<table>
<thead>
<tr>
<th>Title</th>
<th>DIATOM COMMUNITIES IN WESTERN ALEUTIAN WATERS ON THE BASIS OF NET SAMPLES COLLECTED IN MAY-JUNE 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MOTODA, Sigeru; KAWARADA, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学水産学部研究彙報 = BULLETIN OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 6(3): 191-200</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1955-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/22926</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>6(3)_P191-200.pdf</td>
</tr>
</tbody>
</table>
DIATOM COMMUNITIES IN WESTERN ALEUTIAN WATERS
ON THE BASIS OF NET SAMPLES COLLECTED
IN MAY-JUNE 1953*

Sigeru MOTODA and Yutaka KAWARADA
Faculty of Fisheries Hakodate Marine
Hokkaido University Observatory

The present studies are based on materials collected by the Training Ship "Oshoro Maru" of the Faculty of Fisheries, Hokkaido University, during her training and research cruise to the western Aleutian waters from May to June 1953. The main purpose of the studies is to get the figure of distribution of diatom communities in upper layers of these areas which are certainly bounded by particularities of the water system.

The plankton net used in samplings measures 20 cm in mouth diameter and 68 cm in length along the side; it is made of fine bolting silk, XX 16, i.e., 157 meshes a linear inch. Samplings were made by 50 metre approximately vertical hauls.

The positions and dates of the samplings were quite the same as those of zooplankton samplings (fig. 1 and appendix; cf. Anraku, 1954). The number of stations, however, is different from those given in the hydrographic studies by Mishima & Nishizawa (1955), so that in referring to their hydrographic data care is necessary to read degrees of latitude and longitude of the stations, but not the number of the stations.

In the areas investigated the diatom flora is comparatively rich in species including the following nine leading species:

<table>
<thead>
<tr>
<th>Chaetoceros atlanticus</th>
<th>Corethron hystrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch. convolutus</td>
<td>Denticula sp.</td>
</tr>
<tr>
<td>Ch. debilis</td>
<td>Nitzschia seriata</td>
</tr>
<tr>
<td>Ch. decipiens</td>
<td>Rhizosolenia hebetata f. semispina</td>
</tr>
<tr>
<td>Ch. radicans</td>
<td></td>
</tr>
</tbody>
</table>

In addition to these species, Coscinodiscus oculus iridis, Thalassiosira decipiens, Th. nordenskiöldii and Thalassiothrix longissima are more or less abundant through the entire area, and Nitzschia closterium is also sometimes rather abundant though in restricted location. A few species of dinoflagellates and tintinnodes are present too but in very small quantities.

Although the quantitative values of the present samples are limited because of difficulty of exact estimation of filtration coefficient of the net, counting of the cell numbers of diatoms is made to get an approximate figure of density of population.

* おしょろ丸北洋調査報告 No. 3 (1953年度)
which, together with the composition of the population, might have bearing upon the hydrography of the areas.

Illustrated in figures 2-6 respectively is the quantitative distribution of diatoms as given by the cell numbers of total communities as well as by those in percentage of four major groups separately, i.e., Chaetoceros-Hyalochaete, Chaetoceros-Phaeoceros, Nitzschia seriata and Rhizosolenia hebetata f. semispina.

From the characteristics of the diatom communities in respect to their density as well as to their composition, the areas investigated may be divided into six regions: they are symbolized by A, B, C, D, E and F in figure 1 and table 1.

Table 1. Abridged table showing characteristics of diatom communities in six regions

<table>
<thead>
<tr>
<th>Regions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of diatom cells per m³ per a station</td>
<td>3×10⁷</td>
<td>3×10⁴</td>
<td>6×10⁴</td>
<td>3×10⁵</td>
<td>8×10⁴</td>
<td>4×10⁵</td>
</tr>
<tr>
<td>Chaetoceros-Hyalochaete</td>
<td>82</td>
<td>41</td>
<td>0</td>
<td>7</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Chaetoceros-Phaeoceros</td>
<td>6</td>
<td>15</td>
<td>69</td>
<td>67</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Corethron hystrix</td>
<td>+</td>
<td>+</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Denticula sp.</td>
<td>1</td>
<td>6</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Nitzschia seriata</td>
<td>2</td>
<td>12</td>
<td>+</td>
<td>4</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>Rhizosolenia hebetata f. semispina</td>
<td>2</td>
<td>24</td>
<td>+</td>
<td>11</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Diatoms miscellaneous</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

A Region

The A region covering St. 1, 4-8, 10 and 20 around the Near Islands and Rat Islands is densely populated with diatoms which are present to the number of more than one million cells per 1 m³ of water. Chaetoceros-Hyalochaete group, mainly composed of Chaetoceros constrictus, Ch. compressus, Ch. debilis, Ch. decipiens, Ch. radicans and Ch. teres, are most prevalent. Every station in this region shows the occurrence of Hyalochaete in the bulk more than 60 per cent of the total numbers of diatoms; especially on the course from St. 4 to St. 8 this group is remarkably predominant, forming more than 80 per cent of the total. Other diatoms, such as Chaetoceros convolutus, Nitzschia closterium, Nitz. seriata, Rhizosolenia hebetata f. semispina, Thalassiosira nordensiöldii, Thalassiothrix longissima, etc., are also found to be prevalent though to a less extent.

It is supposed from the fact of the richness in diatom population as well as of the nearly monotonous presence of fine species of Subgenus Hyalochaete that the waters in A region are much influenced by neritic elements. Low transparency and green colour of water have been reported in this region (Taguchi & Hirose, 1954).

It has been found that a warm water mass of low salinity moves westward along the southern side of the Aleutian Chain from far to the east and turns into the Bering
Sea passing through the channels between the Aleutian Islands (Barnes & Thompson, 1938; Sverdrup et al., 1942; Watanabe, 1954; Mishima & Nishizawa, 1955). The communities found in A region resemble to certain extent those of the neritic waters in the Bering Sea on the coast of Alaska Peninsula which fact has been reported by Aikawa (1938).

B Region

In the B region covering St. 11 and 12 the total population of diatoms is very small, less than 1000000 cells per 1 m³ of water. The leading forms are *Hyalochaete*, among which *Chaetoceros decipiens* prevails, as in A region but in less percentage. On the other hand, *Phaeoceros* including *Chaetoceros convolutus*, *Nitzschia seriata* and *Rhizosolenia hebetata f. semispina*, become relatively abundant. Thus the B region is characterized by the paucity of total diatom population, the occurrence of *Phaeoceros* and relative decrease in number of *Hyalochaete*. These facts will indicate that warm water of low salinity from A region here contacts and mingles with the cold oceanic water from D region; that is the B region is an intermediate mixing area between A and D regions.

C Region

The C region covers St. 2 and 4. Although the amount of total diatoms is very small as in B region, the simplicity of communities and the predominance of *Phaeoceros* clearly show that water of this region differs from neritic water. *Phaeoceros* including *Chaetoceros atlanticus*, *Ch. concavicornis*, *Ch. convolutus*, etc., of which the predominant species is *Ch. convolutus*, occupy more than 55 per cent of total number of diatoms, and in addition, typical cold water species, *Corethron hystrix* and *Denticula* sp. are present, while *Hyalochaete* is entirely absent. These facts indicate that the water in this region is purely oceanic. The water in this region has been reported to be very transparent, more than 20 metres of Secchi disc reading (Taguchi & Hirose, 1954). Although Taguchi & Hirose (1954) and also Mishima & Nishizawa (1955) have judged this region to be the continuation of Kuroshiwo extension, the diatom communities observed here suggest that the surface water of this region is more like to that of cold oceanic waters of D region.

D Region

The D region covering St. 13, 15, 19 and 21, contains diatom cells varying from 7500 to 800000 per 1 m³ of water, showing thus a more dense population than in B or C region. The communities are characterized by the predominance (60 per cent of total diatoms) of *Phaeoceros* mainly comprising *Chaetoceros atlanticus* and *Ch. convolutus*.
Together with these species, *Corethron hystrix*, *Denticula* sp. and *Rhizosolenia hebetata f. semispina* are also abundantly found here. These communities quite resemble those in C region far to the south-east, both reflecting the cold oceanic nature of the water. It has been suggested from the observations on the drift course of ice bergs that there might exist a surface current from the northern Bering Sea to near the western Aleutian Chain through the northeastern offing of Kamchatka (Hokkaido-Cho, 1906).

It is known that diatom communities in wide areas of the Bering Sea are represented by *Phaeo*-plankton associations (Aikawa, 1932, 1933, 1935, 1936a, 1936b, 1938, 1940; Kanno, 1936). The similarity of communities between D region and those in a large part of the Bering Sea and the suggestion of a surface current above mentioned will indicate that this region has a water mass very similar to that of the northern reaches of the Bering Sea. So far as the surface water is concerned the water mass in this region seems from the present data to be of different origin from that suggested by the results of the hydrographic studies of Mishima & Nishizawa (1955).

E Region

The E region covers St. 17, 18 and 23. The count of diatoms is relatively low, being only about 100000 cells per 1 m3 of water. *Nitzschia seriata* is prevalent and *Chaetoceros debilis* is present in considerable number, while *Phaeoceros* remarkably decrease in occurrence. These communities are typically represented at St. 17 and 23, indicating the neritic nature of the water to certain extent, while at St. 18 certain effects of cold oceanic water are proved by the presence of *Nitzschia seriata* and *Chaetoceros convolutus* in about equal number and also by the abundant occurrence of *Rhizosolenia hebetata f. semispina*.

Although both A and E regions are shown to be of neritic nature in respect to diatom communities, there is a wide difference between the two in the composition of communities, indicating that the water comes from different origins. The presence of *Nitzschia seriata* in considerable number in E region suggests that the water in this region is influenced by the coastal waters near Kamchatka, because this species has been reported to be the most prevalent one in the neritic waters on both the east and the west coasts of Kamchatka (Aikawa, loc. cit.; Tsuruta & Chiba, 1954).

F Region

The F region covers St. 16 and 24. The water is populated with diatoms in considerable density. The most predominant species is *Chaetoceros convolutus*. *Corethron hystrix* and *Rhizosolenia hebetata f. semispina* are also fairly numerous. Curiously *Nitzschia seriata* is hardly observed, numbering only about 4 per cent of the total diatoms. Thus the communities in this region show a close resemblance with those of
C and D region reflecting the presence of cold oceanic water, but not with those of E region. The limitation of areas investigated leaves unsolved the origin of the water in F region.

There are certain facts of disaccord in diatom associations in the present areas between the results of the preceding investigators and the present data. That is, (1) *Thalassiothrix, Coscinodiscus* and *Thalassiosira* have been reported to be the most representative forms in the Aleutian waters, but in the present investigations they appear only in small quantities; (2) *Chaetoceros atlanticus* is known to be the most dominant and wide spread species in these areas, but it is abundantly collected only at one station in the present cruise; (3) on the other hand, *Hyalochaeta* group are widely found in the present cruise, while the previous investigators have reported that the distribution of this species is certainly localized.

Summary

1. The diatoms are comparatively abundant, as a whole, in the upper layers of the areas investigated, occurring about one hundred million cells per 1 m3 of water in the maximum, about ten million in average and about several thousand in the minimum.
2. The leading species are *Chaetoceros atlanticus, Ch. convolutus, Ch. debilis, Ch. decipiens, Ch. radicans, Corethron hystrix, Denticula sp., Nitzschia seriata* and *Rhizosolenia hebetata f. semispina*.
3. From the characteristics of the diatom communities six regions are distinguishable in the investigated areas (fig. 1).
4. The A region is characterized by *Chaeto*-plankton associations, demonstrating the neritic nature of the water.
5. The B region presents mixed communities of *Chaeto*-plankton, *Phaeo*-plankton, *Rhizosolenia hebetata f. semispina* and *Nitzschia seriata*, indicating that the water is mixed with cold oceanic water to a certain extent.
6. The C region is also represented by *Phaeo*-plankton associations, indicating the purely cold and oceanic nature of the water.
7. The D region is also represented by *Phaeo*-plankton associations, indicating cold oceanic water like that in the C region.
8. The E region is mainly occupied by *Nitzschia seriata*, having similar communities to those of the neritic water off Kamchatka that have been reported by the preceding investigators.
9. The F region is indicated to be oceanic by diatom communities.

The authors are gratefully obliged to Dr. Y. Takenouti of the Hakodate Marine
Observatory for his kind criticism of the oceanographic considerations in the present
studies and to Mr. S. Nishizawa of the University for his kindness in giving many
valuable advices during the studies. Cordial thanks are due to Captain S. Mishima
and his crew aboard the "Oshoro Maru" for their courtesy in providing facilities for samplings
and also to Mr. N. Ogawa, a student of the University at that time, for his help in the
laborious work of making the samplings at sea.

Literature cited

——— (1935). On the quantitative analysis of the plankton association in the adjacent seas of
Wks. Jap. 3 (1), 1-199.
——— (1938). On the quantitative analysis of the plankton associations in the adjacent seas of
——— (1940). (On the plankton associations in the Bering Sea and the Okhotsk Sea). Kaiyô-

Hokkaido Univ. 5 (2), 123-136.

Barnes, C. A. & Thompson, T. G. (1938). Physical and chemical investigations in Bering Sea and
portions of the North Pacific Ocean. Univ. Wash., Publ. Oceanogr. 3 (2), 35-79.

(in Japanese).

Kanno, R. (1935). The distribution of plankton during summer in the South Okhotsk Sea and on the
6 (2), 84-124.

Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. (1942). The oceans; their physics, chemistry
and general biology. 1037p. N. Y. Prentice-Hall Inc.

Tsuruta, A. & Chiba, T. (1954). On the distribution of plankton at the fishing ground of salmon in
Watanabe, N. (1964). A report on oceanographical investigations in the salmon fishing grounds of the
Fig. 1. Approximate sampling positions (1—8, 10—13, 15—21, 23—24) and demarcation of regions (A—F) which are set according to the characteristics of diatom communities.

Fig. 2. Isotherms and isohalines at the surface (Mishima & Nishizawa, 1955)
Fig. 3. Horizontal distribution of total numbers of diatoms

Fig. 4. Occurrence of Chaetoceros–Hyalochaete in percentage of total diatoms in each haul
Fig. 5. Occurrence of *Chaetoceros-Phaeoceros* in percentage of total diatoms in each haul

Fig. 6. Occurrence of *Rhizosolenia hebetata f. semispina* in percentage of total diatoms in each haul
Fig. 7. Occurrence of *Nitzschia seriata* in percentage of total diatoms in each haul.
Appendix: Full data of diatom count.

Station	Location	Lat.	Long.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A																											
B																											

Notes:
- Table contains detailed data on diatom counts, including location, latitude, longitude, and specific species counts.
- Further analysis and interpretation may be required for specific applications.