<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>北海道の風倒木地帯に於けるヤツバキクイ Ips typographus LINNE の異常発生に関する 2・3 の考察</td>
</tr>
<tr>
<td>著者</td>
<td>内田 廣一・中島 敏夫</td>
</tr>
<tr>
<td>言語</td>
<td>北海道大学農学部 演習林研究報告</td>
</tr>
<tr>
<td>タイトル</td>
<td>北海道の風倒木地帯に於けるヤツバキクイ Ips typographus LINNE の異常発生に関する 2・3 の考察</td>
</tr>
<tr>
<td>期号</td>
<td>21(1)</td>
</tr>
<tr>
<td>項目</td>
<td></td>
</tr>
</tbody>
</table>

By

Toichi UCHIDA and Toshio NAKASHIMA
(Entomological Institute, Hokkaido University, Sapporo)
序

北海道に於いては1954年9月の台風により、樹株8千万株に達する風倒木を生じた。従来の記録によれば、かかる多量の風倒木を生じた場合には、これを温床として増殖するキクイムシ類の寄生により、残存林分に風倒木と同数若しくはこれに数倍する虫害木を生ずることが通例となっている。

エゾマツに寄生するヤツバキクイ *Ips typographus* LINNÉは、これ等キクイムシ類中最も重要なものの1つであり、近年に於ける大発生の記録としては、1924年5月（北海道）及び1936年10月（樺太）の風害後、数年に亘って猛威を逞しけしたことが報ぜられている（原田, 1929; 田畑, 1936; 玉貫, 1933, '34, '40, '42）。またヨーロッパに於いては、1931〜'32年の風害, 第2次大戦（1939〜1945）により森林の荒廃並びにこれに相乗された異常高温と乾燥等に起因する大発生が報せられている（V. BUTOVITSCH, 1941; A. KURIR, 1947; B. LEKANDER, G. RECKMANN, 1950; E. SCHMITSCHEK, 1948; O. SCHNEIDER-ORELLI, 1947; O. SCHNEIDER-ORELLI & W. KUHN, 1948）。しかしながらこれ等の研究の大部分は、大発生の誘因、被害程度、防除対策等に関する考察を主として報告したものであって、該虫のpopulationの増減に関する究明は殆ど行なわれていない。しかしpopulationの増減に関する機構を明らかにすることは、大発生の経過、被害程度等の予測並びに防除対策の樹立等にあたって、その基礎を与えるものと考えられる。よって筆者等は北海道の無防除地帯に於ける今次のヤツバキクイ大発生に際し、1954年以来数次に亘り現地調査の機会に恵まれ、該虫の増殖過程並びに大発生の経過につき2・3の知見を得たのでここに報告する。本文に入るに先立ち、現地調査に多大の便宜を与えられた札幌営林局造林課、定山渓営林署、恵庭営林署、北海道林務部道有林課、旭川営林署、旭武営林署、北大営林の各位に深謝の意を表する。

I. 個体群の増大期に於ける2・3の観察

過去数回に亘る樺太及び北海道に於けるヤツバキクイ大発生の記録に鑑み、今次の風害後第1回及び第2回の発生期に相当する1955年に於いて、該虫が大増殖を行うことが予想された。しかしこの増殖期に於けるpopulationの増大過程を明らかにすることは、大発生の経過を解析する上に重要な意義を有するものと考えられるが故に、この間に於ける棲息密度の変化、単位面積の樹皮下に於いて増殖する成虫及び幼虫の量的関係等を解明する目的をもって、次の如き調査を行なった。
1. 穿入孔の密度の変化

調査方法

調査地：定山溪地区……定山溪西支流管内，小樽市山川区滝の原始林内に位置し南西に流れる谷川沿いの幅約 100 m，長さ約 3.6 km，標高は 400～700 m の地域を選んだ。谷川の両側 20～50 m の間は比較的平坦であるが，その外側はやや急傾斜の壁となり，標高 700～900 m の峰を形成している。

千歳地区……恵庭市北管内，島棚舞事業区の原始林のほぼ中央部に位置する。面積約 1 ha，標高 110～130 m，ごく僅かに東に傾斜している。

調査木並びに調査期間：調査区域内にある倒木の内，足場具の他の関係で連続調査可能なエゴマツは，根付風倒木 29 本，摺木 2 本，合計 31 本であった。根付風倒木は 1955 年春には未だ枯死するに至らず，葉は濃緑色を呈し，中には僅かながら新芽を生ずるものも認められた。これ等調査木の樹高及び胸高直径は第 1 表に示す如くである。上記調査木の外に，1955 年並びに 1956 年の各 6 月中旬に夫々 3 本のエゴマツを伐倒して比較検討すると共に，この間に新たに生じた風倒木をも随時調査した。

<table>
<thead>
<tr>
<th>第 1 表 調査木の樹高並びに胸高直径</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>樹高</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

これ等調査木の樹幹に，幹を 1 周する幅 1 m の環状の調査部を夫々 3～4 カ所*，全調査木合計 135 カ所設定し，各調査部内に認められるヤツベキノイの穿入孔数並びに新成虫の脱出孔数を，1955 年 6 月上旬より同年 9 月下旬までの間，下記の如くに調査した。

定山溪地区……6 月 10 日，30 日；7 月 21～23 日；8 月 8～11 日，25～26 日；9 月 20～23 日。

* 各調査木の樹高を 4 等分する各等分点付近の樹幹に調査部を設けた。
千歳地区……6月8日；7月26～28日；8月18～20日；9月13～15日。

調査結果並びに考察

i. 1955年度に於ける発生経過

各調査時に認められた新穿入孔数は第1図に示す如くであり、1955年度に於いては2回の発生をしたことが明らかである。即ち第1回発生は5月中旬～6月下旬の間であり、比較的早く枯死した倒木に集中穿入している。第2回発生は7月下旬～8月上旬の間であつて、第一回発生期に穿入を免れた倒木全部に穿入を見た。

![発生経過のグラフ](image)

第1図 1955年度に於ける発生経過（関山溪）

（各調査日に認められた新穿入孔数）
1. 平均最高気温
2. 平均気温
3. 平均最低気温
A. 春季に衰弱傾向の著しかつた既倒木
B. 春季に新芽を萌やしていた既倒木

しかしながら春季に於ける穿入活動は、6月下旬をもって終了したものではなく、第2回目的発生に至るまでの間、常に若干の成虫の活動を見た。これは越冬後、成熟に至るまでの期間に相当大幅の個体差があること、並びに O. SCHNEIDER-Orelli & W. Kuhn (1948) の述べている如く、1度樹幹に穿入産卵したのち脱出して更に他の樹幹に穿入する個体が相当数存在することによるものと考えられる。

8月上旬に於いて初めて顕著な穿入を受けた倒木は、主として春季には未だ衰勢の衰弱程度が軽く、新芽を育し、7月下旬の調査に於いても殆ど穿入孔の認められなかった

* 1956～1958年の3年間は、いずれも年1回の発生で、第2回目の発生は見られなかった如くである。
倒木である。これ等倒木の樹幹が、
7 月下旬より僅か 2 週間以内に一斎
に 1 m² 当り 70 〜 80 孔の穿入を受け
たものであって、第 2 回目の発生は第 1 回目に比較してはるかに稀一で
あったことが窺える。
1955 年の気温と本虫の発生との
関係について一考するに、次のこと
g おかわしいである。1954 年より 1958
年に至る間の北海道各地の気温は第
2 図に示す如く、1955 年は 6, 7 月の
異常高温により顕著に特徴づけられ
ている。
一方ヤツバキクイは比較的高温
を好むものの如くである。即ち原田
(1929) によれば、14℃ 以上で穿入し
19℃ 以上で盛んに活動するという。
飛期は 18℃ 以上の高温時に観察さ
れる。玉貫 (1942) は、大正末期の樺
太に於ける大発生は、同期間中の高
温 (18℃ 以上) によって助長されること
tて大であることを報じている。ヨ
ーロッパに於いては、暑い、乾燥した
夏に引続いて害が発生すること (G.
RECKMANN, 1950; O. SCHNEIDER-
ORELLI, 1947), 春季には気温が 20℃
に達した日が 8 〜 14 日続いたのちに
成虫の採取が行なわれること (E.
SCHNITCHEK, 1948), 産卵にあたつては樹皮の 25℃ の面を選好すること (W. THALENHorST, 1947) 等が知られている。上記の如くヤツバキクイの生活適温は 18℃ 以上にあるものと考えられ、1955 年 6, 7 月の異常高温は、該虫の第 1 化期の成長にとって極めて好適であった
ことが推察される。
1955 年 9 月 21 日の調査に於いて、樹皮下に留まっていた個体の齢期構成は、成虫 90.8
%、鰤 7.2%、幼虫 2.0% であった（越冬のために他から飛来した幼虫……。放射状の越冬坑を形成しているもの、図版 XII 参照……を除く）。実際に羽化した個体の百分率は、この樹皮下に留まっていった成虫数に、既に脱出した個体数が加算される故、さらに高率となる。それ故 1955 年に於いては、前記の如き好適な気候に助長されて、2 回の発生を殆ど完全に完了したものと考えられる。

ii. 噛痕の占有面積と穿入密度との関係

ヤツバキクイはその棲息場所がエゾマツの樹皮下に限られている故、穿入密度は 1 噛痕の必要とする面積に密接な関係を有することが予想される。ヤツバキクイの嘘痕は、図版 V に示す如く、2 本成いは 3 本の母坑を有する複縦坑型である。しかし正常発生の場合の母坑の長さは、第 V 図に示す如く平均 10.3 cm、幼虫坑の長さは 3～6 cm である。幼虫坑は母坑の両側に夫々約 30 本、1 繁殖坑* につき 120 本内外が伸長し、十分発達した 1 繁殖坑は、150～160 cm² の面積を占める。それ故相隣接した繁殖坑が互に相重なることなしに発達し得るためには、1 m² に 60～70 カ所は穿入出来ない計算となる。

1955 年度第 1 回及び第 2 回発生に於いて、樹幹の表面 1 m² に認められた穿入孔数の頻度分布は第 3 図 I, II に示す如くである。前述調査に於いては、第 1 回発生成虫による穿入孔数として 7 月 23 日以前の値を、第 2 回発生期の孔数としてはそれ以後の値を使用した。

図に明らかな如く、第 1 回発生期に於いては、1 m² に 0～20 孔の割で穿入する場合が 66％を占めて最も多い。第 2 回発生期に於いては、第 1 回とは趣を異にし、60～100/m² の部分に著著な山が認められる。

これ等の穿入密度を前記の基準に従って検討するに、第 1 回発生に於いては未だ該虫の population が低く、樹幹には多くの穿入余地の残っていることが推察される。しかしながら 1 m² に 80 孔以上穿入する頻度も 18％を示している。これは比較的早く枯死した択殺木に見られる現象であり、該虫の選好する一定の条件を備えた木には、集中的に穿入する傾向のあることが窺える。第 2 回目の発生に於ける頻度分布は、population が急激に増加したことを示すと共に、その分布の山 (60～100/m²) が、前記の計算により求めた穿入限界密度 (60～70/m²) に一致している故、倒木の樹幹にはもはや穿入可能な余地の残されていることが推察される。またそれより高密度側に穿入する頻度が急激に低下している事実により、ヤツバキクイの成虫には、正常発生の場合、一定密度以上に穿入することを忌避する何等かの能力のあることが推察される。

* 1 ケの穿入孔から発達した嘘痕（穿入孔……1，交尾室……1，母坑……2～3 本，並びにこれに属する全幼虫坑）を 1 繁殖坑と呼称することにする。
第3図 1㎡内に認められる穿入孔数の頻度分布

2. 穿入孔の密度と次世代の個体数との関係

エゾマツの樹皮下という限られた場所に生活するヤツバキクイにとって、populationの増加は食物及び棲息空間の争奪を激化する結果となり、次世代の発育に悪影響を及びやすいことが自然予想される。それ故単位面積の樹皮下に穿入する成虫の数と、そこで繁殖する次世代の個体数との関係を明らかにする目的をもって、次の調査を行なった。

調査方法

前記の供試木に設けた135ヵ所の調査部から任意に選出した24ヵ所につき、9月13～15日（千歳地区）及び9月20～23日（定山渓地区）に剝皮調査を行ない、樹皮下に留まっている次世代の個体数を検討した。剝皮にあたっては調査部の下に白布を敷けて虫の逸脱を防ぐと共に、樹皮は細分し、後食のために樹皮内に深く喰入している新成虫の探索に努めた。しかってこの樹皮下より見出された幼虫、蛹、新成虫の数に、脱出孔を加算した値を、この区に於いて発育した個体数とした。尚本調査に於いては、越冬のために他から
飛来したことの明らかな個体（放射状の越冬坑を形成しているもの）は除外した。また1
脱出孔からは成虫が1頭だけ脱出するものと仮定して計算した。

調査結果並びに考察

上記の調査の結果に基づき、a)穿入孔の密度と1穿入孔当りの次世代の個体数と

第4図 穿入孔の密度と1穿入孔当りの次世代の個体数との関係

第5図 穿入孔の密度と、単位面積内に於いて増殖する次世代の個体数との関係
の関係。b) 穿入孔の密度と単位面積当りの次世代の個体数との関係を図示すると、夫々第4図及び第5図の如くである。

i. 穿入孔あたりの次世代の個体数

穿入孔内での繁殖する次世代の個体数は、穿入孔の密度が70/m²の場合に最高値を示し、穿入孔当たり平均32.5個の次世代虫を産出した。しかし穿入孔の密度がそれよりも高密度でも低密度でも、次世代の個体数は減少していた（第4図）。本調査に於いて穿入孔当たりの次世代個体数が最高の値を示している場合の穿入孔の密度（70/m²）は、前述したところの完全な発達を示した繁殖杭の面積から計算した穿入限界密度（60〜70/m²）と良く一致している。それ故次世代の各個体が完全な発育をとげるに適当な雑穢密度は、穿入孔の密度が70/m²或はそれ以下の場合であり、それ以上穿入することは繁殖にとっては有害不適当であることが明らかである。

穿入孔の密度が70/m²以上の場合に、増殖が長細曲線類似の曲線を示して減少している事実は、overpopulation になった場合の一般的傾向に一致している。穿入孔の密度が70/m²以下の場合、食物及び雑穢空間に十分余裕があると考えられるにもかかわらず、穿入孔当たりの次世代の個体数が減少している事実は、穿入した樹幹に食物又は雑穢場所として何等かの不適当な条件があり、そのために穿入の際にあまり選好されず、また穿入した場合にも良好な繁殖を示さなかった結果に基づくものと思われる。

ii. 単位面積の樹皮下に於いて繁殖する次世代の個体数

成虫の穿入密度が上昇するに伴って、単位面積内に於いて成育する次世代の個体数は急激に増加する。穿入孔の密度が平均20/m²の場合には、平均400/m²の次世代虫を産するにすぎないが、穿入孔が80〜100/m²の場合には1838〜3260/m²、平均3000/m²の次世代虫を産出した。しかしながら穿入孔がさらに増加し、120/m²以上になった場合には、次世代虫の数は逆に減少する傾向が認められる。即ちヤツバキクイの個体群にとって食物及び空間利
用度の最も高い雑穢密度は、1m²に80〜100個の繁殖杭を営む場合であると考えられる。

この値は、繁殖杭が最良の発達をとげる穿入孔密度（70/m²）よりも約30%高密度側に移行している。玉賞（1942）は枝太に於けるヤツバキクイの大発生を調査した際に、106/m²の穿入孔密度に対して、次世代の個体数は2950/m²であったことを報じているが、この値は第5図に示した曲線に良く一致している。

幼虫虫は前述せる如く1繁殖杭につき120本内外発達する。それ故1m²に90孔穿入した場合に産出される可き次世代の個体数は、計算上10,800個となる。実測による最高値は3,000個である故、成長期間中に於ける死亡率は約72%と推定される。原田（1929）はこの値を約70%と報じているが、算出の基礎は示していない。

1955年の第2回発生に於いて、最高頻度を示している穿入孔の密度は、第3図に示し
た如く 60〜100/m² であって、個体群全体として最も効率の良い値 80〜150/m² と一致している。且つこのような状態にある倒木の量が極めて多量であつたために、1956 年春、ヤツバキクイは逐に大発生を惹起した。しかしそ第 3 図 II から明らかに察せられる如く、倒木の樹幹にはもはや寄生すべき余地が残されていない故、この大増殖したヤツバキクイの大部分が、生立林分の過熟木、衰弱木等を襲ふ結果となった。

II. 個体群の消長と喫疫の形状の変化

一度大発生したヤツバキクイが、再びもとの平衡状態に返復するまでの過程は、該虫の生理生態的諸性質、気象条件、森林の荒廃及び回復の程度、各林木の生理状態、天敵の増減等多くの環境条件に左右されるために非常に複雑であり、その推移を予測することは極めて困難である。しかしながら樹皮下に残された喫疫の形状は、個体群の密度、次世代虫の発生状態等を如実に記録したものと認められる。それ故に大発生全期間を通じての喫疫の変化に、もし死なれる傾向或いは“型”とも称す可しきものが存在するならば、新たに生じた大発生に際し、或る時間に於ける喫疫の状態並びにそれまでの経過を、上記の型と比較検討することにより、その後の経過を予測することは不可能ではないと考えられる。今次之北海道に於ける大発生に於いて、上記の如くに利用し得る“傾向”或いは“型”が存在したか否か、もし存在したならばどのようなものであったかを知るために次の調査を行なった。

1955 年より 1958 年に至る間に形成された喫疫の内、風倒日或いは伐倒日、喫害期、剖
皮目等の明らかな喫延につき、穿入孔の密度、母坑の長さ、1母坑から発達する幼虫坑数を測定した結果は第6図に示す如くである。

一般に、成虫のpopulationが過度に上昇した場合増殖率が減少する原因としては、産卵数の減少、孵化率の減少及び幼虫・蛹の死亡率の上昇が挙げられている。ヤツバキイの場合産卵数並びに孵化率の増減、その相乗された値として、1母坑から発達する幼虫坑の数に現われているものと考えられる。しかしながらoverpopulationとなつた場合

第7図 1955年より1958年に至る間の母坑の長さの変化
の卵虫の発見に言及して、幼虫期の数を正確に知ることは極めて困難であるが、母坑の長さを測定することは比較的容易である。まず、第 6 図に明らかに示し、母坑の長さと卵虫の数との変化は極めて類似した曲線を描いている。故に本研究に於いては産卵期並びに孵化期の変化の傾向を知る手段として母坑の長さを使用した。1955 年より 1958 年に至る間に採集した前記の各卵虫につき、母坑の長さの頻度分布図を示し第 7 図に示す如くである。

風側後第 1 回目の発生に相当する1955年春に於いては、母坑の長さは、10〜11 cm の間に顕著な山を有する正規分布を示している。これは穿入孔の密度が 37.3/m² にすぎないことに相違つて、大半の繁殖坑が十分な棲息場所に恵まれ、完全な発達を遂げたことを示しているものと推察される。

1955 年夏の発生に於いて、母坑の長さの分布型は、山の低い幅の広い形に変化している。これは前節に於いても記述している如く、一部が既に overpopulation になり、棲息空間の争奪が起こり、棲息に不適当な条件下にある倒木にも穿入を余儀なくされた個体が生じたため、繁殖坑の発達に種々の段階を生じたことを示しているものと考えられる。

1956年春以降の発生に於いては、穿入密度の著しい上昇と、卵虫の矮小化とが顕著な特徴となっている（図版 VI〜VIII 参照）。穿入孔の密度は、定山川に於いて 70〜1,600/m² 平均 993/m² を示し、また図木等 (1957) は旭川に於ける観測値として 80〜1,400/m²、平均 680/m² を報告している。

母坑の長さは平均 3.34 cm で、正常の長さの約 1/3 にすぎない。卵虫は 1 繁殖坑につき僅か 30 本内外発達したにすぎず、且つ各母坑の間隔が甚しく接近し、一見別種のキクイムシによって作られた卵虫の如き灌を呈している。前述した如く、卵虫が完全に発達するためには、母坑の両側に幅々最小 3 cm の余地を必要とする。それ故、平均 3.3 cm の母坑 2〜3 本を有する 1 繁殖坑は、約 40 cm² の面積を必要とする。従つて 1 m² に営み得る

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地</th>
<th>種別</th>
<th>加害時期</th>
<th>識別日</th>
<th>剃皮調査日</th>
<th>穿入孔数/cm²</th>
<th>母坑当たりの卵虫数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定山川</td>
<td>風側木</td>
<td>1955 V〜VII</td>
<td>1954. IX. 27</td>
<td>1955. VII. 17</td>
<td>37.3</td>
<td>73〜71 50.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>定山川</td>
<td>風側木</td>
<td>1955.V〜IX</td>
<td>1954. IX. 27</td>
<td>1955. IX. 21</td>
<td>79.7</td>
<td>28〜64 47.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>安足間</td>
<td>倒木</td>
<td>1957.V〜IX</td>
<td>1957. VI. 15</td>
<td>1957. X. 3</td>
<td>704</td>
<td>8〜18 13.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>苫小牧</td>
<td>倒木</td>
<td>1957.V〜IX</td>
<td>1957. V. 13</td>
<td>1957. X. 19</td>
<td>118</td>
<td>12〜28 18.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>安足間</td>
<td>立木</td>
<td>1958.V〜IX</td>
<td>1958. VII. 23</td>
<td>1958. VII. 23</td>
<td>64</td>
<td>20〜47 31.6</td>
<td></td>
</tr>
</tbody>
</table>
繁殖坑の数は、計算上250個内外となる。大発生の場合にはも、個体群全体として空間利用度の最も良い密度が、正常発生の場合と同様に、計算値よりも約30%高密度側に移動するものと仮定するならば、単位面積の樹皮下に於いて増殖する次世代の個体数は9,000〜10,500/m²となる。

大発生の場合に於ける穿入孔の密度と、その次世代の個体数との関係を示す曲線は、資料不足のため未だ明らかではなく、上記の最有效密度300〜350/m²は単なる推定にすぎない。しかしながら前記の調査に於いて得られた穿入孔の平均密度680/m²乃至993/m²は幼虫が正常の発育をなし得る限界をはるかに越えているものと考えられる。現地調査に於いても、上記の如く多数の成虫が穿入した樹幹からは、僅か数拾個体の次世代虫が羽化したにすぎずして、大部分の個体は蛹化するに至らずに斃死した。玉貴(1942)は、樫太に於ける大発生の際に、247/m²の穿入孔数に対して、次世代の個体数は425/m²にすぎなかったことを報じている。

1957年於ける母坑の長さには、前年との間に大差が認められない。しかしながら本来ならば樹幹の成長軸にそって直線的に伸長すべき母坑が、この年には弯曲し、或いは上下の母坑が相交叉し、複数坑と認め難い程度にまで乱れた営巣も生じている。

しかも1958年の営巣はやや異なった様相を呈している。即ち1956、57年度に於けると同様に3〜7cm、平均4.9cmの短い母坑を有する一群と、1955年以前の営巣と同様に8〜19cm、平均11.8cmの長い母坑を有する一群とに別れている。

他方、林木に対する被害の発生状態を検討するに、上記の4年間に、各種の穿孔豆類によって加害された立木の材積は、第8図に示す如くである（林試北海道支場，1956〜59）。

即ち生立木に対する害は、札幌、旭川両営林局管内に於いては、1956年度以降激しく現われ

第8図　被害立木材積
(林試北海道支場，1955〜59をもとに)
(各種穿孔豆によるエゾ・トド合計値)
1. 帯広営林局管内 4. 旭川営林局管内
2. 札幌営林局管内 5. 道有林・民有林
3. 北見営林局管内

* 正常発生と大発生の両条件下に於いて、母坑の長さと幼虫坑の数を基準にして計算した次世代の個体数が、死亡率を零にした場合、夫々10,800/m²及び10,500/m²の如く、極めて近似した値を示したことは、興味深い事実である。
れ、1957 年度に頂点に達しているが、1958 年度に於いては急激な減少が見られる。1958 年の気象条件は第 2 図に示した如く比較的高温であり、1956、57 兩年度よりも該虫の繁殖にとって好適であったものと考えられる。それに拘らず、被害量の著しい減少を見たことは、噴痘の形態並びに密度が大発生以前の状態に近づいたことと併せて考察し、該虫の population が減少した結果によるものと考えられる。風害後 4 年を経過して、風衝木の樹勢が回復したこと、林内の清掃作業が進展してキウムノ類発生の温床となるべき場が減少したこと、天敵が増加したこと等、各種の制限要因が有次第に強力となった結果であり、1954 年の風害に端を発した今次の大発生も、札幌、旭川両地区に於いては遂に終結に近づいたものと言えることが出来よう。

帯広及び北見両局管内に於ける発生経過は札幌、旭川両局管内に於けるものとはやや異なっている。この原因は主に気候の相違によるものと考えられる。即ち全般的に高温に経過し、年 2 回の発生を見た 1955 年度に於いても、帯広、遠北地区に於いては年 1 回の発生であったこと、比較的低温に経過した 1956、57 兩年度に於いては、増殖が抑制されたこと等、比較的不利な条件が多かったために、大発生の経過に 1～3 年の遅れを生じた結果によるものと考えられる。上記内に於いて採集した 1957 年の噴痘は、札幌、旭川両方面の 1956 年の噴痘に極めて類似している（図版参照）。事実帯広及び帯広営林局管内の無防除地域に於いては、1958 年に至っては大発生が見られた。

III. 大発生の一般的経過について

以上記述した如く、穿入孔の密度並びに母坑の長さの変化は、大発生の経過と極めて密接な関係を有していることが明らかである。

それ故、これ等噴痘に現われた特徴を指標として、ヤツベキクイの大発生の一般的経過を模式的に画くならば第 9 図の如きものと推察される。

1) エゾマツを主体とした森林には常に若干のヤツベキクイが棲息し、主に過熟木や林線の衰弱木等に集中寄生している。その寄生部に於ける密度は比較的高く、時には over-population と認められる場合もあるが、森林全般としては極めて低密度に保たれている。このような林内に館木を設置しても、穿入孔の密度は 20/m² を越えることはないと考えられる。

2) 料倉、林道の新設その他の出来、林内の籠閉が破られ、徴拠状況が変化した場合には必然的にその周辺の林木が衰弱し、そこでヤツベキクイの寄生を見る。しかしながら罹害木の数は森林全体に比較して極めて少なく、且つ周辺の森林の勢力が盛んなため、それ以上加害区域を拡げることなく、やがて (1) の状態に復帰する。この (1), (2) の経過は森林内に於いて部分的に見られる普通の状態であって、そのまま大発生へ発展することはない。
3) 大規模な風害、喫薬性害虫の大発生、山火、その他の原因により、1 時に極めて多数の倒木や衰弱木を生じた場合には、(2) を経過してさらに増殖を続ける。この場合、大発生を誘導する第 1 の要因としては、ヤツバキの増殖の場となるべき倒木や衰弱木の量が、森林全体の蓄積量に比較して極めて大であることが必要である。また助長要因としては、高温乾燥した気候が挙げられる。

この間に起こる population 増大の様相は前述せる如くである。

4) (3) に於いて個体数の著しい増加をとげたヤツバキは、遂に生立林分の衰弱木を激しく侵害するに至る。

北海道に於ける今回の異常発生は、1954 年 9 月の風害後 2 回の発生を経過したのち、第 3 回目に於いて初めて大発生の様相を呈するに至った。即ち 1955 年の気候は前述せる如く 6,7 月が極めて高温であり、ヤツバキは道北、道東の 1 部をのぞき、年 2 回の発生を見たものであり、第 3 回目の発生に相当する 1956 年春以降、生立林分に対する加害が顕著になった。極太に於ける大発生の場合には、1936 年 10 月の風害後、1939 年に最甚の発生を見たことが報ぜられているが(玉貫 1942), 気候冷涼な該地方に於ける発生は年一回であり 1939 年の発生は第 3 回目に相当する。またスエーデン中、南部に於ける 1931 年の風害に引き続いて発生した害は、最初 2 年間は倒木のみを加害する静的なものであったが、1934
年以後は生立林分を侵害する動的な害になったことが報ぜられている（V. Butovitsch, 1941）。

以上の例から推察される如く、正常の population を維持しているヤツバキクイが、適当にして且つ豊富な食物と棲息場所を与えられて大発生に至る場合には、増殖期間として通常少なくとも 2 回の発生を必要とするものと考えられる。

5) 大発生の継続期間の長短は、主として次の如き要因の現象により左右される。即ち発生を助長する要因としては、倒木、衰弱木、低木、枝条等該害虫の棲息場所となるべきものの放置、林縁の木が枯死するために順次林内の鬱閉が破れ、林木の衰弱が次第に林内に波及し、該虫棲息可能な場が拡大されること、高温乾燥した夏季の気候等を挙げることが出来る。制限要因としては、overpopulation に基づく同種間の生存競争、天敵の増加等を挙げることが出来る。また風衡木の樹勢回復、林内の清掃作業の進展等は、ヤツバキクイの飛入可能面積を縮少せしめ、同種間の生存競争をさらに激化せしめる結果となる。また 18℃ 以下の寒冷な気候は、該虫の増殖を著しく制限するという（玉貫, 1942）。

しかし、これ等の制限要因が次第に強力となり、遂に (1) の状態に復帰するものと考えられる。

要　約

1. 北海道に於いては 1954年 9月の台風により約 8千万石に達する風倒被害木を生じた。しかしこ無防除帯地に於いてはこれら倒木を温床として、キクイムシ、カミキリムシ類が大発生した。筆者等はエゾマツを保育するヤツバキクイ Ips typographus Linne の個体群の増殖過程、並びに大発生の経過につき 2, 3 の考察をなした。

2. ヤツバキクイによる被害は、1955年の夏までは倒木のみに限られていたが、1956年春以降生立木にも顕著に認められるようになった。

3. 倒木の樹幹に認められる穿入孔の密度は、1955年第 1 回発生期には大部分が 20/m² 以下であった。第 2 回発生期にはやや増加して 60～80/m²、1956年第 1 回発生期には急に上昇して 600～800/m² の部分に顕著な山を有する正規分布を示した。

4. 正常発生の場合、毎坑の長さは平均 10.3 cm、1 繁殖坑 (1 穿入孔から発達した 2～3 本の母坑並びにその幼虫坑によって形成されている 1 噴出) の占有面積は 150～160 cm² である。それ故、1 m² の樹皮下で、互に相重なることなしに営み得る繁殖坑の数は、計算上 60～70 個となる。

5. 実地調査に於いて、ヤツバキクイの繁殖坑が十分良好な発達を示す密度は、穿入孔数が 78/m² 以下の場合であり、計算値と良く一致した。

6. 正常発生の場合、1 m² の樹皮下に於いて最も多数の次世代虫が産出されるのは、
穿入孔数が80〜100/m²の場合であり、この値は各繁殖坑にとっての最適密度よりも約30%
高密度であった。

7. 成長期中における死亡率は、約72%と推察される。

8. 1955年より1958年に至る間の罹病木に於いて観察される穿入孔の密度、罹病の
形状、特に母坑の長さの変遷は、同期間中における個体群の増減の状態を客観的に反映して
いることが認められた。

9. 罹病に現われた上記の特徴を指標として、大発生の一般的經過を推定するに、次
の如きものと考えられる。

i) 正常発生……エゾマツを主体とした森林には常にヤツバキクイが営息し、老齢木
衰弱木に寄生している。鰭木に認められる罹病の形状は正常で、穿入孔数は20/m²以下で
ある。

ii) 異常発生 a) 部分発生……伐倒、林道の新設等により林内の微気象が変化した
場合に、その周辺部の衰弱木に小規模な個体群の増加が観察される。罹病の形状は正常、
穿入孔数は80/m²以下。やがて正常発生に復帰する。

b) 大発生 移行期……大規模な風害、一次害虫の大発生、山火、その他の原因に
より林木が広面積に亘り枯死或いは衰弱した場合、豊富な食糧と棲息場所を有したヤツバ
キクイは大増殖を行なう。罹病の形状は正常。穿入孔数が80〜100/m²の場合に、単位面積
の樹皮下から最も多数の次世代虫を産出す。

大発生期……増殖期間として通常2回の発生を経過したのち、第3回目から大発生の
状態を呈する。罹病は短小化し、母坑の長さは3〜4cmとなり、穿入孔数は350/m²以上
時には1,000/m²以上に達する。以上の経過に於いて、発生を助長する要因は、増殖の温床
となるべき倒木、枝条、伐根等の放置、微気象の変化による衰弱木の増加、18°C以上で且
つ乾燥した気候等を挙げることが出来る。

復原期……個体群の異常な増大は、同種間の生存競争を激化する。罹病の形態は乱
れ、他種のキクムシによる罹病の如き観を呈する場合が多い。しかしそ生存競争の激化、
天敵の増加、林木の構築回復、林内整理による棲息場所の減少等の要因により、該虫の増
殖が次第に制限され、遂に正常のpopulationに復帰する。

文　献

1) BUTOVITSCH, V. (1941): Studier över granbarkborrens massföökning i de av deemberstor-
2) DEUBNER, W. (1940): Der grosse Fichten-Borkenkäfer Ips typographus und die Möglichkeit
seiner Bekämpfung. (Dtsch. ForstZtg., 9, 90-91).
3) FRANZ, J. (1947): Lässt sich die notwendige Fangbaumzahl bei Borkenkäferkalamitäten be-
4) FRANZ, J. (1948): Neues zur Bekämpfung des Buchdruckers,
 Ips typographus L. (Anz. Schäd.-
 lingsek., 21 (1), 2-4).
 (Zool. Jb., 77 (6), 426-442).
6) FRANZ, J. (1948): Ueber die Erfolgskontrolle beim Arbeiten mit begifteten Fangbäumen gegen
 Borkenkäfer. (Allg. ForstZ., 12, 113-114).
7) 原田貞幸 (1928): エゾマツ寄生小蠹虫類の生態的研究 (北海道庁)
8) 井上元則 (1957): 昭和32年度における穿孔虫被害 (北方林業, 9 (6), 168-171).
11) 気象協会北海道支部 (1954-1958): 北海道の気象
 und Amstetten 1946-47. (All. forst-u. holzw. Ztg., 58 (15-16), 2 pp.)
14) LAIDLAW, W. B. R. (1947): On the Appearance of the Bark-beetle *Ips typographus* in Britain
 on imported timber with notes on preventive and control measures. (Forestry, 20, 52-56).
15) LEKANDER, B. (1951): Modern control methods against *Ips typographus*. (Norrlands Skogsv
 Fär., Tidsskr., 1, 9-22).
 (Medd. Skogsforstn Inst. 41 (3), 31 pp.).
17) 新島善治 (1930): 梶木におけるクイムシ特にヤツバキクイムシの被害に対する考察 (桜山林業,
 27頁)
18) 国光雄・梅谷献之・内田登一 (1957): 当麻事業区のヤツバキクイの異常な加害例 (林, 60, 42-47).
19) 林業試験場北海道支場 (1955-1959): 北海道森林病虫害報告, No. 4-No. 8.
20) Reckmann, G. (1950): Kampf dem Fichtenborkenkafer (*Ips typographus* L.) bei Massenver-
 mehrung. (Deutscher Zentralverlag).
21) SCHIMITSCHEK, E. (1948): Berücksichtigung des Reifungsfrasses bei der Bekämpfung des
 achtzähnigen Fichtenborkenkäfers (*Ips typographus* L.). (Pflanzenschutzberichte, 2 (9-
 10), 129-139).
22) SCHIMITSCHEK; E. (1948): Stand der Massenvermehrung und Bekämpfung des *Ips typogra-
 Fichtenborkenkafer *Ips typographus*. (Schweiz. Z. Forstw., 1947 (3), 23 pp.).
 Borkenkäferherden. (Schweiz. Z. Forstw., 1948 (9-10), 32 pp.).
25) SCHWERTTTEGER, F. (1948): Freilanduntersuchungen zur chemischen Borkenkäferbekämp-
 fung. (Forst u. Holz, 3 (3), 19-23).
26) 田中司門 (1936): 樹木切断に関じてのヤツバキクイムシに対する被害調査並びに之に対する対策 (桜山
 中央試験所報告, 第 14 号, 第 2 類, 1).
27) 玉貫光一 (1933): エゾマツ寄生クイムシ科昆虫の生態学的研究 (桜山中央試験所報告, 第 2 類,
 第 3 号)
28) 玉貫光一 (1933): エゾマツ被害クイムシ科昆虫の分布 (桜山中央試験所報告, 第 2 類,
 第 3 号)
29) 玉貫光一 (1934): 樹木森林害虫解説 (桜山林業会報, 第 22-23 号)
30) 玉貫光一 (1940): 被害発生したエゾマツ・トドマツのクイムシ類の被害 (桜山林業会報, 第 2 (6), 261).
31) 玉貫光一 (1940): 樹木森林害虫解説 (桜山林業会報, 第 22-23 号)
Summary

In Hokkaido, a serious outbreak of *Ips typographus* LINNÉ occurred in the regions where the forests had been damaged by the typhoon of September, 1954.

The outbreak was divided into two phases. In the first phase the infestation of the beetle was mainly restricted to fallen trees and continued until the summer of 1955. Then, in the second phase, in the spring of 1956, it spread to standing trees and continued until the summer of 1958.

In the spring of 1955, the average number of the entrance holes of the beetle was less than 20 holes per sq. meter of the bark of the fallen trees, in the summer of the same year, it was 79.8 per sq. meter, and in the summer of 1956, the average number of the holes increased to 680 per sq. meter of bark.

In general, each of the fullgrown burrows of the beetle (with one entrance hole, two or three egg-galleries and about 120 larval-mines) occupies about 150–160 cm2 of bark. So it may safely be assumed that the theoretical maximum density of the burrow is 60–70 burrows per sq. meter of bark.

In practice, the optimum density of the entrance holes for the growth of each burrow was about 70 holes per sq. meter of bark, and in a burrow are found 32.5 offspring on an average. On the other hand, the optimum density of the holes for the growth of the population of the beetle was 80–100 holes per sq. meter of bark, and the maximum number of the offspring which were found in one sq. meter was 3,000 on an average.

The density and the types of the burrows, especially the lengths and the forms of the egg-galleries, seem to show the degree of the outbreak. In the year 1955, when the outbreak did not occurred, the average length of the egg-galleries was 10.3 cm. In the years 1956 and 1957, the length was but 3–4 cm. In the year 1958, when the severe infestation of the beetle had almost ended, two types of burrows were found, one being the type of the short egg-galleries and the other the type of the normal egg-galleries.

Chiefly based on the density of the entrance holes and on the types of the burrows, a pattern was evolved which was assumed to show a common course of...
the outbreak of the beetle.

a) Under average conditions, in the forest where the spruce tree, *Picea jezoensis* Carr., is the dominant species, a number of the bark beetle *Ips typographus* Linne are always found on the old trees and on the unhealthy trees. In this case, the population density of the beetle is not so high. The average number of the entrance holes of the beetle on the trap logs may be less than 20 holes per sq. meter of bark. The burrows are normal, and the average length of the egg-galleries is about 10 cm.

b) In a forest, where the microclimate of an area is changed, for instance a lot of trees being cut down or new roads being cut across the forest, the trees standing at the surrounding place of the cutting area are weakened. The bark beetle attacks the weakened trees and the population density of the beetle increases. In this case, the number of the entrance holes may increase to less than 80 per sq. meter of bark, and the burrows are almost normal. But the outbreak of the beetle does not occur, and the population soon goes back to the normal density.

c) When a large area of forest is damaged, however, by severe storms, by big fires, or by outbreaks of primary injurious insects etc., an increase of the bark beetle occurs. And yet the burrows are almost normal. The optimum density of the entrance holes for the growth of the population of the beetle is about 80–100 holes per sq. meter of bark.

d) In general, as an aftermath of a storm, after passing two generations, a different type of the outbreak of the beetle occurs. At that time the burrows are very small, the length of the egg-galleries is about 3–4 cm. The number of the entrance holes is more than 350 per sq. meter of bark, sometimes it exceeds one thousand per sq. meter of bark. One of the important factors by which the outbreak of the beetle occurs may be that the ratio of the number of fallen trees to the number of standing trees is greater than normal. In the forest, when fallen trees, stumps, cut-down branches etc., are left for a long time without any control methods for the insect, the environment becomes favorable for the increase of the beetle. The warm and dry summer also promotes an increase.

e) The abnormal increase of the beetle brings over-population. Sometimes the burrow changes to an abnormal one, so that it may look like a burrow of some other species. Chiefly caused by the injury of over-population, by natural enemies, by recovery of the weakened trees etc., the outbreak of the beetle comes to an end.
Plate 2

III) 成虫

IV) 頻密現象によるもの及ぶ新規虫
V) 1955年第2回発生時の痕痕（スス山谷）

VI) 1956年における痕痕（スス山谷）
Plate 4

VII) 1957年に於ける変痕 (於上部内)

VIII) 1957年に於ける変痕 (於安定間)
(岡本光雄氏の標本)
IX) 1958年に起こる変痕（於安足間）

X) 1958年に於ける変痕（於安足間）
（小泉 力氏の標本）
XI) 成虫が後食の後、そのまま越冬坑を形成したもの
1955年秋に形成（枝定山溪）

XII) 他から飛来して、特に越冬のために形成した坑道
（この中に150頭の成虫が寄せ集めていた）

XIII) 越冬坑は比較的日当りの良い面に、繁殖坑は
側面乃至下面に多い傾向が認められる。