13. Survival of Walleye Pollock in Early Life Stages in Funka Bay and the Surrounding Vicinity in Hokkaido

Toshikuni Nakatani and Kouichi Sugimoto

Faculty of Fisheries, Hokkaido University Hakodate, Hokkaido 041-8611, Japan

Introduction

The waters at the mouth of Funka Bay, Hokkaido, extending out of the bay on the eastern side, serve as spawning grounds for walleye pollock, Theragra chalcogramma. This species inhabits the northwestern Pacific from Hokkaido to the Tohoku region (the northernmost part of Honshu Island). From October to March, spawning walleye pollock are caught commercially by demersal gill nets and offshore bottom trawl nets. Recently, annual catch in this area ranged from 42,832 metric tons in 1976 to 109,226 metric tons in 1987. Such fluctuations in catch are likely to be controlled by the strength of year classes. Year class strength based on cumulative numbers (≥ age 4) in the commercial catch ranged from 58.6 million (1972 year class) to 248.7 million (1980 year class) (Mihara et al., 1994). Relatively large landings from 1984 to 1987 were supported by the strong year classes from 1980 (248.7 million) to 1983 (125.8 million). In order to clarify the factors affecting year class strength, we examined the relationship between spawning strategy and the survival of walleye pollock in the early life stages in Funka Bay and surrounding vicinity in Hokkaido.

Results

General hydrographic conditions in Funka Bay in winter

The hydrographic conditions in the bay are regulated chiefly by the characteristics of two major water masses, the Tsugaru Warm Water and Oyashio Water, and by their periodic replacement (Ohtani and Akiba, 1970). In winter, the Tsugaru Warm Water in the bay is cooled by heat conduction and evaporation, and gradually becomes homogeneous and cold (3.5°C) (Ohtani, 1971). In general, the minimum surface temperature occurs in February/March as a result of intrusion of Oyashio Water. In late January and early February 1995, water temperatures at 15 m depth in the inner area of the bay were 5.8 and 4.7-5.7°C respectively (Sugimoto, unpublished data). After intrusion of Oyashio Water, the minimum temperature was 2.3°C on 15 March 1995.

Spawning

Spawning occurs from November and/or December to March in Funka Bay and the surrounding area (Maeda et al., 1979, 1980; Yoon, 1981). As shown in Fig. 1A, eggs in the early developmental stage (from fertilization to early blastula stage) were collected at the
mouth of the bay and the northeastern coastal areas out of the bay (Nakatani and Maeda, 1989). Based on the distribution of Oyashio Water (Fig. 2, 33.0-33.2 psu), these eggs appear to be transported to the bay mouth by this water. In contrast, newly hatched larvae were concentrated in the inner area of the bay and the bay mouth (Fig. 1B). It is likely that these larvae were transported to the bay by two vortices, which were generated by the combination of the predominantly northwesterly winds in winter and the parabolic bottom topography of Funka Bay (Shimizu and Isoda, 1997).

Fig. 1. Horizontal distributions of walleye pollock eggs from fertilization to early blastula stage (A), and larvae (B) on February 21–25, 1988. Samples were collected by vertical hauls from 150 m depth or near bottom where the depth of bottom was less than 150 m with a Norpac net. (Nakatani and Maeda 1989)
Food of Larvae and Juveniles

Once transported into the bay, the newly hatched larvae initiate feeding, primarily on copepod nauplii (Kamba, 1977; Nakatani and Maeda, 1983; Nakatani, 1995b). An ontogenetic change in preferred food organisms occurs with larval development. That is, larvae larger than 7 mm in total length (TL) feed on small copepodids such as *Pseudocalanus* spp. These are abundant from March to April, and then decrease in June (Nakatani and Maeda, 1987). Juveniles larger than 30 mm TL take large sized copepodids such as *Neocalanus plumchrus*. According to Nishimura and Yamada (1984), it takes approximately 82 days from hatching to reach 30 mm TL. Therefore, the larvae hatched in March may suffer from a low density of copepodids of *Pseudocalanus* spp. because they are probably too small to feed on *N. plumchrus*. Juveniles larger than 70 mm TL switch to feeding on large sized crustacean zooplankton prey, such as *E. bungii* (Nakatani and Maeda, 1987). The abundance of *N. plumchrus* and *E. bungii* increased from June to July in deep layers in the bay (Nakatani and Maeda, 1987).

Seasonal Change in Vertical Distribution with Growth

Walleye pollock larvae collected with MTD horizontal closing nets (Motoda, 1971) from March to May were distributed from the surface to 50 m depth, with the highest concentration at about 10-20 m depth (Kamba, 1977). From April to June, larvae and juveniles were found mostly in the surface and subsurface layers of the bay (Nakatani and Maeda, 1987). In July, juveniles were concentrated on the bottom (100 m depth) of the bay.
Table 1. Monthly change in density of copepod nauplii (indiv./l) collected at Stations A, B, and C using a 40 μm mesh sieve in Funka Bay and surrounding vicinity, from January to March 1991 (Nakatani, 1995-a)

<table>
<thead>
<tr>
<th>Station</th>
<th>29-30 JAN.</th>
<th>21 FEB.</th>
<th>14 MAR.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Calanus</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>Paracalanus</td>
<td>2.17</td>
<td>1.68</td>
<td>1.97</td>
</tr>
<tr>
<td>Pseudocalanus & Metridia</td>
<td>0.88</td>
<td>0.66</td>
<td>0.97</td>
</tr>
<tr>
<td>Acartia</td>
<td>0</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Oithona</td>
<td>4.18</td>
<td>8.61</td>
<td>8.59</td>
</tr>
<tr>
<td>Oncaea</td>
<td>0.11</td>
<td>0.21</td>
<td>0.35</td>
</tr>
<tr>
<td>others</td>
<td>0.16</td>
<td>0.05</td>
<td>0.45</td>
</tr>
<tr>
<td>total</td>
<td>7.80</td>
<td>11.75</td>
<td>12.70</td>
</tr>
</tbody>
</table>

and in August, a portion were found on the deep sea bottom (300 m depth) in the eastern area out of the bay (Nakatani and Maeda, 1987). In late August, total lengths and standard deviations of juveniles collected by bottom trawl net were 105.6 ± 13.23 mm in 1989 (Nakatani, 1991), 130.9 ± 8.9 mm in 1993 (unpublished data), and 108.6 ± 13.1 in 1995 (unpublished data). The vertical migration of juveniles with growth was closely associated with suitable temperature conditions and food availability (Nakatani and Maeda, 1987).

Monthly Change in Density of Copepod Nauplii

In order to elucidate the availability of food for walleye pollock larvae in the initial feeding stage, copepod nauplii were collected from a depth of 15 m in the inner area (station A), mouth (station B), and outside the bay (station C) from January to March, 1991 (Table 1;
Nakatani, 1995a). In January, the density of *Oithona* nauplii were 4.18(St. A), 8.61(St. B) and 8.59(St. C), respectively. Here, 41.2-59.7% of the *Oithona* nauplii available as food for walleye pollock larvae at the initial feeding (≥84 μm in body width, Nakatani, 1995a) were as low as 1.85-3.85/l. Pseudocalanus and Metridia were low in numbers in January (0.66-0.97/l), and then increased in March (2.13-4.57/l). Most were larger than 84 μm in body width. Monthly changes in species composition of copepod nauplii also occurred in 1993 and 1995 (Sugimoto, unpublished data), although changes in copepod nauplii density occurred between years.

Spawning Strategy of Walleye Pollock in Funka Bay and the Surrounding Vicinity

Newly hatched larvae were abundant in the surface layer of Funka Bay and the surrounding vicinity from January to February. The number of larvae collected with plankton nets decreased rapidly in March (Nakatani, 1996). According to the hatching frequency of juveniles, based on otolith growth increments, many juveniles hatched in January/February were captured by the experimental bottom trawl in summer in the inner area of the bay in 1995 (Sugimoto, unpublished data). In January/February, copepod nauplii larger than 84 μm in body width, available as food for initial feeding larvae, were low in number but increased following the intrusion of Oyashio Water in March (unpublished data). In general, the timing of spawning is considered closely related to the survival of the offspring in the early life stages.

Sherman et al. (1984) demonstrated that peak spawning for several important species off the northeastern United States is in synchrony with increasing abundance levels of their seasonally-dominant copepod prey. Bollens et al. (1992) showed a distinct temporal 'mismatch' between the seasonal abundance patterns of fish larvae and their prey in Dabob Bay, Washington, suggesting that food limitation in the early larval stages may not be the dominant force constraining the timing of spawning and subsequent abundance patterns of fish larvae. In Auke Bay, southeastern Alaska, walleye pollock larvae consistently appeared at about the time of maximum copepod abundance (Haldorson et al., 1993). Thus pollock can be categorized as a (synchronous species) in this area. In contrast, the peak abundance of walleye pollock larvae was found in January/February in Funka Bay (Nakatani, 1996), while large sized copepod nauplii increased in late March (Nakatani, 1995a, unpublished data). Thus, they were categorized as (early) strategists in this area. Pseudocalanus is a predominant copepod nauplii eaten by walleye pollock larvae over the southeastern Bering Sea shelf, in Auke Bay, Shelikof Strait, and Resurrection Bay (Clayton et al., 1997). While *Oithona* nauplii were found in stomachs of walleye pollock larvae smaller than 7 mm TL in January and February in Funka Bay, this species was not found in larval guts in March (Nakatani, 1995b). Such monthly changes in species composition in the stomach content of walleye pollock larvae may reflect the succession of the community of copepod nauplii in response to the hydrographic conditions in the bay.
Paul et al. (1991) demonstrated that some of the weekly cohorts over four years had adequate prey concentrations for rapid growth. Such food availability can be expected to relate to protracted spawning. In the eastern area outside Funka Bay, there is also protracted spawning (from December to March) of walleye pollock. Such spawning strategy in this species might compensate the food availability for walleye pollock larvae. Bailey et al. (1993) found that gammarid amphipods and euphausiids were important predators on eggs and yolk-sac larvae, respectively. Cheatognaths are also known to be predators on larval fish (Tanaka, 1983). It is assumed that they are transported into the bay by the Oyashio Water. As stated before, a strong year class occurred in 1980. Late winter to early spring of 1980 were characterized by strong winds and warm water temperatures (Isoda et al., 1998). Compared with normal years, there were many larvae in Funka Bay and the surrounding vicinity in March (Nakatani and Maeda, 1983; Nakatani, 1996). From the independently determined mortality rates, Theilacker et al. (1996) suggested that high prey levels were crucial for survival of larval walleye pollock. It is supposed that rapid growth at high water temperatures with abundant food organisms is good for the early life stages of walleye pollock. In addition, low densities of carnivorous zooplankton due to the delay of the Oyashio Water intrusion into Funka Bay might reduce larval mortality by predation in winter and early spring in 1980. Based on these findings relative to the hydrographic and biological conditions and distribution of walleye pollock larvae, it can be concluded that water temperature, affected by meteorological conditions, as well as the abundance of large-sized copepod nauplii and the timing of the Oyashio Water intrusion, control the mortality of early life stages of walleye pollock in Funka Bay and the surrounding area off Hokkaido.

References

