<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>貝類棲息地の環境条件に関する研究：Ⅱ 室蘭港について（其の一）</td>
<td>未掲載</td>
</tr>
<tr>
<td>作者</td>
<td>加藤 健司、谷田 専治、奥田 泰造</td>
</tr>
<tr>
<td>発行誌誌</td>
<td>北海道大学水産学部研究報告</td>
</tr>
<tr>
<td>発行年</td>
<td>1951-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/22679</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>1(2)_P66-76.pdf</td>
</tr>
</tbody>
</table>

北海道大学水産学部研究報告 3031-01-2020
In Muroran Harbour, there dwell abundantly useful shell-fishes, as well as scallops. For the purpose of clarifying environmental conditions on these shellfishes, our investigations were carried out on the physical and chemical properties of sea water and of bottom deposits in the harbour, from the ecological and oceanographical standpoints.

From our investigations, the following results are given:

(1) In Muroran Harbour, the oceanographical conditions are characterized by the equilibrium between the outer water, entering clockwise to the centre of the harbour, and the inner water, diluted with the incoming sewerages of surrounding iron manufactories and the city in the eastern and southern parts of the harbour.

(2) In the whole neighbourhood of the Nittetsu Wharf, there spreads reddish violet water, so-called "Red Water" or "Poisonous Water". And other sewerages are found in the vicinity of the Municipal Wharf, where the influences of the outer water become weak and this place seems to be unsuitable for the habitation of the shellfishes because of the spoiled water and the muddy bottom materials containing abundant humus.

(3) In the inner parts of the harbour, the equilibrium of the outer water and the inner diluted water is usually lost in winter by strong north-eastern winds, when the red water spreads through the whole of the harbour.

Consequently much damage may be inflicted on the shell-fishes inhabiting the harbour. But it was hardly possible for us to clarify the poisonous substances in the red water.

(4) On the field where scallops actually dwell in abundance, it seems that the water, especially the bottom water, is spoiled very little by the incoming sewerages and the bottom deposits don't contain so much humus as to damage the shellfishes.
1 緒 言

貝類の棲息を制約する要因としては物理的、化学的、或いは生物学的な各種の条件の有るが、これら
の各条件の単独的或は複合的な影響を検討するためには、まず貝類棲息地の現在における環境状況を
把握することが必要となる。第1報においては函館港を取上げ、同港内に至って相当量表土して
いた貝類の激減の原因を検討し、これに激減した貝類を移植増殖することが可能か否かという問題に
ついて考察する基礎資料を得るために、底質と水質を主として調査した結果について報告した。而し
て函館港の場合は、防波堤及び堤頭の増設などの地形学的な条件の変化が、港内水の流動を変化させし
め、それに起因して水質及び底質も変化し、そのため貝類棲息地の環境状況が大きく影響を受けるに到
ったものと考えられた。本報告においては、現在帆立貝他の貝類を生産している石狩港を対象として
、その底質及び水質の調査を実施し、同港の地理学的要素とそれに伴う海洋学的变化を調査するほ
か、同港周辺の重業工場地帯よりの汚水及び海中に投棄される廃棄物の影響をも含めて、これら港内の
物理的、化学的要素の貝類棲息地に及ぼす影響を考察した結果について報告する。

石狩市は富士製鉄（旧日本製鉄）第西製鉄所、日本製鋼所石狩製作所を始め多数の鉄鋼業及び化学
工業の工場設置を有する我が国屈指の重業工場都市であり、年間700隻の船舶を専通し、小樽、函館両
港と共に北海道における重要港湾の1である。また同市は水産園の集散地として北海道太平洋沿岸に
いて重要な地位を占め、殊に漁港後は、水産部門が一層大きく取上げられ、喫火漁港を始め、北海
道南部海域漁場を対象とする底曳、手曳、延縄漁業のビーム地として、またその水産園の一大集散地
としてクローズアップされるにいたった。また、室蘭港内及び石狩沿岸においては帆立貝、北寄貝、
その他の貝類が豊富で、好戦特にその産業を増加して注目を惹いている。着者等は主としてこれら港
内に生産される貝類の棲息条件を検討するため、昭和24年5月及び11月、昭和25年2月及び8月の4回
に亘り、同港内の底質及び水質の調査を実施したが、本報告においては前3回の調査結果について、
特に水質については第3回目の調査を中心にして述べることにする。室蘭港に関する調査は、同市
が昔から重業工業都市であった関係上、その例を特に鰊に昭和7年に港内流動観測の結果が報せ
られているのみであるが、極く最近に到り水路部によって港内の精密測量及び潮流観測が行われたが
これに関する詳細な資料を御貸与下され第一管区海上保安本部水路課長土屋宜氏に感謝する次第で
ある。前回調査研究は文部省科学研究費及び北海道庁厚生局水産業安定基礎調査費によって行われたも
のであるが、本調査にあたり常に誠意の援助と協力を賜わたかった室蘭市役所及び室蘭漁業協会、及び化
学分析に協力してくれた函館水産専門学校学生中沢三武君に対して謝意を表すると共に、研究室及び
宿舎の便を計って下さった理学部海藻研究所中村博輝氏の御好意を記して兹に感謝の意を表する。

2 調査の經過及び方法

本報告において述べるベラ磯内の水質及び底質の調査の結果は昭和24年5月及び同年11月、更に昭
和25年2月及び同月の第4回目の調査結果については後日に謝る。

第1回の調査は昭和24年5月に室蘭市と底質の関係をしらべ、帆立具増殖の基礎資料を得るための予備的調査であって第1回に於けるように調査地点は帆立具棲息地付近の7ヶ所に過ぎず、
しかも底質調査のみを行い、水質調査は行わなかった。

第2回の調査、即ち昭和24年11月は日鉄から海中に投棄される廃棄物の生物に及ぼす影響の有無を知

ー(67)ー
Fig. 1. Stations of Observation in Muroran Harbour

3 調査方法

試料採取用具としてはエクマン採泥器、谷田式採泥管、北原式B型採水器並びに田村式サイフォン型採水器を使用し、採水は第2回調査時は表、底層、第3回目は表、中、底層について行った。

底質については、粒度組成、灼熱減量、有機炭素量、全窒素量、鉄分、石灰分、磷酸塩などの分析調査をなし、水質については水温、水色、透明度、水素イオン濃度、塩素、溶存酸素、硫化水素、亜硝酸塩、硝酸塩、硫酸塩、可溶性有機物、鉄塩などをにつき前報と同様海洋観測法並びに土壌分析法によって分析した。酸素、硫化水素などに関しては毎日分析を実施した。なお、各調査により以上の全部を実施したのでなく、目的により分析項目に多少の変化がある。

4 調査結果及び考察

第1回調査は帆立貝の棲息地の環境条件としての底質の理化学的性質を究明する目的で予備的に行ったもので底質調査のみを行いその初步結果、灼熱減量、有機炭素量、全窒素量の分析を行った。

その結果は第1表の通りである。

第2回調査は各観測点において、採水（表面及び底層）並に採泥を行い、水については温度、水色、透明度、水素イオン
Table 2. Properties of Sea Water in Muroran Harbour (Nov. 12–13, 1949)

<table>
<thead>
<tr>
<th>St. No.</th>
<th>Depth of the observed layer (m)</th>
<th>Water temp. (°C)</th>
<th>Water Colour</th>
<th>Degree of Transparency (m)</th>
<th>pH</th>
<th>Cl (mg/l)</th>
<th>O₂ (mg/l)</th>
<th>Soluble Organic Matter (mg/l)</th>
<th>H₄S (mg/l)</th>
<th>P₅O₅ (mg/l)</th>
<th>SiO₂ (mg/l)</th>
<th>Nitrite (mg/l)</th>
<th>Fe+++ (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>11.2</td>
<td>Reddish</td>
<td>2.0</td>
<td>8.0</td>
<td>18.74</td>
<td>5.13</td>
<td>13.40</td>
<td>0.71</td>
<td>7.1</td>
<td>5590</td>
<td>9.4</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>10.6</td>
<td>Violet</td>
<td>2.0</td>
<td>8.1</td>
<td>18.23</td>
<td>5.18</td>
<td>8.47</td>
<td>0.41</td>
<td>23.4</td>
<td>2360</td>
<td>8.1</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10.6</td>
<td>Reddish</td>
<td>3.0</td>
<td>8.1</td>
<td>17.65</td>
<td>5.15</td>
<td>10.47</td>
<td>0.29</td>
<td>0.9</td>
<td>3850</td>
<td>9.2</td>
<td>0.63</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>10.5</td>
<td>Violet</td>
<td>3.0</td>
<td>8.1</td>
<td>18.18</td>
<td>5.19</td>
<td>10.32</td>
<td>0.41</td>
<td>19.7</td>
<td>3780</td>
<td>7.6</td>
<td>1.32</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>10.6</td>
<td>Light Reddish</td>
<td>3.0</td>
<td>8.1</td>
<td>17.34</td>
<td>5.16</td>
<td>10.47</td>
<td>0.45</td>
<td>11.2</td>
<td>3130</td>
<td>11.2</td>
<td>5.02</td>
</tr>
<tr>
<td>6</td>
<td>9.0</td>
<td>10.4</td>
<td>Reddish</td>
<td>3.0</td>
<td>8.2</td>
<td>18.33</td>
<td>5.52</td>
<td>13.95</td>
<td>0.22</td>
<td>13.4</td>
<td>3040</td>
<td>7.0</td>
<td>1.01</td>
</tr>
<tr>
<td>7</td>
<td>4.7</td>
<td>10.5</td>
<td>9</td>
<td>4.0</td>
<td>8.1</td>
<td>18.36</td>
<td>5.43</td>
<td>11.20</td>
<td>0.19</td>
<td>34.1</td>
<td>2370</td>
<td>8.0</td>
<td>8.95</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>10.4</td>
<td>9</td>
<td>5.0</td>
<td>8.2</td>
<td>18.18</td>
<td>5.48</td>
<td>6.48</td>
<td>0.33</td>
<td>19.0</td>
<td>2870</td>
<td>5.6</td>
<td>0.62</td>
</tr>
<tr>
<td>9</td>
<td>6.0</td>
<td>10.5</td>
<td>9</td>
<td>5.5</td>
<td>8.1</td>
<td>18.24</td>
<td>5.29</td>
<td>9.29</td>
<td>0.23</td>
<td>24.3</td>
<td>3590</td>
<td>9.7</td>
<td>1.20</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>10.9</td>
<td>8</td>
<td>4.0</td>
<td>8.2</td>
<td>18.09</td>
<td>5.37</td>
<td>8.07</td>
<td>0.39</td>
<td>20.1</td>
<td>3160</td>
<td>14.9</td>
<td>0.68</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>10.4</td>
<td>9</td>
<td>4.0</td>
<td>8.1</td>
<td>18.04</td>
<td>5.28</td>
<td>13.77</td>
<td>0.42</td>
<td>6.9</td>
<td>3040</td>
<td>7.0</td>
<td>0.89</td>
</tr>
<tr>
<td>12</td>
<td>8.7</td>
<td>10.4</td>
<td>10</td>
<td>4.5</td>
<td>8.1</td>
<td>18.23</td>
<td>5.63</td>
<td>16.21</td>
<td>0.23</td>
<td>3570</td>
<td>7.9</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10.0</td>
<td>10.3</td>
<td>9</td>
<td>5.5</td>
<td>8.1</td>
<td>17.83</td>
<td>5.40</td>
<td>21.30</td>
<td>0.37</td>
<td>63.0</td>
<td>3410</td>
<td>9.0</td>
<td>2.39</td>
</tr>
<tr>
<td>14</td>
<td>8.7</td>
<td>10.9</td>
<td>8</td>
<td>4.5</td>
<td>8.2</td>
<td>18.14</td>
<td>5.41</td>
<td>10.92</td>
<td>0.33</td>
<td>15.2</td>
<td>2140</td>
<td>9.7</td>
<td>1.80</td>
</tr>
<tr>
<td>15</td>
<td>10.2</td>
<td>10.7</td>
<td>9</td>
<td>5.0</td>
<td>8.2</td>
<td>18.40</td>
<td>5.37</td>
<td>9.29</td>
<td>0.31</td>
<td>10.3</td>
<td>3270</td>
<td>5.9</td>
<td>0.89</td>
</tr>
<tr>
<td>16</td>
<td>9.0</td>
<td>10.7</td>
<td>6</td>
<td>7.0</td>
<td>8.2</td>
<td>18.23</td>
<td>5.65</td>
<td>9.29</td>
<td>0.22</td>
<td>8.3</td>
<td>3410</td>
<td>9.6</td>
<td>0.74</td>
</tr>
<tr>
<td>17</td>
<td>9.8</td>
<td>11.1</td>
<td>7</td>
<td>6.0</td>
<td>8.2</td>
<td>18.41</td>
<td>5.48</td>
<td>11.65</td>
<td>0.23</td>
<td>25.4</td>
<td>2340</td>
<td>10.2</td>
<td>1.68</td>
</tr>
<tr>
<td>18</td>
<td>10.5</td>
<td>10.6</td>
<td>7</td>
<td>>4.5</td>
<td>8.2</td>
<td>18.31</td>
<td>5.63</td>
<td>8.88</td>
<td>0.15</td>
<td>15.7</td>
<td>2380</td>
<td>9.7</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Table 3. Properties of Bottom Materials in Muroran Harbour (Nov. 12–13, 1949)

<table>
<thead>
<tr>
<th>St. No.</th>
<th>Depth (m)</th>
<th>Ignition Loss (%)</th>
<th>Organic Matter (%)</th>
<th>Total Nitrogen (%)</th>
<th>FerO₄ (%)</th>
<th>CaO (%)</th>
<th>PyO₅ (%)</th>
<th>[Fe in Original Sample g/100g]</th>
<th>[Mn in Fine Soil g/100g]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5.0</td>
<td>5.99</td>
<td>1.41</td>
<td>0.17</td>
<td>2.46</td>
<td>1.41</td>
<td>0.213</td>
<td>1.81</td>
<td>71.90</td>
<td>Fine Sand 14%</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>7.07</td>
<td>0.77</td>
<td>0.12</td>
<td>2.45</td>
<td>2.50</td>
<td>0.010</td>
<td>27.42</td>
<td>84.37</td>
<td>many pieces of mineral crusts</td>
</tr>
<tr>
<td>5</td>
<td>6.2</td>
<td>7.96</td>
<td>1.43</td>
<td>0.12</td>
<td>2.13</td>
<td>1.08</td>
<td>0.014</td>
<td>15.20</td>
<td>87.88</td>
<td>Fine Sand 14%</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>6.93</td>
<td>2.39</td>
<td>0.22</td>
<td>2.54</td>
<td>0.22</td>
<td>0.011</td>
<td>0.69</td>
<td>70.94</td>
<td>Fine Sand 13%</td>
</tr>
<tr>
<td>7</td>
<td>5.5</td>
<td>7.60</td>
<td>1.76</td>
<td>0.13</td>
<td>2.16</td>
<td>1.86</td>
<td>0.021</td>
<td>0.46</td>
<td>92.13</td>
<td>Fine Sand 13%</td>
</tr>
<tr>
<td>8</td>
<td>9.5</td>
<td>7.11</td>
<td>0.88</td>
<td>0.10</td>
<td>1.49</td>
<td>0.99</td>
<td>0.059</td>
<td>27.35</td>
<td>87.90</td>
<td>Fine Sand 14%</td>
</tr>
<tr>
<td>9</td>
<td>8.7</td>
<td>6.47</td>
<td>2.28</td>
<td>0.22</td>
<td>2.45</td>
<td>2.10</td>
<td>tr</td>
<td>0.61</td>
<td>96.87</td>
<td>Fine Sand 14%</td>
</tr>
<tr>
<td>10</td>
<td>10.0</td>
<td>9.14</td>
<td>0.95</td>
<td>0.33</td>
<td>3.33</td>
<td>2.43</td>
<td>tr</td>
<td>2.17</td>
<td>90.46</td>
<td>Fine Sand 14%</td>
</tr>
<tr>
<td>11</td>
<td>8.7</td>
<td>7.51</td>
<td>2.28</td>
<td>0.11</td>
<td>2.24</td>
<td>1.49</td>
<td>0.037</td>
<td>1.02</td>
<td>92.59</td>
<td>many coal wastes</td>
</tr>
<tr>
<td>12</td>
<td>10.0</td>
<td>6.54</td>
<td>0.78</td>
<td>0.17</td>
<td>2.10</td>
<td>2.33</td>
<td>tr</td>
<td>65.22</td>
<td>67.33</td>
<td>many coal wastes</td>
</tr>
<tr>
<td>13</td>
<td>9.0</td>
<td>12.24</td>
<td>1.82</td>
<td>0.17</td>
<td>2.34</td>
<td>1.46</td>
<td>0.027</td>
<td>2.66</td>
<td>88.89</td>
<td>many tiny coal</td>
</tr>
</tbody>
</table>
濃度、塩素、溶存酸素、硫化水素、亜硝酸塩、硝酸塩、塩酸塩、可溶性有機物及び鉄分を、底質については粒度組成、有機炭素量、全窒素量、堆熱減量、鉄、石灰、塩酸塩の分析調査を施行した。その結果は第2、3表の通りである。

第1回及び第2回の調査結果を総括して概述すれば、
(1) 水温、透明度、塩素イオン、溶存酸素……港の北東隅の日鉄埠頭及び南隅の市営埠頭と日鋼鉄先より工場廃水及び都市汚水の混じった透明度低で、溶存酸素量も低い低地質水塊が1〜1.5mの厚さを帯けて港の中央近くまで海底を流れ出している。殊に日鉄埠頭附近は趨流し、透明度も米程度である。しかし底質には深く陸岸近くまで外海水が潜入している。

(2) 可溶性有機物、亜硝酸塩、硫化水素……これらはいずれも海水汚染度の指標となるが、これらはともに港東部の工場地帯及び市街地近くの表層に多く、可溶性有機物（正しくは過マンガン酸カリ溶液物質）は日鉄埠頭附近より流出する水に多く、南側に向けた流れが見られ、市営埠頭附近よりの都市汚水と共に港内を汚染しているが、底質は港外水で深く潜入しているので割合污染度は少ない。

(3) 硝酸塩及び塩酸塩……硝酸塩については各層とも著しい特徴を認めないが塩酸塩は日鉄埠頭表層の汚染水塊が小さい値を示している。

(4) 水素イオン濃度……日鉄埠頭及び日鋼沖の汚染された表面水はpH8.0で港外よりも流下する水はpH8.2前後である。

底質についてみれば、
(1) 粒度組成……大部分は泥質及び砂泥質であるが、港内の水の流動と相当明瞭な相関性を示し、港内に石灰等を多く含む地点がみられるが、これは船舶の停泊と関連して当然である。又日鋼鉄先の水域一帯に相当広汎に船底の分布が認められ、これがこの水域の底棲生物に影響を与えていることが想像される。（第2図）

(2) 有機炭素量及び堆熱減量……水の流動と関連して、水が停滞し静かな港奥に有機物が多
い。御崎埠頭附近より炭素量 2%を超える濃密部が突出しているが、これより御崎附近にある日鉄化學株式会社（ゴールダール工場）及び日鉄よりの廃棄物によるものであろう。これが多すぎる場合は廃棄物の水質、特に二酸化炭素の分布と類似している点も注目される（第3,4図）。
（8）全窒素量……港内に割合多く、日鉄から排出した廃棄物の分布を知るのに役立つ。廃棄物の分布は廃棄物の影響を受けやすい水質、特に二酸化炭素の分布と類似している点も注目される（第3,4図）。
（9）石灰及び鈉酸塩……石灰及び鈉酸塩として測定されたものであるが、これの石灰の分布は廃棄物の分布を知る一つの指標と若てとができる。最も石灰の多い部分（2%以上）は日鉄より港内の模様波堤近くまで広がっている。従って廃棄物中に石灰が存在する場合は、廃棄物の分布を知るのに役立つと考えられる。また、生物的に必要な鈉酸塩も石灰 2%以上を含む底質に存在するため、廃棄物の影響を受けやすい水質、特に二酸化炭素の分布と類似している点も注目される（第5図）。

Fig. 5 Distribution of Calcium Content in Bottom Materials (%)

（9）鈉……底質中の鈉は港奥部に多いが、2回の調査の結果においては、著しい変動が認められなかった。
以上の底質についてみると、粒径組成は従来の鉱立貝または有機物に関する他の研究（7,8,9）と比較して、港内の泥と異なり骨格被覆とは考えられないが、現在鉱立漁場となっている港内は港内に比較して、底質の分布は広がっている。従って廃棄物中に石灰が存在する場合は、廃棄物の分布を知るのに役立つと考えられる。

鉱立漁場の分析結果は、現在の漁場とならない地点では、港外水が底層を深く流入して、底層水が污染されないことが、底質の理化学的性状と相まって鉱立貝の繁殖を可能していると考えられる。なお、鉱立漁場は水深、塩分、溶存酸素、鉱塩、硝酸塩及び亜硝酸塩を、底質については粒径組成、有機炭素、全窒素の諸量を分析研究した。第4, 5表はその結果を示したものである。また各成分の分布状態は第6図～第10図に示した。
これら分析結果の結果から次のことが考えられる。
（1）塩分……海水中の塩素量 18.25%前後は海水の塩分に相当するため、その影響は主として 1.5m以内で、5m以下の底層においては海水の影響が弱まるが、その影響は主として 1.5m以内で、5m以下の底層においては海水の影響が弱まるのが見られる（第7図）。また港南部の港域一部に存在する海水の影響は弱まり、海水の影響は弱まる（第8図）、築地町地先と日鉄地先を結ぶ線（St.7～St.3）において塩素量が底層に立ち上がり、塩分が低い（第7図）。
Table 4. Properties of Sea Water in Muroran Harbour (Feb. 12, 1950)

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Depth of the Observed Layer (m)</th>
<th>Cl (ppm)</th>
<th>O₂ (mg/L)</th>
<th>Soluble Organic matter (mg/L)</th>
<th>P₂O₅ (mg/m³)</th>
<th>NO₂ (mg/m³)</th>
<th>Fe + (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>16.44</td>
<td>7.33</td>
<td>9.07</td>
<td>tr</td>
<td></td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>18.25</td>
<td>7.74</td>
<td>8.40</td>
<td>95.1</td>
<td></td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>18.31</td>
<td>7.53</td>
<td>16.32</td>
<td>56.9</td>
<td></td>
<td>13.2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>16.16</td>
<td>7.70</td>
<td>10.17</td>
<td>66.5</td>
<td></td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>18.08</td>
<td>7.70</td>
<td>7.76</td>
<td>99.5</td>
<td></td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>18.42</td>
<td>7.64</td>
<td>7.44</td>
<td>73.7</td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>17.57</td>
<td>7.62</td>
<td>8.64</td>
<td>66.3</td>
<td></td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>16.13</td>
<td>7.62</td>
<td>8.96</td>
<td>101.9</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>18.04</td>
<td>7.62</td>
<td>9.05</td>
<td>105.1</td>
<td></td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>17.99</td>
<td>7.62</td>
<td>7.84</td>
<td>122.1</td>
<td></td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>18.34</td>
<td>7.73</td>
<td>9.06</td>
<td>22.3</td>
<td></td>
<td>32.8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>15.17</td>
<td>8.06</td>
<td>7.80</td>
<td>79.9</td>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>17.74</td>
<td>7.69</td>
<td>7.56</td>
<td>103.9</td>
<td></td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td>17.79</td>
<td>7.34</td>
<td>6.67</td>
<td>83.1</td>
<td></td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>15.11</td>
<td>7.60</td>
<td>8.63</td>
<td>108.6</td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>18.42</td>
<td>7.61</td>
<td>7.04</td>
<td>100.8</td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>18.36</td>
<td>7.77</td>
<td>9.07</td>
<td>97.5</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>18.17</td>
<td>7.77</td>
<td>5.90</td>
<td>73.0</td>
<td></td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>18.32</td>
<td>7.91</td>
<td>7.30</td>
<td>106.5</td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>18.39</td>
<td>7.82</td>
<td>11.54</td>
<td>192.3</td>
<td></td>
<td>13.4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>18.33</td>
<td>7.86</td>
<td>9.45</td>
<td>83.1</td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>18.32</td>
<td>7.91</td>
<td>6.51</td>
<td>117.0</td>
<td></td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>18.39</td>
<td>7.82</td>
<td>7.76</td>
<td>89.4</td>
<td></td>
<td>8.6</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>18.16</td>
<td>7.69</td>
<td>8.24</td>
<td>89.2</td>
<td></td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>18.36</td>
<td>7.85</td>
<td>11.74</td>
<td>103.7</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>18.18</td>
<td>7.77</td>
<td>9.48</td>
<td>98.2</td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>18.36</td>
<td>7.79</td>
<td>10.77</td>
<td>85.5</td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>18.29</td>
<td>7.82</td>
<td>12.70</td>
<td>92.8</td>
<td></td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>18.36</td>
<td>7.86</td>
<td>6.85</td>
<td>114.0</td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>18.34</td>
<td>7.80</td>
<td>12.96</td>
<td>99.4</td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>18.38</td>
<td>7.94</td>
<td>7.36</td>
<td>65.7</td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>18.35</td>
<td>7.89</td>
<td>7.04</td>
<td>103.5</td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>18.30</td>
<td>7.98</td>
<td></td>
<td>181.3</td>
<td></td>
<td>18.1</td>
</tr>
</tbody>
</table>

Table 5. Properties of Bottom Materials in Muroran Harbour (Feb. 12, 1950)

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Depth (m)</th>
<th>Ignition Loss (%)</th>
<th>Organic Carbon (%)</th>
<th>Total Nitrogen (%)</th>
<th>Gravel in Original Sample (3mm<) (%)</th>
<th>Mud in Fine mud (0.06mm>) (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.8</td>
<td>7.96</td>
<td>1.25</td>
<td>0.24</td>
<td>0.26</td>
<td>96.61</td>
<td>Some pumice-stones</td>
</tr>
<tr>
<td>6</td>
<td>12.0</td>
<td>9.94</td>
<td>3.34</td>
<td>0.15</td>
<td>0.93</td>
<td>95.20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9.0</td>
<td>5.59</td>
<td>1.49</td>
<td>0.08</td>
<td>1.77</td>
<td>76.85</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12.0</td>
<td>4.63</td>
<td>2.03</td>
<td>0.06</td>
<td>1.88</td>
<td>85.61</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>4.69</td>
<td>1.23</td>
<td>0.03</td>
<td>5.50</td>
<td>33.24</td>
<td></td>
</tr>
</tbody>
</table>
（2）残存酸素——塩分の分布と類似していて残存酸素は表層、底層とも著しい変化なく、污水の混入する個所の表層が僅かに減少し、港外水の混入している底層がこれに反して酸素量が多いとゆう現象が見られる（第7、8、9図）。

（3）可溶性有機物——流入する污水は港東、港南より張出し、有機物の多い港外水は港の中央を南東に深く挿入しているが（第10図）、本輪西端地先のSt.⑩の5〜6米深の部分に割合有機物の多い個所が見られるが、これはこの部分に中心を有する南東方向の一つの垂直循環があるためであろう。港域部は表層に污水が厚さこそ割合薄いが、相当広範囲にわたり堆積し、港奥に向つている。ことに注目すべきは港口に近いドック沖に有機物の相当濃密な水塊の存在である（第11図）。

（4）鉄——鉄分の分布は有機物の分布とよく類似している。鉄分の多い污水が表層を港奥から押出
分布と酷似し、注目される。ヌ本輸西沖（St.9~附近

（5）亜硝酸塩……塩分の分布と地の関係を示す
即ち塩分の多い海水では亜硝酸塩が少なく、表層に
拡がる汚水では亜硝酸が多い（第12図）。

（6）縦酸塩……港内の汚水の影響する部分の表
面は縦酸が著しく減少している。これは縦酸が縦
酸鉄として沈澱し去るためであろう。一般的には
深さが増すとともに次第に増える傾向があるが、
河岸部河川沖（St.2）より東の港内では底質中
に多量に存在する鉄のため縦酸が消費されるもの
か、中層より漸次減少している（第13図）。

以上港湾水の各化学成分について概説したが、
これらの結果を総合して港内の帆立貝死滅状況の
調査結果と比較検討してみよう。

これに帆立貝発生事件と称するのは、昭和25年
1月下旬、北東の強風呂しく港内水揚乱し、通常
日報に停滯している赤紫色の汚水（土産漁民
は赤水又は縦水と称する）が港内一円に拡がり、
そのために帆立貝その他の貝類の発生するもの
に到った事件である。

果してかかる発生事件の原因が漁民等の逸げる
ところの赤水に依るか、また全く別の原因による
かを明かにすることは今後の問題である。

この帆立貝発生事件の発生後、室戸市役所漁
業課水産係吉田、農田両氏により調査された帆
立貝の発生状況は第6表の如くである。即ち4
尺の桁網を用い、近急的に行ったもので、この結果
は資料の数も全く十分なものとは云えが出来
ないが、一般港内における帆立貝の発生状況を
示すものと考えられる。これによれば波流の最も
多いのは、この発生の直接の原因になっていると
思われる赤水の停滞している日報西側であること
はうなずかれるが、この地点より距離的に相当離
れているドック東岸附近が、更に港内の横防波堤
東側附近よりも発生率の多いのは、横防波堤東側
附近の発生年令組成の中、2年生ものが特に多

---(74)---
Table 6. The Result researched on the Damage of the Scallop in Muroran Harbour (Jan. 1950)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Researched</th>
<th>Eastern Part of the Dock</th>
<th>Eastern Part of the inner Water-Breaker, in front of Tsukiji-cho</th>
<th>The front Area of the Iron manufactory (Nittetsu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area researched by Grider Net (㎡)</td>
<td></td>
<td>109</td>
<td>762</td>
<td>871</td>
</tr>
<tr>
<td>Number of Scallops Yielded</td>
<td>5</td>
<td>39</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Ratio of Scallops Perished(%)</td>
<td>40</td>
<td>34</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Age Composition of Scallop Yielded</td>
<td>20</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5 years of Age</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4 years of Age</td>
<td>20</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>3 years of Age</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2 years of Age</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1 year of Age</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

変動が大きく港内の生物に影響を与えるものと考えられる。いま、日鉄埠頭より流れ出す赤紫色の汚水（赤水）が港内の生物、特に帆立貝の飼育に重大な関係をもつものとすれば、赤水の落長及び移動が直接そこに棲息する生物に被害を及ぼすものと考えられるものので、赤水の落長及び移動を前述の水質分析の結果より考察し、これを帆立貝の飼育状況調査と対照して検討してみよう。

新たに生物に直大な影響を及ぼすものと思われる赤水の正体については再三検討を試みたが、普通の化学分析では疑惑ながら充分明らかにすることは出来なかったが、赤紫色の顕著な呈色反応を有する霉菌性の死水に関係するものと推定される。かいる赤水は平常に日鉄埠頭附近において発生し、表層を薄く弾かり、日鉄埠頭及び日鉄埠頭近傍に停滞し、潮汐の干溝により多少伸縮しているが、偶々冬季強烈な北東風が起こると、港内水は攪乱され、赤水はこの風のため潮汐に押出され、港内一面に拡がり、港内に棲息する生物、特に成長型の生物に大なる影響を与え、例えば防波堤に附着するカサヘクサの貝類に明瞭な被害を示している。

この風の吹き止めた後は、この港内一面に拡がった赤水は郡役入する干溝時の水の出入口により逐次港外に排出されも稀解され、それ故は郡役島防波堤東側（St.7）にまで及びぬが、それより以奥は稀解作用が緩慢となる。また海水中の飼及び有機物の分析結果によっても明らかである。ドック沖（St.10）附近には水が停滞し盛ち、日鉄埠頭よりも遠かに赤水は港の中央において港役口よりの外海水によって横断的に隔断された形となり、隔断してらくらん外海水の影響が残る。このためドック沖は港口に近いにも拘らず、却って港奥の横断防波堤東側よりも帆立貝が大きな打撃を受ける結果となったものと想像される。また横斷防波堤東側の飼育年令組成の若いのも、この地域は割合水の流速よく、赤水の排出流が速かであるが、幼魚は赤水中の有害な化学物質及び風の影響による浮遊泥に対する抵抗力が弱いため、成長に比して飼育年令が多くなったものと考えられる。

5 摘 要

（1）室蘭港の海水及び底質の理化学的性状を研究し、貝類の主なる棲息環境条件たる海洋学的特性を明らかにすると共に、同沿の工業地帯及び都市より排出される汚水の影響下に及ぼす影響を併せて究明するため、昭和24～26年に亘り4回の調査を実施したが、その中間3回の調査の結果について報告した。

(75)
（2）室蘭港の海洋学的条件を支配するものは、港口より時計回りに港内深く差込んでいる外海水と、港奥に停滞している工業地帯及び市街地よりの汚水を混じった低塩水塊との平衡である。

（3）目鉄環様から熔融鉄屑投棄個所にたる北東風一帯には、「赤水」と称される赤紫色の有害な低塩水塊が表層を薄く浮っている。しかし赤水の正体を確認することは出来なかった。

（4）南東風の市営埠頭附近では、外海水の勢も全く弱まり、都市汚水が深く停滞している。

（5）これら港奥の低塩水塊と外海水との平衡状態は風力、酸に北東の強風によって破られ、赤水が港内に流入し、港内水が混雑される。そのため港内に残存する生物、特に星帯体の貝類が大きな被害を受ける場合がある。

（6）港南部の市営埠頭附近を除き、外海水が港内深く潜入しているため底泥の汚染度は高い。特に現在主なる幕立棲息場となっている港西部は、底質が砂泥質及び砂質であるが、水の流動が少ないため貝類の棲息を害するほど有機質が滞留はしていない。

6 文 献

（1）谷田哲治、加藤健司、奥田泰雄（1950）：貝類棲息地の环境条件に関する研究、第1報、函館港について、北海道水産系研究報告、第1巻、第1号、18～34頁

（2）海洋気象台（1934）：室蘭港内潮流観測結果（昭和7年8月施行）、海洋時報、第6巻、241～246頁

（3）谷田哲治（1950）：一新採泥管について、北海道水産系研究報告、第1巻、第2号、63頁

（4）田村正（1942）：池沼水及び河川水の簡単に採水法、陸水学雑誌、第12巻、第2号、75～78頁

（5）加藤健司、石崎孝成（1949）：海洋底質の化学的研究（第1報）陸奥湾に於ける底質腐植質の分布について、水産学雑誌、第54号、7～11頁

（7）藤森三郎（1929）：有明海岸川植物研究報告、與田藻水産試験場、716頁

（8）田早正男（1949）：水質の汚濁と漁業、農学、第2巻、第8号、418～422頁

（9）倉淼英次郎（1941）：朝鮮に於けるアサリの粒度組成及び見た土質、海と空、第21巻、第6号、125～136頁

（水産科学研究所業績第48号）