924 : クガネムシの薬理作用 (林報, 102号)。
33) 加藤 聡夫 1935 : マメカゲ及びその防除法 (農報, 1号, 200〜202)。
34) 1935 : ニュージーランドへ輸出したマメカゲヤドリに行されて (昆鳥, IX (1), 7〜24)。
35) 勝又 政 1929 : 金亀の群集の発散及び新発開法 (共栄. XXXIII (386), 335～340).
36) 川口 武彦 1934 : 金亀科金亀属の発育に於ける飼育力 (共栄. XXXVIII (147), 406～410).
37) 木下 稔 1925 : 金亀の発育に就て (農林. 第17年, 274～279).
38) 小林清明・村村市太郎 1939 : 大豆に於けるヒメコガネ被害の程度の品種間差異 (農及薬. XIV (1), 37～40).
39) 小林清明 1934 : 金亀の水分発散作用に関する研究 第4報水分発散作用の環境の熟差に就て (植及動. II (7), 1169～1176).
40) 桑山 警 1937 : 可食地方に於ける金亀科金亀属の食飼植物調査 (農學研究. XXVIII, 333～345).
41) 桑山 警 1937 : 姫金亀に就いて (共栄. XXXI (333), 2～12).
42) 桑山 警 1934 : 姫金亀に就いて (共栄. XXXI (333), 2～12).
43) 桑山 警 1936 : コガネムシ類的防止法 (共栄. III (8), 323～325).
44) 桑山 警 1937 : コガネムシ類的防止法 (共栄. 第29年, 23～25).
45) 桑山 警・金子淳夫 1939 : 昭和13年根鉢地方に於けるコガネムシ類的防止法 (植及動. II (2), 73～76).
46) 桑山 警・山田敏・森芳夫 1939 : コガネムシ類の敵敵タナガハリベに就て (共栄. 第29年, 107～110; 社林. XXX (147), 294～295; 植及動. II (3), 107～110).
47) 丸毛 信勝 1930 : 芝生に於けるコガネムシの発散法に就て (植及動. II (2), 140).
48) 松本 鹿藏 1936 : フガネツシ類的防止法 (共栄. 第29年, 23～25).
49) 松村 松年 1910 : 日本大巣流行解. 第3巻.
50) 松村 松年 1915 : 大日本害虫全書. 後編.
51) 松村 松年 1932 : 大日本害虫全書. 後編.
52) 松村 松年 1933 : 松村害虫学. 第3巻.
53) 松村 松年 1943 : 森林害虫学.
54) 松村 松年 1943 : 森林害虫法 (帝林北林業報告 III).
55) 松村 松年 1929 : 根鉢釜害虫寄生的寄生植物 (大日本. 451号, 29).
56) 松村 松年 1934 : コガネムシ類的防止法 (共栄. XXXII (10), 31～33).
57) 元村 勤 1923 : 群衆の統計的取扱に就て (動績. XLIV (552), 379～383).
58) 元村 勤 1935 : 群衆の統計的取扱に於ける相関関数の利用 (動績. 第4年, 339～343).
59) 村山 酸造 1934 : 金亀科金亀属試験報告第2. テウセンコガネの色光別誘蜂防除試験. 第1報 (朝鮮林業報告, 17).
60) 村山 酸造 1935 : 胚発育及び発育期に於ける (朝鮮林業報告, 6).
61) 村山 酸造 1935 : 朝鮮産変種金亀科の生態に就て (動績. XLVII (557), 195～197).
63) 村山 酸造 1936 : 金亀科金亀属試験報告第3報. ハスキイロコガネ Phyllopertha pallidipennis Reitter の害性並に経過に及ぼす影響 (朝鮮林業報告, 23).
64) 長尾 広生 1926 : 根鉢釜の寄生虫に就て (高林. 80号, 33).
67) 金子 善昭 1949 : ヒメコガネ幼虫の温度適好 (松林. III (3), 85～87).
68) 金子 善昭 1949 : ヒメコガネ幼虫の温度適好の季節的変化 (松林. XIV (2), 93～104).
69) 金子 善昭 1950 : 最近2年目の北海道に於けるコガネムシ類の発育状況 (植及動. VI (2), 66～72).
70) 金子 善昭 1950 : 北海道に於けるコガネムシ類の分布並に発育状況 (植及動. XVIII (6), 27～28).
71) 名和 善 1892 : 大豆の害虫ヒメコガネの寄生に就て (動績. IV (40), 52).
72) 名和 善 1907 : 大豆の害虫ヒメコガネの寄生に就て (共栄. XI (119), 260).
73) 新尾 充 1917 : 北海道の林業に有害なるコガネムシ類の種類 (共栄. XV (173), 1～3).
（108 ）

田村 稔 夫 1938 ： 近先性コガネムシ類の食葉性に及ぼす光の影響に就いて (農報). (農報. X (2), 73～80).

110）——— 1939 ： 畑作害虫として注意すべきアカビロードコガネ類目の深防除策法 (農及誌. XIII (7), 1765).

111）——— 1942 ： 大豆害虫及ヒメリュウドコガネの深防除法 (大豆農業會報農業農物増産奨励資料. 20, 1～2).

112）——— 1946 ： 本業研究に依するヒメリュウドコガネ Serica orientalis Morischinsky の生命死に於いて (農報. VIII (4), 202～207).

117）内田 博 1941 ： 昭和16年北海道に於ける金黒子発生の概況 (林業誌. XXXV (4), 87～92).

118）——— 1951 ： 苗畑の害虫 (北海道野害防衛協会).

119）内田 博・中島 豊 1948 ： ナガネコガネの生態学的研究 (北海道林研報. XIV (1), 101～128).

120）内田 博・高橋 弘・小杉 益・坂上 勝 1949 ： 新開拓帯の昆虫相の研究, 特に害虫の移動に就て. I. ユベツ界開拓地に於ける害虫調査 (北海農誌. II (4), 355～362).

121）渡邊 雅雄 1937 ： 森林動物相調査報告. 第一部, 動物目. 其一, 金黒子科 (青森農林局).

122）矢本 聖林 警 1934 ： 根切虫除去各種防除 (東京都農誌. 6).

123）八銃利助・家藤正隆 1944 ： 北海道に於ける土壌の凍結 (農業. VI (2), 27～33).

124）山口 恵 1961 ： 火山性地土性調査法と北海道に於ける火山性土壌 (北海農誌. XLIV).

125）山崎 忠 1938 ： リュウウドウガネの出現状況 (農報. X (2), 74～77).

126）柳原 政之 1935 ： ベン dévelopの生態とその防除法 (農業報潮流. 2, 111～136).

127）矢野 宗幹 1918 ： 根切虫の発育に就て (林試報. 17, 59).

128）——— 1920 ： 根切虫の生態学的防除法の現況 (農誌. 11).

129）——— 1922 ： 根切虫の生態及防除法 (農林. 15; 経研. 41; 高林. 51; 林友. 99).

130）吉田 1926 ： 根切虫防除法の一 (林業. 3).

131）横山 益郎 1924 ： マメコガネの天敵調査 (農林防害報. 285).

132）湯浅 哲雄・遠藤 喜久 1934 ： 金黒子の飼育 (農業. VIII (4～6), 318～319).

133）——— 1938 ： 日本産金黒子類の幼虫形態及び発育. (1) ドウガネブンス (農試報. III (2), 151～182).

152) **Fox, H.** 1931: Recent changes in Japanese beetle larval population in Philadelphia municipal parks. (Journ. Econ. Ent., XXIV, 212–217).
159) **Handschuh, E.** 1929: Die Temperatur als Faktor lokaler Tierwanderung im Boden. (Verh.

165) ———. 1928: Tastsinn, Strömungssinn und Temperatursinn der Tiere und die diesen Sinnen zugeordneten Reaktionen. (Zool. Bausteine, I (1)).

Résumé

So far as the writer is aware, nine species of the genus *Anomala* belonging to the family Scarabaeidae have been recognized in Hokkaido. Some of them are very serious pests against various plants in the farm, seedling nursery and forest. The purpose of this report is to present a taxonomic revision and the result of the ecological investigations of these beetles.

I. TAXONOMY

Having examined many representatives of the nine species, not only adults but also eggs, larvae and pupae, the writer has come to the conclusion that these species should be arranged in the following four groups:

Group A.

Egg: Tubercles of the surface conical. Larva: Pali long, arranged in a row of about 20 on each side; length of a row 2 times as long as distance between two rows; preseptular setae absent. Adult: Elytra with distinct five longitudinal carinae; the widest part of body situated behind the middle of elytra; head comparatively large. The following two species fall in this group:

- Anomala testaceipes Motschulsky, 1860.
- Anomala costata (Hope), 1839.

Group B.

Egg: Tubercles conical, but nearly columnar. Larva: Unknown. Adult: Elytra with two distinct longitudinal carinae; the widest part of body situated at the middle of elytra; head comparatively large. This group is represented by a single species:

- Anomala holsariea (Fabricius), 1787.

Group C.

Egg: Tubercles columnar or clavate. Larva: Pali shorter than those of Group A, arranged in a row about 18–24 on each side; length of a row about 3 times as long as distance between two rows; preseptular setae absent. Adult: Longitudinal carinae of elytra indistinct; the widest part of body situated at the middle of elytra; head comparatively large. The following three species belong to this group:

- Anomala daimiana Harold, 1877.
- Anomala lucens Ballion, 1871.
 - = Anomala geniculata Waterhouse (nec Motschulsky), 1875.
 - = Anomala difficilis Ohaus (nec Waterhouse), 1908.
 - = Anomala tokioensis Nijima et Kinoshita, 1923.
- Anomala multistriata (Motschulsky), 1861.

Group D.

Egg: Tubercles columnar or clavate. Larva: Pali as long as those of Group C; preseptular setae present. Adult: Longitudinal carinae of elytra indistinct; the widest part of body situated at the middle of elytra; head comparatively small. The following three species are included in this group:

- Anomala geniculata (Motschulsky), 1866.
 - = Anomala pleurimargo Reitter, 1903.
- Anomala rufocuprea Motschulsky, 1860.
 - = Anomala Motschulskyi Harold, 1877.
- Anomala cuprea (Hope), 1839.
II. ECOLOGY

Life History.

Before stating ecological observations the author would present briefly the life history of the Anomala beetles occurring in Hokkaido as follows:

The adult beetles emerge from the soil late in July or early in August, and feed on the leaves of various trees. The eggs are deposited in the ground at a depth of about 5 - 10 cm. The larvae hatch in 2 - 3 weeks, and live in the soil for two or three years. During the first year of the larval life little damage is done to crops and seedling trees, but later the larvae feed near the surface of the soil on the roots of crops and young trees, especially of coniferous trees, descending to a greater depth during the winter. In the third year some of the larvae, of which the development is very rapid, pupate at the middle of July, and the adults emerge from the pupae in August. In the fourth year the rest of the larvae take little food in spring. The pupation is completed during the later part of June, and the adults emerge in the greatest number early in August. In Anomala rufocuprea and A. lucens the adults emerge partly in the third year, while in A. daimiana and A. testaceipes the adults all emerge in the fourth year.

The egg stage.

When laid the eggs are relatively small and elliptical. Absorbing water they increase in weight and in volume by 3 to 4 times and become nearly spherical at the end of the stage. The water content of the body changes also from 40 - 45% to 85 - 86%. The temperature-velocity curve of development of eggs approximates within 17°C to 30°C. (temperature in the breeding cage) to a straight line. In general the mature eggs developed in higher temperature conditions are smaller in size than those in lower temperature conditions. The suitable acidity for the breeding of eggs is about pH 4.0 to pH 6.2.

The larval stage.

The rate of the increase in width of the head of the larvae through the developmental period is represented by an exponential curve.

To complete its life-cycle, Anomala rufocuprea needs 2 or 3 years in Hokkaido, while it needs only one year in Honshu. The difference of the growth period between the two localities is accounted for by the difference of the environmental temperature, for it may be estimated that the thermal constant of this species is about 1830 to 1890 day-degrees.

In the laboratory when the larvae are fed only on small fir roots (Abies Miyriana Miyabe et Kudo) with the diameter shorter than about 0.6 mm., they consumed 50 g. of the roots before reaching maturity. A great deal of damage is always done to coniferous seedlings when more than 10 individuals of the larvae are found in each 1 m² of the nursery, and in case more than 30 individuals live in each 1 m², even the 3 or 4 year old seedlings are entirely killed.

In summer the larvae live at a depth of 3 - 15 cm. below the surface, feeding on the roots of crops and seedling trees. In autumn a downward movement begins at about the middle of September, and proceeds gradually for several weeks, corresponding closely with the seasonal fall of the soil temperature. An observation in Tokachi province showed that they hibernate at a depth of 20 - 45 cm. As the soil temperature rises in spring, attaining about 11°C - 13°C, at the place of hibernation, they become active again.

The seasonal movement of the larvae is said to be caused by their temperature preference. Laboratory observations showed that the preference is different according to the season. In summer, when the larvae are placed in the soil of gradient temperature conditions, they are not so sensitive to the temperature as in autumn. In late October, they prefer the zone of 10°C - 13°C. The preference remains marked until early-spring, but soon it is lost when the larvae begin to feed. In spring, the full-grown larvae are also sensitive to the soil temperature and prefer the warmer soil areas of 16°C - 24°C.
The pupal stage.

The prepupae and pupae are very sensitive to desiccation. They may be able to complete their development normally only when they are placed in 100 per cent atmospheric humidity. The shortest length of the pupal life is 7.6 days in *Anomala rufocuprea*, 8.2 days in *A. lucens* and 7.9 days in *A. daimiana* at a constant temperature of 30°C. In the field, however, the pupal period is about 3 weeks in Hokkaido.

The adult stage.

The adult beetles are seen from about the middle of July until early August in the south and central regions of Hokkaido, while they appear during the middle of August in the north and east regions. They become active an hour after sunset and fly about most actively for one or two hours.

III. DISTRIBUTION

Anomala rufocuprea MOTSCHULSKY and *Anomala lucens* BALLION are the principal species occurring all over Hokkaido. *Anomala daimiana* HAROLD is distributed chiefly in Oshima, Hidaka and Tokachi provinces; *Anomala testaceipes* MOTSCHULSKY in Iburi, Hidaka, Kamikawa and Kitami provinces; *Anomala multistriata* (MOTSCHULSKY) in Teshio, Oshima and Hidaka provinces; *Anomala cuprea* (HOPE) in Oshima province; *Anomala costata* (HOPE) in Iburi and Hidaka provinces; *Anomala geniculata* (MOTSCHULSKY) in Oshima and Iburi provinces; *Anomala holosericea* (FABRICIUS) in Hidaka province; *Minela flavilabris* WATERHOUSE in Iburi and Kushiro provinces; *Popillia japonica* NEWMAN all over Hokkaido; *Serica orientalis* MOTSCHULSKY in Oshima province; *Hepsectryla picea* MOTSCHULSKY in Ishikari, Kamikawa and Tokachi provinces; *Lachnosterna picea* (WATERHOUSE) in Oshima, Iburi and Hidaka provinces and *Granida albolineata* MOTSCHULSKY in Oshima and Iburi provinces.

In general the beetles are exceedingly abundant and destructive in the volcanic ash soil areas of Iburi, Hidaka, Tokachi, Kushiro, Nemuro and Abashiri provinces.

It is a well-known fact that many species are found in the south and central parts of Hokkaido, while only three or four species occur in the north and east parts. This phenomenon may be caused by the difference between the two regions in respect to the temperature in summer and also in the thickness of the freezing soil layer in winter. Indeed, it is warmer in summer in the south and central parts than in the north and east parts; and the freezing soil layer is thinner in the former than in the latter.
第 I 圖版

成 蟲

1. *Anomala testaceipes* Motschulsky
2. *Anomala costata* (Hope)
3. *Anomala holosericea* (Farructus)
4. *Anomala daimiana* Harold
5. *Anomala lucens* Baillon
6. *Anomala multistriata* (Motschulsky)
7. *Anomala geniculata* (Motschulsky)
8. *Anomala rufocuprea* Motschulsky
9. *Anomala cuprea* (Hope)
1. Anomala testaceipes Motshulsky
2. Anomala holoserracea (Fabricius)
3. Anomala rufocuprea Motshulsky
4. Anomala lucens Baldon
5. Anomala costata (Hope)
6. Anomala daimiana Harold
7. Anomala geniculata (Motshulsky)
8. Anomala multistriata (Motshulsky)
9. Anomala cuprea (Hope)
第Ⅲ 畫版

成 蟲

I Clypeus.

II 翅柄の解剖絵図

Ⅲ 11器 1. Labrum
2. 3. Mandible
4. Maxilla
5. Labium

(Anomala lucensa, ♂)
第 IV 図版

成 蟲

I 前脚の爪

II 1. 後脚
 2. 前脚
 3. 中脚
 4. 後脚

(Anomala lucens, 3)
1. Anomala testaceipes Motschulsky
2. Anomala costata (Hope)
3. Anomala haloserica (Fabricius)
4. Anomala daimiana Harold
5. Anomala lucens Ballon
6. Anomala multistriata (Motschulsky)
7. Anomala geniculata (Motschulsky)
8. Anomala rufocuprea Motschulsky
9. Anomala cuprea (Hope)
第V図版

1 2 3

4 5 6

7 8 9

scale 1:50
第 VI 番版

幼蟲

1. 土窪の中の幼蟲 (Anomala lucens Ballon).
2. Anomala rufocuprea Motshulsky
3. Anomala testaceipes Motshulsky
4. Anomala cuprea (Hopf)

幼蟲尾部絵画の剛毛列

5. Anomala testaceipes Motshulsky
6. Anomala lucens Ballon
7. Anomala rufocuprea Motshulsky
8. Anomala cuprea (Hopf)

蛹

9. Anomala lucens Ballon
10. Heptophyila picea Motshulsky
第 VI 冒版
第 VII 图版
尾筋腹面の剛毛列

Ⅰ 第1齢幼蟲（孵化直後） Ⅱ 第3齢幼蟲
1. *Anomala testaceipes* Motchulsky
2. *Anomala costata* (Hope)
3. *Anomala daimiana* Harold
4. *Anomala lucens* Ballon
5. *Anomala multistriata* (Motchulsky)
6. *Anomala geniculata* (Motchulsky)
7. *Anomala rufocuprea* Motchulsky
8. *Anomala cuprea* (Hope)

Ⅱ 鼻区壁部
1. *Anomala testaceipes* Motchulsky
2. *Anomala lucens* Ballon
3. *Anomala rufocuprea* Motchulsky

Ⅳ 尾筋腹面模式図
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第VII圖版
第 VIII 圖版

I 報 Anomala rufocuprea Motschulsky

生殖器の変異

1. Anomala rufocuprea Motschulsky
2. Anomala lucens Ballon
3. Anomala testaceipes Motschulsky
4. Anomala cuprea (Hope)
第 VIII 圖版

I

II

III

1

2

3

4
第 IX 層版

幼鱒による喫害

1. 2年生トマツ 健全木及び被害木
2. 2年生カラマツ 被害木
3. 3年生トマツ 健全木
4. トマツ 被害木
5. 4年生トマツ 被害木
6. トマツ枝分枝被害部
7. カラマツ枝分枝被害部（遠影…健全苗，中央…被害苗）
第 IX 圖版