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Fig. 2. Specimen stage.

1. compression stage, 2. guide rod, 3. specimen, 4. stationary stage
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GENERATOR TV
VTR
TV

Fig. 3. [Experimental assembly diagram.
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Fig. 4. Schematic representation of failure
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modes of an earywood tracheid.

(A) the tracheid buckles sideways

(B) the tracheid buckles symmetrically
The original shape of tracheids is indicated
by the dotted lines.
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Summary

Macroscopical observations on the failure of the softwood compressed transversely have
been made by many workers. These observations showed that the failure of the softwood
in radial compression always occurred in the relatively weak earlywood layers. Moreover
microscopical observations made using optical microscope by several workers showed the general
outline of the progressive failure of the softwood in radial compression. However macroscopical
examinations of the failure in radial compression have been restricted, in the past, to the
detailed observation after failure has occurred, and also optical microscopical examinations have
lacked the detailed information on the micro deformation process at the cellular level owing
to the limitation of its ability.

Since the failure process is essentially a dynamical process, the need for continuous ob-
servation during stressing is evident. However it has been difficult to observe experimentally
the details of the process as they take place. In the previous paper the authors tried to
observe continuously the failure process of the softwood during compression perpendicujar to
the grain in the SEM which is equipped with TV-scan and a VTR. It was shown that it
was possible to observe in some detail the deformation process at the cellular level by this
method. In this paper the changing process in the transverse plane of the softwood block
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(Fig. 1) during compression perpendicular to the grain in the radial direction was observed
directly to examine the micro deformation at the cellular level using a SEM.
1. Failure process in the initial stage of softwoods in radial compression

It has been observed using optical microscope by Bodig, KuNEsH and WANG that the
first failure of softwood in radial compression is located in the earlywood layer within an
annual ring. However the detailed information on the initial failure process in radial com-
pression is very few.

Photo 1 shows the initial failure process of Todomatsu wood during compression in the
radial direction. These SEM micrographs were obtained from the TV images reproduced
by the VTR. Photo 1-1 shows the earlywood layer of a particular annual ring just before
failure. Remarkable changes of wood tissue are not seen. Subsequently, as shown in Photo
1-2, each ray in the earlywood layer was observed to abruptly buckle sideways and simulta-
neously earlywood tracheids of each radial row were observed to be crushed in the radial
direction. Such crushing of earlywood tracheids was clearly observed to start from both
sides (Photo 1-2, arrows) of the specimen and immediately it was observed to occur successively
in the tangential direction. It was difficult to observe the instantaneous movement such as
cell deformation displayed on a TV-monitor since the phenomenon of failure in the initial
stage of radial compression was very rapid. In the present study such problem was overcome
in some degree by using a VTR for stop-motion. Photo 2 shows the details of the initial
failure process of Ezomatsu wood. This photograph was obtained from a stationary image
of VTR. This micrograph clearly gives evidence that crushing of earlywood tracheids occurs
progressively from the outside of the specimen. It should be noticed that earlywood tracheids
were clearly observed to buckle sideways as shown in Photo 2 (arrow) in the initial failure
process. Photo 3 shows a SEM micrograph taken after the initial failure shown in Photo
1-2. Rays in the earlywood layer were clearly buckled and earlywood tracheids were crushed
due to the breaks of their radial walls. While tracheids adjacent to the crushed cells were
relatively unchanged. These observations give evidences that the initial failure in radial com-
pression occurs as a result of the local failure in the earlywood layer of a particular annual
ring.

2. Failure development of the softwood in radial compression

Photo 4 shows failure development within an annual ring of Karamatsu wood compressed
radially. As the compression progresses, additional failures occurred in the same (Photo 4-1)
and in another earlywood layers (Photo 4-2, arrow). Such progressive failure in radial com-
pression agrees with those observed using optical microscope by other workers. Moreover
it was noticed that the failure zone of the earlywood layer developed by the process in which
the tangential plane normal to the direction of a compressive stress slide relative to one ano-
ther. As pointed out by many workers, this phenomenon is due to low shear rigidity in
the transverse plane of softwood. A series of SEM micrographs shown in Photo 5 shows the
failure process of an earlywood tracheid during compression. Because of shearing action in
the tangential plane of the earlywood layer, the tracheid displaces laterally (Photo 5-1) and
immediately the radial walls buckle abruptly as shown in Photo 5-2. While tangential walls
of the tracheid were relatively unchanged. Eventually the tracheid was crushed due to breaks
of radial walls (Photo 5-3). Photo 6 shows another buckling failure of an earlywood tracheid.
Radial walls of the tracheid buckled severely due to normal stresses. This buckling was
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accompanied by the bending of tangential walls due to reactive moments acting at the juncture
of the cell wall. In this case it is considered that lateral movement of the tracheid was
restricted to circumferential effect. From the detailed observations made using the SEM, the
importance of structual geometry to cell deformation was demonstrated more clearly.

Explanation of photographs

* The compressive force loaded is in a direction from top to bottom of each photograph.
* All the photographs show transverse surfaces of softwoods.

Photo 1. SEM micrographs showing the initial failure process of Todomatsu wood
during compression in the radial direction. Photographs were obtained
from the TV images reproduced by the VTR. 1: the earlywood layer of
a particular annual ring just before failure. 2: each ray in the earlywood
layer abruptly buckled sideways and simultaneously earlywood tracheids of
each radial row were crushed in the radial direction. The crushing of
earlywood tracheids started from both sides (arrows) of the specimen and
occurred successively in the tangential direction. X70

Photo 2. SEM micrograph showing the details of the initial failure process of Ezomatsu
wood. The photograph was obtained from a stationary image ot the VTR.
The crushing of earlywood tracheids occurs progressively from the outside

of the specimen. Note that an earywood tracheid (arrow) buckles sideways
just now. X180

Photo 3. SEM micrograph taken after the initial failure shown in Photo 1-2. Rays
in the earywood layer buckle clearly and earlywood tracheids are crushed
due to the breaks of their radial walls. Note that tracheids adjacent to
the crushed cells are relatively unchanged and that each radial row slides
one another in the crushed areas. X110

Photo 4. SEM micrographs showing failure development within an annual ring of
Karamatsu wood compressed radially. 1: after the first failure additional
failures occur in the earlywood layer. note that the failure zone of the
earlywood layer develops by the process in which the tangential plane
normal to the direction of a compressive stress slide relative to one ano-
ther. 2: as compression progresses failure occurs in another earlywood
layer (arrow). X60

Photo 5. A series of SEM micrographs showing a failure process of an earlywood
tracheid of Todomatsu wood during compression. 1: the tracheid displaces
laterally due to shearing action in the tangential plane of the earywood
layer. 2: immediately radial walls of the tracheid buckle. 3: the tracheid
is crushed due to breaks of radial walls. X330

Photo 6. SEM micrograph showing buckling failure of an earlywood tracheid of Todo-
matsu wood. Radial walls of the tracheid buckle severely. Note that this
buckling is accompanied by the bending of tangential walls due to reactive
moments acting at the juncture of the cell wall. x1,700
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