<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>北海道大学水産部研究報告 (STUDIES ON SHARK MUSCLE. PART 1. HISTOCHEMICAL STUDIES OF UREA IN SHARK MUSCLE)</td>
</tr>
<tr>
<td>著者</td>
<td>OHOISHI, Keiichi</td>
</tr>
<tr>
<td>引用</td>
<td>北海道大学水産部研究報告 (Bulletin of the Faculty of Fisheries Hokkaido University, 3(3): 193-196)</td>
</tr>
<tr>
<td>発行日</td>
<td>1953-01</td>
</tr>
<tr>
<td>ドキュメントURL</td>
<td>http://hdl.handle.net/2115/22753</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>3(3)_P193-196.pdf</td>
</tr>
<tr>
<td>ホッカイド大学収集の学術・学術の論文コレクション</td>
<td>HOKKAIDO UNIVERSITY COLLECTION OF SCHOLARLY AND ACADEMIC PAPERS: HUSCAP</td>
</tr>
</tbody>
</table>
STUDIES ON SHARK MUSCLE. PART 1. HISTOCHEMICAL STUDIES OF UREA IN SHARK MUSCLE.

Keiichi OHOISHI

(Faculty of Fisheries, Hokkaido University)

Since 1858, the presence of a large amount of urea in shark muscle has been known, but histochemical studies have not yet been reported. At the beginning of this shark muscle study, therefore, histochemical investigations have been carried out. In this paper, the position of urea in the microscopical shark muscular tissue and the crystal form of urea are described.

Experimental

Two sharks were used as the experimental materials. The one was a female of "Hoshizame" fish Mustelus manazo BLEEKER taken off Maizuru on April 23rd, 1951, 85 cm. in total length and 2,850 g. in body weight; several young fish were in its embryo sac. The other was a male of "Dochizame" fish Triakis scyllium MUELLER et HENLE which was taken at the same place, on June 13th, 1951, 90 cm. in total length and 1,850 g. in body weight. The dorsal muscles of these fish were cut off in 1 cm. cube blocks, and fixed by the STUEBEL method or OLIVER method (1); in this process the urea is crystalized as dixanthylurea. These blocks, after imbedding with carbowax, were cut 5μ in thickness, stained with hematoxylin and eosin, then examined microscopically. Results are shown in the following plates.

In any specimen, cross striation, nucleus and sarcolemma of muscular fiber are shown. From plates 1 to 8, they are cited to the rank of crystal size. Crystals in the center of specimens are smaller in size and less in number than those on the outside, though the cause of this difference is not completely explainable. In plates 9 and 10, is shown a group of crystals. Such a gathering is found on the outside of specimens. This transfer of urea to the outside in crystallizing as dixanthylurea from the inside tissue, is also presumed as in the previous paper (2). The presence or absence of urea in the muscular fiber has not been obvious till now. But, the sarcolemma is stressed by the formation of crystal as shown in plate 11, and broken down by the stressing of crystal in plate 12. Observing these results, it may be considered that urea is present in the shark muscular fiber after crystallizing as dixanthylurea, though its presence in natural state is unknown, as heretofore.

Summary

Urea is found in the shark muscular fiber as far as examined as dixanthylurea; the size of such crystals was smaller and their number less on the inside as compared with outside
Plate 1. *Mustelus manazo.*
Fixed on the catching day by the Oliver method. 62 x 10

Plate 2. ditto

Plate 3. ditto

Plate 4. ditto 40 x 15

Plate 5. ditto 62 x 10

Plate 6. ditto
Plate 7. ditto

Plate 8. *Triakis scyllium*. Fixed after 17 days of catching by the Stuebel method. 62 x 10

Plate 9. *Triakis scyllium*. Fixed after 8 days of catching by the Stuebel method. 62 x 10

Plate 10. ditto

Plate 11. *Mustelus manazo*. Fixed on the catching day by the Oliver method. 62 x 10

Plate 12. ditto
of these specimens.

Literature cited

(1). U. Mori (1949): *Soshikikagaku no riron to hōhō*. 84, 2nd ed.