<table>
<thead>
<tr>
<th>Title</th>
<th>Bibliography on Japanese larch (Larix kaempferi (Lamb.) Carr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TAKATA, Katsuhiko; KURINOBU, Susumu; KOIZUMI, Akio; YASUE, Koh; TAMAI, Yutaka; KISANUKI, Mitsuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Eurasian Journal of Forest Research, 8(2): 111-126</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-12</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/22198</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>8(2)_P111-126.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Bibliography on Japanese larch (*Larix kaempferi* (Lamb.) Carr.)

TAKATA Katsuhiko, **KURINOBU Susumu**, **KOIZUMI Akio**, **YASUE Koh**, **TAMAI Yutaka** and **KISANUKI Mitsuhiko**

1 Institute of Wood Technology, Akita Prefectural University, Noshiro 016-0876, Japan
2 Breeding Department, Forest Tree Breeding Center, Hitachi 319-1301, Japan
3 Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
4 Faculty of Agriculture, Shinshu University, Kami-Ina 399-4598, Japan
5 Faculty of Bioresources, Mie University, Tsu 514-8507, Japan

Abstract

References related to research on Japanese larch (*Larix kaempferi* (Lamb.) Carr.) are surveyed and compiled. The total of 314 references are divided into five scientific fields as follows: 111 in tree breeding, 81 in mechanical wood property, 33 in anatomical wood property, 76 in mycorrhiza and 13 in ecology, respectively. It is expected that the bibliography will be useful to tree breeder, wood and forest scientists, a wide range of students, and to all everyone interested in Japanese larch.

Key words: Ecology, Japanese larch, Mycorrhiza, Tree breeding, Wood properties

Introduction

Larch (*Larix Mill.*) is one of the most important elements of the boreal forests. Larch forests essentially encircle the Northern Hemisphere, stretching from eastern Siberia westward across Eurasia (absent in Scandinavia presently), resuming in eastern North America and westward across the USA and Canada to Alaska, they essentially reach the starting point back in Siberia. Along the approximate 20,000 km path, larch sprits into 12 species (*L. occidentalis* Nuttall, *L. lyallii* Parlatore and *L. laricina* (Du Roi) K. Koch in North America, *L. sukaczewii* Dylis, *L. sibirica* Ledeb., and *L. gmelinii* Rupr. and *L. cajanderii* Mayr in Russia, *L. mastersiana* Rehder et Wilson and *L. potaninii* Batalin in China, *L. griffithiana* (Lindl. Et Gord.) Carriere in Nepal, *L. kaempferi* (Lamb.) Carriere in Japan, *L. decidua* Miller in Europe) and numerous varieties and hybrids. These 12 species occupy a wide variety of ecological conditions and zones ranging from lowland boreal to upper sub-alpine conditions and extend south to 25° latitude at high elevations and north to 75° latitude in the boreal lowlands.

Japanese larch is an endemic and the only deciduous coniferous species in Japan. Its common name in Japan is “Karamatsu”. Horizontal distribution of natural forests of Japanese larch occupies a small extent of the limited highland regions in the central Honshu, Japan (mainly Nagano, Shizuoka, Yamanashi, Gunma and Tochigi prefectures). The reforestation of this species started in the early 1840’s, and it spread widely to sub-frigid zone in the northern part of Honshu (Tohoku region) and Hokkaido. Because of rapid-growing and favorite disease- and cold-resistances compared to other planting species such as Japanese cedar (*Cryptomeria japonica* Don) and Japanese cypress (*Chamaecyparis obtusa* S. and Z.), Japanese larch is expensive used for reforestation in northern part of Japan from 1960-70’s.

In the bibliography, references are divided into five sections: Section 1: Tree Breeding, Section 2: Mechanical Wood Properties, Section 3: Anatomical Wood Properties, Section 4: Mycorrhiza and Section 5: Ecology. In Tree Breeding section, references related to seed orchard establishment and management, progeny test and genetic gain, wood quality improvement, resistance breeding for pests and diseases, hybrid breeding and vegetative propagation, and overseas breeding and tree improvement for Japanese larch are listed. Mechanical Wood Properties section are composed of six sub-sections: sub-section 2-1: mechanical properties of standing tree, log and branch, sub-section 2-2: genetic diversity in mechanical properties, sub-section 2-3: environmental effects on mechanical properties, sub-section 2-4: variations in mechanical properties concerning various categories, sub-section 2-5: mechanical properties of structural lumber and engineered wood products, and sub-section 2-6: effects of drying processes on mechanical properties. Anatomical Wood Properties has five different sub-sections: sub-section 3-1: wood formation, sub-section 3-2: wood anatomy, sub-section 3-3: variations in anatomical properties within trees, sub-section 3-4: quality of timbers and sub-section 3-5: genetic diversity in anatomical properties. Mycorrhiza consists of sub-section 4-1: mycorrhizal symbiosis and sub-section 4-2: disease. The last section is Ecology.

In order to review references related to Japanese larch with different scientific area as wider as we can, we have tried to survey not only major international journals but also local proceedings and reports published in Japan. It means that some papers written in Japanese without English summary are included in the bibliography. Possibly, these papers have not been ever checked by foreign scientists, however, we believe their...
contents is quite useful and worth reading carefully. So, in the bibliography we listed them with an appropriate English title in order to grasp the objectives of these papers for foreign scientists. It is expected that this bibliography will be of use successfully to tree breeder, wood scientists, forest ecologists, a wide range of students, and to all people interested in Japanese larch.

Explanatory notes

In the list, the reference appears in alphabetical order, preceded by an Arabic numeral enclosed in square brackets. The authors' names are listed in alphabetical order, and in chronological order for each author (see ex-[9]; ex-[10]; ex-[11]; ex-[12]; ex-[13]). In case there is more than one author, the order is as follows: publications of a single author in chronological order (see ex-[1]; ex-[2]); publications of the same author with one co-author in alphabetical order of the second author, and in chronological order (see ex-[12]; ex-[13]); publications of the author with more than one co-author in chronological order (see ex-[4]; ex-[5]; ex-[6]). Unpublished papers accepted for publication may be included in the list by designating the journal followed by “in press” in parentheses (see ex-[2]).

Papers written in Japanese with English summary are described as the style of examples ex-[4]; ex-[5]; ex-[9]; ex-[10]; ex-[11]. For papers written in Japanese without English summary, they are described as the style of example ex-[7].

Section 1: Tree Breeding

Itoh M., Kaneko T., Yamazaki, Yokoyama, Saito, カラマツ採種園における雌球花の開花最盛期間と雌球花からの花粉の放出期間 (Period of female flowering and pollination of male flowers in seed orchard of

Bibliography on Japanese larch

115

English summary)

[69] Kuromaru M., Ohshima T., Kita K., Uchiyama K., ギマツ雑種F1種苗のブランド化を目指した新採種園方式－列状植栽した単一クローン母樹産種子の品質と雑種率－ (New type seed orchard to produce F1 hybrid seed of Larix gmelinii – Seed quality and hybrid rate produced from a single clone as registered variety) For. Tree Breed. of Hokkaido vol. 46(1),

70 Mikami S., Breeding for wood quality of Japanese decidua, L. leptolepis (in Japanese with English summary)

77 Momose Y., Combining ability on stem crook in Japanese larch - Seed orchard management - For. Tree Breed. 44(7), (1967) 1-6. (in Japanese)

78 Mori S., Niehon Karamu's wood breeding cycle - (1) Branch development after the pruning in Japanese larch (1972) 143-145. (in Japanese)

81 Ohba K., Katsuta M., 木村の育種 (Forest Tree Breeding) Bun-eido, Tokyo 1991 337pp (in Japanese)

82 Orita H., Estimation of genetic variance in wood quality using clonal larch (Karamu's wood breeding program) (in Japanese)

83 Orita H., Katayose T., Selection of superior larch trees on wood quality in Hokkaido forest tree breeding region (Hokkaido Regional conference of Japanese For. Soc. 30 (1972) 143-145. (in Japanese)

84 Oshima T., Breeding for wood quality of Japanese larch - Results from progeny tests -, Kousyunai-kihou 72 (1988) 1-5. (in Japanese)

[95] Shimizu H., Kikuchi K., Obara Y., Nagasaka Y.,

[96] Shin DonGill, Karnosky D.F., Factors affecting

[97] Takahashi N., Hamaya N.,
Takahashi N., Iwamoto Toda R., Forest genetics up to date
Watanabe M., Noguchi T., Cayayaba S.,
Weiser, F. Tree improvement of larch at
Yokoyama T., Kaneko T., Some problems on the
Yokoyama T., Kaneko T., Itoo M., Yamazaki S.,
Yokozawa Y.,
gumers, in hybrid rate among clones in seed orchard of
Hokkaido Ringyo Hukyu Kyoukai (1991) 76-77. (in

[98] Takahashi N., Iwamoto K., Shibata M.,
Hokkaido Ringyo Hukyu Kyoukai (1991) 76-77. (in

[99] Takahashi N., Iwamoto K., Shibata M.,
Hokkaido Ringyo Hukyu Kyoukai (1991) 76-77. (in

[100] Toda R., Forest genetics up to date
(in Japanese with English summary)

[101] Wang YouCai, Dong XiaoGuang, Wang XiaoShan, Ma Hao, Study on seed production and
XiaoShan, Ma Hao, Study on seed production and
fruiting law of seed orchard in
(in Japanese with English summary)

[102] Weiser, F. Tree improvement of larch at
Weiser, F. Tree improvement of larch at

[103] Weiser, F. Tree improvement of larch at
Weiser, F. Tree improvement of larch at
(in Japanese with English summary)

[104] Yokoyama T., Kaneko T., Some problems on the

[105] Yokoyama T., Kaneko T., Itou M., Yamazaki S.,

[106] Yokoyama T., Kaneko T., Itou M., The percentage of pollinated ovules in the female strobili subjected to
day natural pollination in the seed orchard of

[107] Yokozawa Y., Genetic variation in the tolerance to

[110] Zhang HanGuo, Yuan GuiHua, Li XiCai, Jiang XiaoBin, Pan BenLi, Wang ShuLi, Hybrid advantage in

[111] Zhou XianChang, Pan BenLi, Zhou GuangJun, Yuan GuiHua, The introduction and utilization of gene

Section 2: Mechanical Wood Properties
2-1 Mechanical properties of standing tree, log and branch

[1] Iida N., Takahashi M., Horie H., Hasegawa M.,
Kawaguchi N., Takizawa T., BIHQ 56 (1975) 194-196. (Japanese with English summary)

[2] Koizumi A., Ueda K., Forest genetics up to date
(in Japanese with English summary)

ラマツ立木の材質評価 (Estimation of mechanical properties for larch trees by moment test), Proc.

検定の支援 (Determination of theoretical properties for standing trees by moment test), Proc.

mechanical properties of standing trees by non-destructive bending test (杉立木の非破壊試験による

Variation of tree-trunk stiffness associated with radial growth (杉の曲げ試験による材質評価 (2) 半径生長

[7] Takata K., Estimation of wood quality of forest trees of
Japanese larch by means of modulus of elasticity of

2-2 Genetic diversity in mechanical properties

2-3 Environmental effects on mechanical properties

2-4 Variations in mechanical properties (within tree, among sources etc.)

2-5 Mechanical properties of structural lumber and engineering wood products

Bibliography on Japanese larch

Bibliography on Japanese larch 121

Section 3: Anatomical Wood Properties

3-1 Wood formation

3-2 Wood anatomy

3-3 Variations in anatomical properties within trees

3-4 Quality of timbers

3-5 Genetic diversity in anatomical properties

[25] Nakagawa S., Basic wood quality on larch species
Section 4: Mycorrhiza

4-1 Mycorrhizal symbiosis

[19] Li D.W., The effects of Laccaria proxima and fibrous pulp waste on the growth of nine container-grown conifer seedling species, Mycorrhiza 6(2) 137-143. (1996)

(1992)

[28] Weiss M., Mikolajewski S., Peipp H., Schmitt U., 4-2 Disease

[29] Yu Trevor EJ.e., Egger K.N., Peterson, R.,... Zhou Y., Han 0., Qi Y., Liu C., He X., Selection

[34] Zhou Z., Miwa M., Hogetsu T., Genet distribution of ectomycorrhizal fungus Suillus grevillei populations in two Larix kaempferi stands over two years, Journal of Plant Research 113(1112) 365-374. (2000)

4-2 Disease

[37] Eysteinsson T., Skulason B., Adaptation of Siberian and Russian larch provenances to spring frosts and cold summers, Buvisindi 9(0) 91-97. (1995)

[42] Gouthier P., Garbelotto M., Nicolotti G., European pines may be simultaneously infected by more than one species of Heterobasidion, Plant Disease 86(7) 814. (2002)

[50] Lakomy P., Werner A., Distribution of Heterobasidion annosum intersterility groups in Poland, Forest-Pathology 33(2) 105-112. (2003)

[53] Newcombe 0., Chastagner GA., McDonald S.K., Additional Coniferous Aerial Hosts of the Poplar Leaf Rusts, Melampsora larici-populina and M. medusae f. sp. Deltoidea, Plant Disease 78(12) 1218. (1994)

[56] Paques L.E., Sylvestre GG, Delalour C., Genetic variation among clones of Larix decidua polonica for...
resistance to Lachnellula willkommi, Annals of Forest Science 56(2) 155-166. (1999)
[64] Ronnberg J., Vollbrecht G., Early infection by Heterobasidion annosum in Larix x euraspelis seedlings planted on infected sites, European Journal of Forest Pathology 29 (1) 81-86. (1999)

Section 5: Ecology
