HOKKAIDO UNIVERSITY

Title	A STUDY ON THE CORRECTION OF MA GNETIC COMPASS
Author（s）	HYUGA，Masaaki
Citation	北海道大學水産學部研究彙報，2（3），214 219
Issue Date	1951－12
Doc URL	http：／hdl．handle．net／2115／22717
Type	bulletin（article）
2（3）＿P214 219．pdf	
File Information	

nstructions for use

A STUDY ON THE CORRECTION OF MAGNETIC COMPASS

Masaski HYUGA
Faculty of Fisheries, (Hakodate) Hokkaido University

(1) Introduction

The writer proposed of a method to correct the magnetic compass by the observations of deviations of the compass and directive force of its needles on two or a single heading.

The methods generally followed necessitate keeping ship's head on four cardinal and intercardinal points by compass or magnetic bearing. However, this is a method to correct the compass by assertaining the coefficients by keeping ship's head on any given two or a single heading.

(2) Method

§1. Formulae.
The formulae for this purpose can be as follows:
The following Poisson's equation repre-

In figure (above), let X, Y ard Z represent the respective axes of slip's fore and aft direction, athwartship direction and vertical direction. magnetic field,
Z : Vertical component of Earth's magnetic field,
I : Dip,
θ : Compass heading,
δ_{0} : Deviation for θ,
and H_{6} : Horizontal component of ship's magnetic field.
Then,

$$
\left\{\begin{array} { l }
{ \mathrm { X } = \mathbf { H } \operatorname { c o s } (\theta + \delta _ { 0 }) } \\
{ \mathbf { Y } = - \mathbf { H } \operatorname { s i n } (\theta + \delta _ { 0 }) }
\end{array} \quad \left\{\begin{array}{l}
\mathrm{X}^{\prime}=\mathbf{H}_{y} \cos \theta \\
\mathrm{Y}^{\prime}=-\mathbf{H}_{y} \sin \theta
\end{array}\right.\right.
$$

and $Z=H \tan I$
Therofora Poisson's equation (1) becomes

$$
\begin{align*}
\mathrm{H}_{\theta} \cos \theta & =(1+\mathrm{e}) \mathbf{H} \cos \left(\theta+\delta_{\sigma}\right)-\mathrm{bH} \sin \left(\theta+\delta_{\theta}\right)+\mathrm{eH} \tan \mathrm{I}+\mathrm{P} \\
-\mathrm{H}_{\theta} \sin \theta & =-(1+\mathrm{e}) \mathrm{H} \sin \left(\theta+\delta_{\sigma}\right)+\mathrm{dH} \cos \left(\theta+\delta_{\theta}\right)+\mathrm{fH} \tan \mathrm{I}+\mathrm{Q} \tag{2}
\end{align*}
$$

Let

$$
\begin{array}{ll}
\mathbf{A}_{0}=\frac{1}{\lambda}\left(\frac{\mathrm{~d}-\mathrm{b}}{2 \cdot}\right), & \mathrm{D}_{0}=\frac{1}{\lambda}\left(\frac{\mathrm{a}-\mathrm{e}}{2}\right) \\
\mathrm{B}_{\theta}=\frac{1}{\lambda}\left(\mathrm{c} \tan \mathrm{I}+\frac{\mathrm{P}}{\mathrm{H}}\right), & \mathrm{E}_{0}=\frac{1}{\lambda}\left(\frac{\mathrm{a}+\mathrm{b}}{2}\right) \\
\mathrm{C}_{\theta}=\frac{1}{\lambda}\left(\mathrm{ftan} \mathrm{I}+\frac{\mathrm{Q}}{\mathrm{H}}\right), & \lambda=1+\frac{\mathbf{a}+\mathrm{e}}{2}
\end{array}
$$

Here $A_{0}, B_{0}, C_{0}, D_{0}$ and E_{0} are called the Exact Coefficients of Deviations, and λ horizontal shielding factor. Generally A_{0} and E_{0} are very small. Therafore, if A_{0} and E_{0} are assumed respeotively zero, then b and d are regarded zero.

Therefors, (2) becomes

$$
\begin{align*}
\frac{\mathrm{H}_{\theta}}{\mathrm{H}} \cos \theta & =(1+\mathrm{e}) \cos \left(\theta+\delta_{\theta}\right)+\lambda \mathrm{B}_{\mathbf{0}} \tag{3}\\
-\frac{\mathrm{H}_{\theta}}{\mathrm{H}} \sin \theta & =-(1+\mathrm{e}) \sin \left(\theta+\delta_{\sigma}\right)+\lambda \mathrm{C}_{\theta}
\end{align*}
$$

If a and e are expressed in D_{0}, (3) becomes

$$
\begin{align*}
& \mathrm{B}_{0}=\frac{\mathrm{H}_{\theta}}{\lambda \mathrm{H}} \cos \theta-\left(1+\mathrm{D}_{0}\right) \cos \left(\theta+\delta_{b}\right) \tag{4}\\
& \mathrm{C}_{0}=-\frac{\mathrm{H}_{\theta}}{\lambda \mathrm{H}} \sin \theta+\left(1-\mathrm{D}_{0}\right) \sin \left(\theta+\delta_{\theta}\right)
\end{align*}
$$

§ 2. Compensation on two headings.
This can be done with a considerable accurasy for directive force on two headings, the only assumption being that the coefficients A_{0} and E_{0} are zero, which is generully true.

Two headings are available :
a) When a ship is moored alongside of a wharf or pier and afterward winded and moored on the opposite heading or another differant heading.
b) When a ship is moored alongside of a wharf or pier, and before and afterward, when she is off them, - for instance entsring or leaving harbor.
c) When a ship attained two of her courses at sea. (desirable in the harbor.)

The ship must not, in eash case, be newr another iron or steal ship or in the immediate vicinity of iron or stosl stractures on shors.

Now let θ_{1} and θ_{2} denote two respective ship's compass headings, $\delta_{\sigma_{1}}$ and δ_{02} the corresponding deviztions for two compass headings θ_{1} and θ_{2}, n a raading shown on the scale when the North point of the compass carl was deflected by 45° or 96° by deflector, on shore in a place fres from local mageetic influences, and not greatly distant from the ship, $n \theta_{1}$ and $n \theta_{0}$ the raspetive randings shown on the siale for two compass headings θ_{1} and θ_{2} when the same point was deflected by the same angle by defleator on board the ship in the exact position of the compass needle, and H_{61} and H_{62}, the respective ship's horizontwl magnetic fields for two compess headings.

Then the equation (3) for each compass heading θ_{1} and θ_{2} becomes respectively,

$$
\begin{align*}
& \frac{\mathrm{H}_{b_{1}}}{\mathrm{H}} \cos \theta_{1}=(1+\mathrm{a}) \cos \left(\theta_{1}+\delta_{\sigma_{1}}\right)+\lambda \mathrm{B}_{0} \\
& \left.\frac{\mathrm{H}_{\delta \mathrm{g}}}{\mathrm{H}} \cos \theta_{2}=(1+\mathrm{a}) \cos \left(\theta_{2}+\delta_{\delta_{2}}\right)+\lambda \mathrm{B}_{0}\right) \tag{;}\\
& \therefore \quad 1+\mathrm{a}=\frac{\frac{\mathrm{H}_{\theta} 1}{\mathrm{H}} \cos \theta_{1}-\frac{\mathrm{H}_{\theta_{2}}}{\mathrm{H}} \cos \theta_{2}}{\cos \left(\theta_{1}+\delta_{\sigma_{1}}\right)-\cos \left(\theta_{2}+\delta_{\sigma_{2}}\right)} \ldots \cdots \tag{6}
\end{align*}
$$

In like manner,

$$
\left.\begin{array}{l}
-\frac{\mathrm{H}_{\theta_{1}}}{\mathrm{H}} \sin \theta_{1}=-(1+\mathrm{e}) \sin \left(\theta_{1}+\delta_{\sigma_{1}}\right)+\left.\lambda \mathrm{C}_{0}\right|_{1} \\
-\frac{\mathrm{H}_{\theta 2}}{\mathrm{H}} \sin \theta_{2}=-(1+\mathrm{e}) \sin \left(\theta_{2}+\delta_{\theta_{2}}\right)+\lambda \mathrm{C}_{0} \tag{8}
\end{array}\right) .
$$

λ and D_{0} are given by

$$
\begin{gathered}
\lambda=1+\frac{a+e}{2}=\frac{1}{2}\{(1+a)+(1+e)\} \\
D_{0}=\frac{1}{\lambda}\left(\frac{a-e}{2}\right)=-\frac{1}{\lambda}\left\{\frac{(1+a)-(1+e)}{2}\right\}
\end{gathered}
$$

and from (5) and (7),

$$
\begin{align*}
& \mathrm{B}_{0}=\frac{1}{2 \lambda}\left(\left(\frac{\mathrm{H}_{\sigma_{1}}}{\mathrm{H}} \cos \theta_{1}+\frac{\mathrm{H}_{\sigma_{2}}}{\mathrm{H}} \cos \theta_{s}\right)-(1+\mathrm{a})\left\{\cos \left(\theta_{1}+\delta_{\sigma_{1}}\right)\right.\right. \\
& \left.+\operatorname{coss}\left(\theta_{2}+\delta_{o_{2}}\right)\right\} ; \ldots . \tag{9}\\
& \mathrm{C}_{0}=\frac{-1}{2 \lambda}\left(\left(\frac{\mathrm{H}_{61}}{\mathrm{H}} \sin \theta_{1}+\frac{\mathrm{H}_{\theta 2}}{\mathrm{H}} \sin \theta_{2}\right)-(1+\mathrm{e})\left\{\sin \left(\theta_{1}+\delta_{\theta_{1}}\right)\right.\right. \\
& \left.+\sin \left(\theta_{2}+\delta_{\theta_{2}}\right)\right\}, \tag{10}
\end{align*}
$$

Then $\operatorname{since} \frac{H_{\theta}}{H}=\frac{n_{\theta}}{n}$, (9) and (10) can be written

$$
\begin{aligned}
& B_{0}=\frac{1}{2 \lambda}\left(\left(\frac{n_{\theta 1}}{n} \cos \theta_{1}+\frac{n_{\theta q}}{n} \cos \theta_{2}\right)-(1+a)\left\{\cos \left(\theta_{1}+\delta_{\theta_{1}}\right)\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{C}_{0}=\frac{-1}{2 \lambda}\left\{\left(\frac{\mathrm{n}_{\theta_{1}}}{\mathrm{n}} \sin \theta_{1}+\frac{\mathrm{n}_{\theta_{2}}}{\mathrm{n}} \sin \theta_{2}\right)-(1+\theta)\left\{\sin \left(\theta_{1}+\delta_{\theta_{1}}\right)\right.\right. \tag{11}\\
& \left.\left.+\sin \left(\theta_{2}+\delta_{\theta_{2}}\right)\right\}\right\} \tag{12}
\end{align*}
$$

Substituting the values of $\lambda,(1+a)$ and $(1+e)$ into the equations (11) and (12), B_{0} and C_{0} can be obtained.

Now if the approximate coefficients are expressed by $A, B, C, D, E ;$ and the deviation δ_{θ} for compass heading θ, in degrees,

$$
\begin{equation*}
\delta_{\theta}=\mathrm{A}+\mathrm{B} \sin \theta+\mathrm{C} \cos \theta+\mathrm{D} \sin 2 \theta+\mathrm{E} \cos 2 \theta \tag{13}
\end{equation*}
$$

Then the relation between the exact coefficients and approximate coefficients is as follows:

$$
\begin{array}{lll}
\mathrm{A}_{0}=\sin \mathrm{A}, & \mathrm{~B}_{0} \fallingdotseq \sin \mathrm{~B}, & \mathrm{C}_{0} \fallingdotseq \sin \mathrm{C} \\
\mathrm{D}_{0} \fallingdotseq \sin \mathrm{D}, & \mathrm{E}_{0} \fallingdotseq \sin \mathrm{E}, & \mathrm{E}_{0}=\sin \mathrm{E}-\left.\sin \mathrm{A} \sin \mathrm{D}\right|^{-} \tag{14}
\end{array}
$$

Now since A_{0} and \mathbf{E}_{0} are respectively zero, A and E accordingly become zero.
Therefore (13) can be written

$$
\begin{equation*}
\delta_{\theta}=\mathrm{B} \sin \theta+\mathrm{C} \cos \theta+\mathrm{D} \operatorname{sind} 2 \theta- \tag{15}
\end{equation*}
$$

From (14) it follows that

$$
\mathrm{B}=\mathrm{B}_{0} \times 57^{\circ} .3, \quad \mathrm{C} \fallingdotseq \mathrm{C}_{0} \times 57^{\circ} .3, \quad \mathrm{D} \fallingdotseq \mathrm{D}_{0} \times 57^{\circ} .3
$$

So that, $\mathrm{B} \sin \theta_{2} \fallingdotseq \mathrm{~B}_{0} \sin \theta_{2} \times 57^{\circ} .3$ is the amount to be corrected by fore and aft magnets for ship's compass heading θ_{2}.
$\mathrm{C} \cos \theta_{2} \fallingdotseq \mathrm{C}_{0} \cos \theta_{2} \times 57^{\circ} .3$ is the smount to be corrected by athwartship magnets for ship's compass heading θ_{2}.

D $\sin 2 \theta_{2} \fallingdotseq \mathrm{D}_{0} \sin 2 \theta_{9} \times 57^{\circ} .3$ is the amount to be corrected by iron spheres for ship's compass beading θ_{2}.
Example:
When the following data in a certain ship are observed, the compensation on 2nd heading is required.

$$
\begin{array}{rlr}
\theta_{1} & =45^{\circ} 45^{\prime} & \delta_{\theta 1}=12^{\circ} 15^{\prime} \mathbf{E} \\
\theta_{2} & =245^{\circ} & \delta_{\theta 2}=7^{\circ} 00^{\prime} \mathrm{W} \\
\mathbf{n}_{\theta_{1}} & =22.7 & \mathbf{n}_{\theta_{2}}=9.1 \\
\mathrm{n} & =17.8 &
\end{array}
$$

Using the equations (6), (8), (11) and (12), the following values are obtained:

$$
\begin{array}{llll}
1+2=1.043 & \lambda=0.927 & \mathrm{D}_{0}=+0.125 & \mathrm{C}_{0}=-0.2445 \\
1+\mathrm{e}=0.811 & & \mathrm{~B}_{0}=+0.365 &
\end{array}
$$

Then the amonnts to be corractod on ship's compass heading 245° are,
$\mathrm{B} \sin \theta_{2} \fallingdotseq \mathrm{~B}_{0} \sin \theta_{2} \times 57^{\circ} 3 \fallingdotseq-18.9$
$\mathrm{C} \cos \theta_{2} \fallingdotseq \mathrm{C}_{0} \cos \theta_{2} \times 57.3 \fallingdotseq+5.9$
$\mathrm{D} \sin 2 \theta_{2} \fallingdotseq \mathrm{D}_{2} \sin 2 \theta_{2} \times 57 .^{\circ} 3 \fallingdotseq+5.5$
Then of these velues, $-18^{\circ} 9$ due to B_{0} is to be compensated by fore and aft magnets, +5.9 due to C_{0} by athwartship magnets and $+5 .{ }^{\circ}$ a due to D_{0} by iron spheres. § 3. Compens.tion on one heading

Should it not be possible to take observations for dirastive forse on two headings, the comp:ss can be corrected with tolerable accuricy from observations on one heading only. Center the compass accurately, place the spheras by estimate, and then compens:te the heeling error rog.wrdess of the fact that the ship may not be heading near East or West.

Next, record the compass heading of the ship by compass to be corrected. And observe and racord the magnetio heading obtainable by means of a chart, or an azimoth of the sun, or of a distant object of known magnetic besring, or by a single set of raciprocal bearings.
Let θ denote ship's compass heading,
δ_{θ} : deviation for θ
n : a raading shown on the sale when the North point of the compass card was deflected by 45° or 96° by deflestor, on shore in a place frie from local magnetic influences, and not graitly distant from the ship
n_{θ} : a reading shown on the saale for ship's compass heading θ when the same point was deflected by the same angle by deflector on board the ship in the exact position of the compess needle
And then using the equation (4), B_{0} and C_{0} aro obtained as follows:

$$
\left.\begin{array}{l}
\mathrm{B}_{0}=\frac{1}{\lambda} \frac{\mathrm{n}_{\theta}}{\mathrm{n}} \cos \theta-\left(1+\mathrm{D}_{0}\right) \cos \left(\theta+\delta_{\theta}\right) \\
\mathrm{C}_{0}=\frac{-1}{2} \frac{\mathrm{n}_{\theta}}{\mathrm{n}} \sin \theta+\left(1-\mathrm{D}_{0}\right) \sin \left(\theta+\delta_{\theta}\right) \tag{16}
\end{array}\right\}
$$

In this event the quadrantal spheres must be placed by estimate and values of λ and D_{0} essumed; the value of λ, being generally 0.70 to 0.95 average, may be assumed as approximately 0.9 when λ cannot be observed. In the same manner as in the compensation on two headings, $\mathrm{B}_{0}, \mathrm{C}_{0}$ and D_{0} can be exprassed by B, C and D , and the deviation may be compens ated on any compass heading es desired. Viz.

Let $\mathrm{D} \sin 2 \theta=\mathrm{D}_{0} \sin 2 \theta \times 57.0^{\circ} 3$ be the amount to have been compensated by iron spheres assuming the values of $\mathrm{D}_{\boldsymbol{0}}$ ，and then $\mathrm{B} \sin \theta \leftrightharpoons \mathrm{B}_{\mathbf{0}} \sin \theta \times 57 .^{\circ} 3$ is the amount to be compensated by fore and aft magnets，and $\mathrm{C} \cos \theta \fallingdotseq \mathrm{C}_{0} \cos \theta \times 57 .^{\circ} 3$ the amount to be compensated by athwartship magnets．
Example：
From data for standard compass of a similar ship，assumed：And estimated that the deviation due to D_{0} has been compensated by iron spheres．It is then found that：

$$
\begin{array}{lc}
\theta=21^{\circ} & \delta_{g}=5^{\circ} 10^{\prime} \mathrm{W} \\
\mathrm{n}=25.3 & \mathrm{n}_{g}=14.8
\end{array}
$$

Compensate on ship＇s compass heading 21．${ }^{\circ}$
Using（16），the following values are obtained：
$\mathrm{B}_{0}=-0.35 . \quad \mathrm{C}_{0}=+0.04$
Therefore the amount to be compensated on compass heading are，
$B \sin \theta \fallingdotseq \mathrm{~B}_{0} \sin \theta \times 57 .{ }^{\circ} 3 \fallingdotseq-7 . .^{\circ} 2$
$\mathrm{C} \cos \theta \fallingdotseq \mathrm{C}_{0} \cos \theta \times 57.3 \fallingdotseq+2.1$
Of these values，$-7 .{ }^{\circ} 2$ is to be compensated by fore and aft magnets，and $+2 .{ }^{\circ} 1$ by athwarlship magnets．

In such ceses as described above in the compensations on two or a single head－ ing，the computed values of these portions $\mathrm{B} \sin \theta+\mathrm{C} \cos \theta$ may differ appreciably from the actual values of δ_{θ} ；this is due to the reason that the relation between the Approximate and Exact Coefficients of Deviations in（13）has been required approximately．
\S 4．Analysis of Coofficient B_{0}
As the analysis of coefficient B_{0} was described in the previous report by the writer，this subjest is herein omitted．

（3）Conclusion

The writer considers that this may be good enough to adopt as a method to correct the compass on two or a single heading in taking advantage of the time when a ship is being moored or lying in the harbor．

As the coeffieients A_{0} and E_{0} are supposed zero and the formulae used in com－ putations are obtained approximately，this cannot be oalled an absolutely perfect method．However，the writer believes that this is well adopted for the practical use of magnetic compass corraction，and navigators are enrnestly requested to pay attention to this work and to try this method at sea．

