Title
Pseudoparasitism of Sypharista Kamegaii Quentin, 1971, found in Japanese Martens

Author(s)
Kamiya, Haruo; Hasegawa, Hideo; Chiba, Katayasu

Citation
Japanese Journal of Veterinary Research, 24(3-4): 99-100

Issue Date
1976-10

DOI
10.14943/jjvr.24.3-4.99

File Information
KJ00003407785.pdf

Abstract

Pseudoparasitism of Sypharista Kamegaii Quentin, 1971, found in Japanese Martens

References

Corresponding Author

Contact Information

BRIEF COMMUNICATION

PSEUDOPARASITISM OF **SYPHARISTA KAMEGAII** QUENTIN, 1971, FOUND IN JAPANESE MARTENS

Haruo Kamiya, Hideo Hasegawa and Katayasu Chiba*
(Received for publication, August 27, 1976)

The authors had a chance to examine the parasite of *Martes melampus* Wagner, captured at Nakakubiki district, Niigata Prefecture, December 16, 1975. From 2 out of 4 refrigerated martens, an extensive number of oxyurid nematodes, *Sypharista kamegaii* Quentin, 1971, was collected from the large intestine. This species was reported for the first time in the flying squirrel, *Petaurista leucogenys nikkonis* Thomas, captured at the Kanto area, central Japan. Since the original description of Quentin (1971) is excellent, the authors will add nothing to his description. The morphology and the measurements of the nematode, treated in lactophenol solution, are as follows (measurement in mm): —Male (5 specimens): Cuticle with fine, transversal striations on whole body surface. Lateral alae obvious at anterior portion. Body length 1.26~1.51, width 0.039 ~0.055 at level of bulb. Bulb oval, 0.039 ~0.052 × 0.020~0.033 in size. Length of esophagus 0.235 ~0.303. Excretory pore 0.658~0.867 from cephalic end. Length of spicule 0.052~0.082. Big gubernaculum club-shaped, well chitinous, with 2 small horn-like projections at distal end, length 0.033~0.055. Length of tail 0.124~0.163, curved ventrally, abruptly tapered behind papillae being at 0.042~0.068 from cloaca. Female (5 specimens): Cuticular striations very distinct at esophageal region at intervals of 0.029. Lateral alae recognizable at esophageal

* Department of Medical Zoology, Niigata University School of Medicine, Niigata, Japan

Department of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
portion. Body length 5.88~7.90, width 0.277~0.342 at level of vulva. Nerve ring, excretory pore and genital pore 0.189~0.215, 1.270~1.690 and 1.456~1.882, respectively, from cephalic end. Length of muscular esophagus with bulb 0.715 ~0.754. Ovijector well developed, muscular. Portion of genital pore, yellowish, somewhat sclerotized. Length of tail 0.910~1.625. Eggs asymmetrical, with weakly developed operculum, 0.075~0.078x0.020~0.023 in size.

All species of the genus *Sypharista* are the parasites of sciurine animals belonging to Petauristinae in Asia. On the other hand, the marten is mainly an arboreal animal and catches the sciurine animal for food. Futhermore, carnivores usually swallow their game without chewing; therefore, it can be supposed that this nematode survives for some time in the foreign environment of the predatory marten. It is reasonable, then, for the authors to consider this case to be one of pseudoparasitism, not one of obligate parasitism.

There are a few pseudoparasitism cases suspected as obligate parasitism. Some of those cases are as follows: —*Passalurus nonannulatus* SKINNER, 1931, parasite of hares, found in coyote, *Canis lestes* MERRIAM (SKRJABIN et al., 1960), *Syphacia* sp. in the dog (GUPTA, 1962) and *Syphacia obvelata* (RUDOLPHI, 1802), *Nippostrongylus brasiliensis* (TRAVASSOS, 1914). *Heligmosomum kobayashii* ISHIMOTO, 1974, parasites of voles, in the weasel, *Mustela sibirica* PALLAS (SHOGAKI et al., 1976). MACCHIONI (1974) also indicates by data from literature that the dog is not parasitized obligately by oxyurid nematodes. Consequently, the phenomenon of pseudoparasitism must be taken into consideration, especially at the survey of helminths of carnivores. Furthermore, the authors suppose that this phenomenon must play a role in the dispersion of helminths among wildlife.

The authors wish to express their gratitude to Prof. M. OHBAYASHI of this Department and to Prof. M. OTSURU, Department of Medical Zoology, Niigata University School of Medicine, Niigata, for their kind direction and review. Further thanks are due to Mr. K. YAMADA, head of the Meat Inspection Office of Niigata Prefecture and Dr. M. MACHIDA, Department of Zoology, National Science Museum, Tokyo, for providing, respectively, the martens examined and the specimens of *S. kamegaii* from *P. leucogenys nikkonis* for comparative study of morphology.

References