| Title | ASSOCIATIONS OF PLANKTON DIATOMS AROUND JAPAN AS INVESTIGATED BY UNDERWAY SAMPLINGS ABOARD THE "OSHORO MARU" IN OCTOBER AND DECEMBER 1952 | |------------------|---| | Author(s) | KAROHJI, Kohei | | Citation | 北海道大學水産學部研究彙報, 7(4), 271-283 | | Issue Date | 1957-02 | | Doc URL | http://hdl.handle.net/2115/22975 | | Туре | bulletin (article) | | File Information | 7(4)_P271-283.pdf | # ASSOCIATIONS OF PLANKTON DIATOMS AROUND JAPAN AS INVESTIGATED BY UNDERWAY SAMPLINGS ABOARD THE "OSHORO MARU" IN OCTOBER AND DECEMBER 1952* Kohei KAROHJI ** Faculty of Fisheries, Hokkaido University #### I. Introduction The training ship "Oshoro Maru" of the Faculty of Fisheries, Hokkaido University, made a round-Japan cruise from October 14 to December 15, 1952. The purpose of this cruise was not only for the regular training of cadets in navigation and seamanship, but also for a preliminary trial of undersea observations at several localities along the coasts of Japan Islands by means of the "Kuroshio", Undersea Observation Chamber (Inoue et al., 1953) under supervision of Prof. N. Inoue, Faculty of Fisheries, Hokkaido University, and Dr. T. Sasaki, Scientific Research Institute, Tokyo. On this occasion Prof. Motoda who was on board the ship made collections of the surface plankton by underway samplings through the whole course of the cruise off the coasts of Honshu and Kyushu. These samples of plankton were put at the disposal of the present author. The plankton diatoms are dealt with in the present paper. In Japanese waters in recent years a group of planktologists in Marine Observatories, Ministry of Transportation, has contributed to understanding the nature of water masses by observing the distribution of plankton diatoms. With similar intention the present investigations were originally undertaken to observe how the diatom associations vary with the localities around the coasts of Japan within the comparatively short period of one cruise. There are such ocean currents around Japan that were traversed in the present cruise as the Tsushima Current off Japan Sea coasts, the Kuroshiwo (Japan Current) and Oyashiwo (Kurile Current) off the Pacific coasts. The particular interest may be aroused by the manner in which varying hydrographic conditions resulting from geographical and climatic effects during continuous flow of such currents, either southwards, or northwards, are reflected in the change of diatom associations. However, the track of the ship in the present cruise did not always follow a particular ocean current; the track was located very close to the coast, passing through the purely coastal waters, in certain areas, while in other areas it was shifted comparatively to the offing, touching with the prevailing ocean current. Accordingly, the findings herewith reported render possible some considerations such as above mentioned at some places, but in most descriptions are concerned with merely the findings in respect to ^{*}昭和27-28度文部省科学研究費(元田)一部使用 ^{**}唐牛公平 characteristics in diatom associations in various localities at that time wheresoever inshore or offshore waters. Before going further, the author wishes to express his sincere gratitude to Prof. S. Motoda under whose guidance he initiated his scientific research work. Cordial thanks are also due to from the author to Dr. T. Kawamura and Mr. M. Anraku for their many valuable advices given throughout the laboratory work. Kind help extended by Captain T. Fujii and his crew and cadets, and Prof. N. Inoue and Dr. T. Sasaki and their scientific staff aboard the ship during that cruise is gratefully appreciated. ## II. Method, Location and Date of Samplings The Handy Underway Plankton Catcher, model I, (Motoda, 1954) was employed in sampling the plankton materials. To sample the microplankton, composed mainly of phytoplankton, while underway, a narrow conical net of fine mesh bolting silk, XX 13, i. e., 129 meshes per linear inch, having approximately 0.11 mm mesh opening, is inserted into the catcher. As the catcher, model I, is very narrow, 5 cm in diameter of cylindrical case, and as it has a tapering head piece, it is easy to handle at high speed tow. The instrument was towed at the end of twenty-five meters of cotton flag line at a speed of about 9 knots for 30 minutes or less; duration of tow depended upon the circumstances. Tows were made by cadets or sailors at intervals of four hours while the ship was sailing. The net inside was often clogged with sticky materials; on such an occasion it was washed to clean it out. The instrument was not equipped with any sinking vane, but it was supported by a heavy head piece to run through the water at about a half meter or so below the sea surface. There was no equipment such as current meter to measure the volume of water filtered by the net inside or to measure the exact distance of tow, so that the samples obtained are not available for accurately quantitative studies, but may be used for rough estimation of relative abundance of population. Of all of the samples the number of cells, often composing colonies, were counted for each species so far as identified. Approximate location of the stations where collections were made is illustrated in Fig. 1, and more exact data on the position of the stations, date and hour of collections and temperature of the surface water at that time are given in Table 1. Total sum of the sample vials amounted to sixty-six, but that from St. 57 was lost and those from St. 35 and St. 36 did not contain any organism, but only water. These are omitted from the data. ## III. Results of Observations For the sake of convenience in arrangement descriptions will be made following the track of the ship in chronological order from departure, by grouping some of the stations on Fig. 1. Sketch map of Japan Islands showing track of the cruise and stations of sampling the basis of neighbouring geographical situation and of apparently common associations of diatom population. Full data are given in Table 3 and summarized results in Table 2. Number of cells recorded in the text and table are only concerned with the number obtained by a tow of definite duration; all data are converted for thirty minutes' tow. It is natural that these numbers are far less than the actual number of cells which must be present in the volume of water that has been passed through the mouth opening of the instrument for such duration of tow. The filtration coefficient in such underway samplings will be much less than found in case of the use of other methods. ## (1) St. 1 and 2 (Tsugaru Straits) Cell number of total diatoms is from 3,900 (St. 1) to 25,200 (St. 2), averaging 14,550. Total species number is thirty-five. The most prevalent form is *Chaetoceros coarctatus*. This species has been known in this region as one of the representatives of tropical diatoms which appear with drift of northwards Tsushima Current from southern seas in autumn (Asamushi Marine Biological Station, 1946-49; Kokubo, 1952; Hakodate Marine Observatory, 1954). Next comes *Chaetoceros didymus* occupying about 20 % of total cells. It is a warm temperate species. The prevalence of above species indicates the inflow of a tributary current of the Tsushima Current into Tsugaru Straits in this season. #### (2) St. 3-13 (Japan Sea coast of northern Honshu) The course of the ship is located adjacent to the coast. Total cell number is counted as between 4,800 and 190,000 and 72,000 in average. Species number is eighty-four. The leading species are Chaetoceros coarctatus, Ch. decipiens, Ch. lorenzianus, Ch. didymus, Ch. distans, Climacodium biconcavum, C. Frauenfeldianûm and Thalassionema nitzschioides, though some of them are absent at some stations. Chaetoceros coarctatus has never occupied more than 20 % of total cells. Hyalochaete occupied about 50 % of total diatoms, and warm current species are found more or less commonly in the localities from Noto Peninsula to Niigata, agreeing with previous reports (Aikawa, 1936; Kawarada, 1953; Shimomura, 1954a). There are large concentrations of diatom population at St. 9 (188,400 cells) and St. 13 (179,400 cells), in which Hyalochaete and Thalassionema nitzschioides are dominant. ## (3) St. 14 and 15 (Off Wakasa Bay) These stations are located in the offing. Total cell number ranged from 7,800 (St. 14) to 32,800 (St. 15), with 20,300 in average. Number of species is twenty-one. Generally diatom population is poor both in total cell number and in species number. Chaetoceros corretatus is the leading species, occupying 76 % of total diatom cells. It is followed by Climacodium and Rhizosolenia. The prevalence of tropical and subtropical oceanic species as well as the poverty in total cells indicates that the ship has passed through the water of the Tsushima Current. Shimomura (1954b) reported that the Tsushima Current off Wakasa Bay is characterized by decrease in number of plankton, particularly of phytoplankton; the more one goes to the northeast in the path of this current, the less number of plankton he finds. ## (4) St. 16-21 (Japan Sea coast of southern Honshu) Total cell number lies between 17,000 and 427,500, with 176,700 in average. Species number is sixty-seven. Hyalochaete occupies more than 50 % of total diatoms. Chaetoceros lorenzianus and Ch. didymus are dominant through all stations; Ch. compressus is dominant at St. 17-19, and Ch. messanensis, Ch. distans, and Ch. radicans are at St. 19-21. Aikawa (1936) reported that Hyalochaete occupies more than 50 % of total phytoplankton on southern Japan Sea coast of Honshu being followed by Nitzschia seriata and Bacteriastrum in autumn. There are high concentrations of diatom population at St. 16 (362,000 cells) and St. 19 (408,000 cells), in which Hyalochaete and Thalassionema nitzschioides are dominant. St. 16 is located
near the coast of the oki Islands where the abundance of diatoms has been induced possibly by the upwelling of underwater near the islands, though physical proof is not obtained. According to Aikawa (1934), the vicinity of the oki Islands is a high productive area, and also to Shimomura (1954b), the phytoplankton is very abundant from the north of the oki Islands to the offing of Wakasa Bay. Shimomura suggested that the abundance of phytoplankton off Wakasa Bay in summer is due to the upwelling water in that region. Table 1. Record of collections | No. | | Date | | Hour | Posi | | Locality | Temperature of | Remark | |---|------------------------------|--------------------|----------------------------|---|---|--|---|--------------------------------------|------------| | stat | ion | | | | Lat. | Long. | Locality | surface water (°(|) Kemark | | St. | 1
2
3
4
5 | October " " " | 14
//
15
// | 17:00-17:30
20:15-20:45
00:00-00:30
04:00-04:30
08:00-08:30 | 41-08-00 N.
40-38-00 N.
40-15-00 N. | | Tsugaru Straits Off Cape Gongensaki Off Henashi Off Noshiro Off Ojika Peninsula | 18.5
21.5
19.0
21.5
20.5 | | | * | 6
7
8
9
10 | #
#
| " " 1 " | 11:50-12:20
16:00-16:30
19:45-20:15
23:45-00:15
07:45-08:00 | 38-47-30 N.
38-12-30 N.
38-12-30 N.
37-50-00 N.
37-09-05 N. | 139-37-00 E.
139-19-00 E.
139-12-30 E.
138-44-00 E.
137-56-00 E. | Off Sakata
Off Senami
"
Off Niigata
Off Naoetsu | 21.0
22.0
22.2
27.5
23.0 | | | #
#
#
| 11
12
13
14
15 | #
#
| ?
19
%
20 | 12:15- ?
?
19:45-20:15
23:45-00:15
03:45-C4:15 | 36-54-08 N.
37-36-00 N.
37-19-00 N.
37-00-00 N.
36-39-07 N. | 137-19-42 E.
137-18-00 E.
136-28-05 E.
135-30-00 E.
135-01-05 E. | Toyama Bay
Off Noto Peninsula
"Off Tsuruga | 22.5
22.0
19.0
20.0 | | | 7 7 7 7 | 16
17
18
19
20 | #
#
|
#
| 07:45-08:00
11:45-12:15
15:45-16:15
19:45-20:15
23:45-00:15 | 36-18-01 N.
35-51-05 N.
35-35-02 N.
35-13-05 N.
34-44-00 N. | 134-18-09 E.
133-51-05 E.
132-55-08 E.
132-10-00 E.
131-22-00 E. | Off Tottori // Off Mastue Off Hamada Off Senzaki | 20.4
22.4
20.3
22.1
20.4 | | | 7 7 7 7 7 F | 21
22
23
24
25 | #
#
| 21
27
"
"
28 | 03:45-04:15
23:45-00:15
03:45-04:15
07:45-08:15
16:15-16:45 | 34-28-00 N.
34-08-04 N.
34-30-00 N.
34-44-00 N.
34-18-05 N. | 130-52-02 E.
130-38-00 E.
130-02-00 E.
129-31-07 E.
129-26-05 E. | Off Kokura Tsushima Straits Northeast coast of Tsushima East coast of Tsushima | 22.2
22.0
19.8
22.2
21.8 | | | 7 7 7 7 7 7 | 26
27
28
29
30 N | " " November | 29
//
30
//
6 | 15:30-16:00
19:45-20:15
03:45-04:15
15:45-16:15
10:30-11:00 | 34-04-14 N.
33-53-05 N.
33-20-03 N.
32-48-06 N.
32-42-00 N. | 129-33-00 E.
129-31-00 E.
129-17-08 E.
129-35-02 E.
130-01-00 E. | Tsushima Straits Off Hirato Off Nagasaki Tachibana Bay | 21.8
23.0
21.0
20.4 | | | #
#
| 31
32
33
34
35 | #
#
| 7
9
15
// | 20:15-20:30
23:45-00:15
11:45-12:15
15:45-16:15
19:45-20:15 | 32-29-02 N.
31-15-08 N.
31-10-01 N.
31-06-00 N.
31-27-00 N. | 129-42-02 E.
130-07-01 E.
130-42-01 E.
130-58-00 E.
131-26-08 E. | Off Cape-Nomo Off Makurasaki Kagoshima Bay Ohsumi Straits Off Aburatsu | 17.0
20.4
22.5
21.9
23.0 | Empty | | #
#
| 36
37
38
39
40 | " | 16
"
"
21 | 23:45-00:15
03:45-04:15
11:45-12:15
07:45-08:15
16:30-17:70 | 31-59-02 N.
32-29-01 N.
33-33-02 N.
34-20-06 N.
34-37-00 N. | 131-41-08 E.
131-52-06 E.
132-12-00 E.
133-43-00 E.
135-10-04 E. | Off Miyazaki
Off Nobeoka
Iyo-Nada
Bingo-Nada
Izumi-Nada | 23.0
23.0
21.0
19.8
19.6 | Empty | | #
| 41
42
43
44
45 | " | 25
1/
26
1/
29 | 11:45-12:15
19:45-20:15
23:45-00:15
03:45-04:15
16:00-16:30 | 34-13-01 N.
34-02-01 N.
33-25-05 N.
33-13-06 N.
33-16-06 N. | 134-55-09 E.
134-48-08 E.
134-28-00 E.
133-57-08 E.
133-19-00 E. | Off Wakayama
Kii Channel
East of Cape Muroto
Off Cape Muroto
Tosa Bay | 19.5
19.4
21.4
22.5
22.4 | | | # | 46
47
48
49
50 I | "
"
December | #
30
#
#
? | 19:45-20:00
23:45-00:15
07:45-08:15
11:45-12:15
07:45-08:15 | 33-12-04 N.
33-14-02 N.
33-33-02 N.
34-05-05 N. | 134-00-00 E.
134-38-00 E.
135-59-06 E.
136-17-00 E.
136-26-01 E. | West of Cape Muroto
Off Kii Channel
Off Cape Shionomisaki
Off Owase | 22.5
21.4
22.1
19.0
21.0 | | | n
n | 51
52
53
54
55 | #
#
| 3
4
8
13 | 19:45-20:15
23:45-00:15
03:45-08:15
07:45-08:15
15:45-16:15 | 34-29-00 N.
34-33-01 N.
34-38-02 N.
35-06-08 N.
35-13-06 N. | 137-33-02 E.
138-24-00 E.
139-05-05 E.
139-36-08 E.
140-32-03 E. | Enshu-Nada
Off Omaezaki
Off Shimoda
Sagami Bay
Off Katsuura | 19.8
19.0
16.6
19.1
20.0 | | | | 5 6
5 7 | , | " | 19:45-20:15 | 35-48-05 N. | 140-58-05 E. | Off Cape Inubosaki | 17.5 | No samulin | | 7 ! | 58
59
60 | " | 14
14 | 23:45-00:15
03:45-04:15
07:45-08:15 | 36-26-00 N.
37-03-07 N.
37-40-05 N. | 141-15-00 E.
141-12-05 E.
141-23-05 E. | Off Mito
Off Cape Shioyasaki
Off Haranomachi | 17.1
15.5
14.2 | No samplin | | 7 (
7 (| 61
62
63
64
65 | #
#
| " " 15 " | 11:45-12:15
15:45-16:15
19:45-20:15
23:45-00:15
03:45-04:15 | 38-16-01 N.
38-52-00 N.
39-27-05 N.
40-20-00 N.
40-39-02 N. | 141-39-03 E.
141-52-06 E.
142- E.
142-08-02 E.
142-06-00 E. | Off Kinkazan Off Kesennuma Off Kamaishi Off Kuji Off Hachinohe | 12.5
11.8
12.0
12.3
12.0 | | | , (| 66 | , | # | 07:45-08:15 | 41-19-02 N. | 141-31-07 E. | Off Cape Shiriyasaki | 14.0 | | #### (5) St. 22 (Genkai-Nada) Total cell number is very large, amounting to 1,217,400, and species number is thirty-nine. *Chaetoceros radicans* is the most prevalent species, occupying 34 % of total cells. *Ch. lorenzianus*, *Ch. compressus*, *Ch. messanensis*, *Ch. curvisetus* and *Lauderia borealis* are also important constituents of the take. ## (6) St. 23 27 (Tsushima Straits) Total cell number is between 162,000 and 273,000 per haul in the straits, while it is between 450,000 and 1,445,000 on the coast of Tsushima Island, averaging 513,000. Species number is sixty eight. Chartoceros decipiens, Ch. lorenzianus, Ch. didymus, Ch. compressus, Ch. curvisetus, Ch. radicans and Ch. messanensis are dominant, being followed by Ch. atlanticus v. neapolitana, Ch. rostratus and Lauderia borealis. Eucampia zoodiacus is reported to be prevalent in the straits in the fourth quarter of the year (Kokubo, 1931-40, 1937), but in the present observations this species is not found in the straits, but in the Hirato Channel. #### (7) St. 28 and 29 (Hirato Channel) Total cell number is 127,200 at St. 29 and 457,800 at St. 28, averaging 292,500. Species number is fifty-four. The leading species is *Eucampia zoodiacus*, being followed by *Chaetoceros decipiens* and *Ch. lorenzianus*. #### (8) St. 30 and 31 (Amakusa-Nada) Diatoms are abundant both in total cell number and species number. Total cell number is 792,000 at St. 30 and 5,064,000 at St. 31. The latter value is the largest one among the data obtained from all stations in the present observations. Average of cell number is 2,928,000. Species number is forty-one. Skeletonema costatum (21 %) and Asterionella japoniea (19 %) are dominant at St. 31, while Chaetoceros pseudocruvisetus (34 %) and Melosira nummuloides (19 %) are dominant at St. 30. Next to the above four species, Ch. curvisetus and Eucampia zoodiacus are important constituents. The complicated coastal currents which might be associated with the topographic contours are possibly responsible for the high production of diatoms (cf. Aikawa, 1934). #### (9) St. 32 (Southwest coast cf Kyushu) Total cell number is 2,742,000, and species number is fifty-seven. The most prevalent species is *Chaetoceros messanensis*, being followed by *Ch. compressus*, *Ch. pseudocruvisetus*, *Ch. didymus*, *Ch. radicans*, *Lauderia borealis*, *Bacteriastrum comosum* and *Rhizosolenia Stolterfothii*. ## (10) St. 33 (Kagoshima Bay) The station is located at the entrance of Kagoshima Bay. Total cell number is as large as 3,367,200, and species number is fifty two. The components of diatoms are fairly different from those at other localities of west coast of Kyushu. *Thalassionema nitzschiodes* and *Chaetoceros pseudocruvisetus* are dominant, being followed by *Ch. compressus*, *Nitzschia seriata*, *Biddulphia sinensis*, *Hemiaulus sinensis*, *H. indica*, and *Climacodium*. *Planktoniella sol* and *Gossleriella tropica* are also found in a certain abundance. The occurrence of tropical or warm-water species is notable; the influence of the Kuroshiwo Current is apparently indicated in diatom associations at the entrance of this bay. ## (11) St. 34 and 37 (Hyuga-Nada) Diatoms are rather poor both in total cell number and in species number. Total cell number is 18,300 at St. 34 and only 2,940 at St. 37, averaging two stations 10,620 cells. Species number is twenty-nine. The leading species is *Thalassionema nitzschioides*, occupying 50 % at St. 34 and
38 % at St. 37. *Climacodium biconcavum* (18.3%) and *Melosira nummuloides* (18 %) are also important. This region is supposed to be under the influence of the Kuroshiwo Current, as is reflected in high temperature and in the prevalence of tropical diatoms as well. ## (12) St. 38 (Iyo-Nada) This station is located in the Inland Sea (Seto-Naikai). The diatom associations are distinct from those of Hyuga-Nada. Total cell number is 34,110 and species number is more than nine. *Coscinodiscus* is the most prevalent group, occupying 86 % of total cells, while *Eucampia zoodiacus* and *Hemidiscus cuneiformis* follow. Kokubo (1931-40) and Maekawa et al. (1953) reported the predominance of *Coscinodiscus* in the more western part in the Inland Sea in winter. #### (13) St. 39 (Bingo-Nada) Total cell number is 262,800 and species number is more than nineteen. Coscinodiscus is the most prevalent group, occupying 52 % of the total cells. In addition, the following diatoms are important constituents; Hemidiscus cuneiformis, Stephanopyxis palmeriana, Skeletonema costatum, Lauderia borealis, Rhizosolenia Bergonii, Bacteriastrum hyalinum, B. mediterraneum, Ch. decipiens, Hemiaulus indica and Pleurosigma spp. Kokubo (1934-40) reported the predominance of Coscinodiscus at Ohcho, Hiroshima Pref. near the present station, in early winter. ## (14) St. 40 (Osaka Bay) Total cell number is 180,000 and species number is more than twenty-four. Thalassionema nitzschioides, Thalassiothrix Frauenfeldii, and Coscinodiscus are dominant. The first two forms together occupy 40 %, whilst Ch. lorenzianus, Ch. pseudocurvisetus, Eucampia zoodiacus, Ditylum Brightwellii and Rhizosolenia alata are following. ## (15) St. 41-43 (Kii Channel) Total cell number is from 18,900 (St. 41) to 101,900 (St. 43), exceptionally rich, as large as 2,970,000 cells at St.42, and 1,017,000 in average. Species number is thirty-six. Thalassionema nitzschioides, Thalassiothrix Frauenfeldii, and Coscinodiscus are prevalent at St. 41 and 43; altogether the first two forms occupy above 37 %. Chaetoceros pseudocurvisetus is also prevalent at St. 42, occupying 67 % of the total cells. This species was reported to be a remarkable species in the inner part of Osaka Bay in December, 1952 (Ueno, 1953). The abundant diatoms at St. 42 may be associated with supply of rich nutrients from Osaka Bay which is transported to the region of St. 42 by tidal currents. ## (16) St. 44 and 46 (Off Cape Muroto) Total cell number is from 59,000 (St. 46) to 200,280 (St. 44) and 129,640 in average. Species number is forty-seven. The dominant forms are *Ch. pseudocurvisetus*, *Ch. decipiens*, *Coscinodiscus*, *Bacteriastrum*, *Thalassionema nitzschioides*, *Thalassiothrix Frauenfeldii* and *Skeletonema costatum*. The diatom associations are more or less influenced by Kuroshiwo water. #### (17) St. 45 (Tosa Bay) Total cell number is 135,240 and species number is twenty-five. Thalassionema nitzschioides (25 %), Thalassiothrix Frauenfeldii (17.5 %) and Synedra spp. (20 %) are dominant forms. Chaetoceros pseudocurvisetus, Ch. didymus, Ch. atlanticus v. neapolitana and Skeletonema costatum are also important constituents. Among these forms warm oceanic species number six and 5 % in cell number of total haul; neritic diatoms are rather prevalent, thus this sample shows neritic characters to a certain extent rather than the character of oceanic Kuroshiwo water. #### (18) St. 47 (Off Kii Channel) Diatoms are poor both in total cell number and in species number; total cell number is 8,040 and species number is nineteen. Coscinodiscus, Thalassionema nitzschioides, Chaetoceros lorenzianus, Ch. decipiens, and Ch. coarctatus are main constituents. Planktoniella sol and Gossleriella tropica are also found. It is indicated that diatom population is fairly influenced by the Kuroshiwo Current. Characters of Kuroshiwo water as observed by diatom associations are more emphasized here than off Cape Muroto, because warm oceanic or tropical species are present to the number of 11 and occupy about 27.7 % of total cells in this station, while similar species off Cape Muroto number 12, but occupy only 5 % of total cell number. ## (19) St. 48 50 (Kumano-Nada) Diatoms are comparatively abundant in respect both to total cell number and to species number. Total cell number is between 27,500 and 333,000, averaging 224,600. Species number is fifty-one. The leading species are *Chaetoceros pseudocurvisetus* and *Skeletonema costatum*. The former species occupies above 35 % (St. 48 and 50), and the latter does 44 % (St. 49). In addition, *Ch. decipiens*, *Ch. didymus*, *Thalassionema nitzschioides* and *Nitzschia seriata* are also important forms. Marumo (1954a) reported that diatom communities were composed of *Hyalochaete*, *Rhizosolenia* and *Nitzschia seriata* in the south of Shiono-Misaki. In the present data the diatom associations off Shiono-Misaki are mainly composed of *Hyalochaete*, but show a difference from the data of Marumo (1954a) in other constituents of less importance. #### (20) St. 51-57 (From Enshu-Nada to Kashima-Nada) Total cell number is between 69,000 and 1,276,200, excluding the datum of extremely poor haul at St. 55 (2,850 cells). Average cell number is 369,000. Species number is seventy-five. The leading species are *Chaetoceros decipiens* (St. 52,53 and 56), Skeletonema costatum (St. 51 and 54) and Thalassionema nitzschioides (St. 55). In addition, Ch. pseudocurvisetus, Ch. messanensis and Ch. didymus are important. According to the observations of preceding workers (Marumo, 1951; Kawarada, 1954; Asaoka, 1955), Skeletonema costatum is more abundant near the Miura Channel than at other localities of Sagami Bay in winter when the water of Tokyo Bay, less haline than that in Sagami Bay, flows out into the present region. A large concentration of diatoms is found at St. 52. The major constituents of this concentration are Chaetoceros decipiens, Ch. lorenzianus, Ch. didymus, Ch. messanensis, Ch. affinis, Ch. compressus, Ch. socialis, Skeletonema costatum and Thalassionema nitzschioides. Outflow of land drainage from the Ohi River might be suggested to be responsible for the local production of diatoms at this region. Skeletonema costatum is very much increased at St. 51 and 54-55, indicating the spread of coastal water to these stations, but there is an indication of some influence of Kuroshiwo water at St. 55 by the occurrence of Climacodium biconcavum (8.6 %). On the other hand, in the region extending from St. 52 to 53 the diatom associations are represented mainly by Chaetoceros decipiens together with warm-water-preferring *Hyalochaete*, as was reported by Marumo (1955) off Sanriku District, in spite of the fact that surface temperature is lower than at other stations. ## (21) St. 58-60 (Pacific coast of northern Honshu) Diatoms are considerably poor in total cell number, except the abundant population at St. 60. Total cell number is 6,060 at St. 58, below 200 at St. 59 and 143,000 at St. 60, averaging 50,000. Species number is thirty-five. In the localities of poor diatoms, Thalassionema nitzschioides, Thalassiosira sp. and Rhizosolenia Stolterfothii are main constituents. At. St. 60 Chaetoceros Eibenii is the most prevalent species, occupying more than a half of the diatom population, being followed by Ch. coarctatus, Ch. pseudocurvisetus, Thalassiosira sp., Lauderia borealis and Ditylum Brightwellii. Surface temperature falls northwards from 17.1°C at St. 58 to 14.2°C at St. 60 and 15.6°C in average. This temperature is similar to that of the area of the mixing of Kuroshiwo and Oyashiwo waters as reported by Shimomura (1953) in December. From diatom associations this region is considered to be a transitional region from warm Kuroshiwo water to the mixing area at the north of Kinkazan. ## (22) St. 61-66 (Pacific coast of more northern Honshu) Diatoms are poor in total cell number which ranges between 12,500 and 33,000, averaging 20,700. Species number is forty-one. Predominant species are Coscinodiscus granii, C. wailesii, Thalassionema nitzschioides, and Chaetoceros affinis. In addition, Biddulphia sinensis, Hemidiscus cuneiformis, Stephanopyxis palmeriana are also important constituents. Chaetoceros, Thalassionema nitzschioides and Coscinodiscus spp. have been reported as important components of diatoms in the Oyashiwo water in this region (Marumo, 1954b, 1955; Shimomura, 1953). Chaetoceros socialis and Ch. debilis are also important species to which is owed the high abundance of diatoms (Shimomura, 1953). In the present observations, Chaetoceros occupies from 13.3 to 37 % of total cells, increasing northwards. Associated species are commonly Chaetoceros affinis, Ch. decipiens and Ch. didymus, and in some localities Ch. socialis, Ch. debilis, and Ch. convolutus. However, Chaetoceros species which belong either to Phaeoceros or Hyalochaete, that have been reported as characteristic indicators of the Ovashiwo Current are rare in the present data. On the contrary, Coscinodiscus decreases in number northwards from 42.2 to 3 %. Thalassionema nitzschioides is remarkably dominant at St. 66, occupying more than a half of the diatom population. It is noticed that at St. 63 Hemidiscus cuneiformis, Biddulphia sineisis and Stephanopyxis palmeriana occupy a considerably higher portion of the population than in other localities, and also Corethron hystrix (11.5 %), Ditylum Brightwellii and Thalassiosira sp. occur rather often. Tamura (1951) reported similar diatom associations to the present data from Tsugaru Straits in January, 1951. In the present cruise the stations are located close to the coast, so that diatom associations may have been influenced by neritic waters, and, in addition, the influence of southwards warm Tsugaru Current (a tributary of Tsushima Current) from Tsugaru Straits flowing in the comparatively inshore area and that of northwards cold Oyashiwo Current in the offing are mixed to a
certain extent, exerting influence upon the associations of diatoms in the present stations. #### IV. Discussion It is still a perplexed matter to decide what plankton forms should be selected for indicating what nature of water, though accumulated works have contributed to generalize the ecological situation of the various forms in relation to the environmental characteristics, especially to the temperature of habitat, and in less completeness to the salinity. Ocean currents may be evidently traced by the existence of most intolerant oceanic species which are transported by the current from their original propagative area. However, strictly intolerant forms, if they occur, are usually present in very small number out of their birth place; in most cases their presence or absence is only recorded, and the difficulty in accurate numerical expression is often involved. On the other hand, there is no evidence, in phytoplanktons, that they do not reproduce in favorable circumstances where-scever during their drift, so that even though a large concentration of such forms is found in some locality out of their original area, it does not necessarily indicate the prevalence of the current itself in this locality. It is known that the characterization of plankton associations obtained from one place cannot be adopted for other localities; a species associating with a particular nature of water does not always do so in water of similar nature in other regions. It is natural that, for instance, some of the neritic species which widely inhabit the tropics or subtropics might be drifted with the current toward a high latitude with resistance to the changing environments; thus they would become apparent indicators of oceanic warm current in high latitude. Chaetoceros lorenzianus and Ch. distans are such forms which are considered to be indicators of the Tsushima Current in northern Japan. Such regionality of plankton characteristics forces planktologists to make more efforts in charting the characteristic associations at various localities in various seasons in as great detail as possible. The greatest usefulness of plankton indication of water masses would be involved in the ascertainment of mixing rate of two or more water masses of different nature, e. g., oceanic and neritic water, or warm and cold current, with an accuracy that physical, or even chemical, determination would not be able to manifest. Many preceding workers have presented accounts of diatom associations on the coast and in the offing of Japan, discussing their characteristics which apparently associate with the water masses in which they are distributed. However, differences in times and positions of samplings from the present observations, though in some cases to a very slight extent, make it difficult to make reference to the earlier reports or comparison with them. So far as possible to summarize the present data the knowledge accumulated by the many preceding authors is adopted for classifying the plankton forms into warm or cold and oceanic or neritic preference, though some should be valued as tentative decisions. In the present observations, the track of the ship along the Japan Sea coast of Honshu was populated by such tropical or subtropical species as Chaetoceros coarctatus, Climacodium Frauenfeldianum and C. beconcavum. Even in the region near the coast, tropical diatoms such as Chaetoceros diversus, Ch. paradoxum and Ch. messanensis were prevalent. Along the track on the coast of Kyushu neritic species, viz., Skeletonema costatum, Asterionella japonica and Eucampia zoodiacus were most prevalent forms among the population. Thalassionema nitzschioides was widely distributed covering the area from Osaka Bay to Kii Channel. Skeletonema costatum which is known as a wide spread species and as making remarkable increase in certain neritic conditions occurred in large number on the Pacific coast from Kii Peninsula to Boso Peninsula. Climacodium biconcavum was found frequently in certain areas of the Pacific coast reflecting the presence of Kuroshiwo water. In such area the total cells were comparatively decreased. The area in which predominance of Chaetoceros pseudocurvisetus was found was also considered to be bathed with Kuroshiwo water. In the coastal region of the Pacific side occurrence of Planktoniella sol, Cossleriella tropica, Guinardia flaccida, Hemiaulus indica. Chaetoceros coarctatus and Ch. atlanticus v. neapolitana, though in comparatively small number, indicated that there the water was mixed with Kuroshiwo water to a certain extent. The diatom population off Cape Omae-Zaki (St. 52) was composed of Chaetoceros decipiens and warm-water-preferring Hyalochaete. This probably reflects the effects of lowering temperature. On the northern coast of Honshu on the Pacific side the track of the ship covered a region of coastal water embodying the Chaeto-plankton, but the flow of Oyashiwo is reflected in the occurrence of cold-water-preferring Hyalochaete, such as Chaetoceros decipiens, Ch. debilis, Ch. socialis, Ch. convolutus and Corethron hystrix. The prevalence of Chaetoceros Eibenii at St. 60 suggested that there is mixing of the Oyashiwo water with the Kuroshiwo water. #### V. Summary The materials of diatoms were collected by underway samplings aboard the "Oshoro Maru" during her round-Japan cruise from October 14 to December 15, 1952. Diatom associations in neritic region along Japan Sea coast are mainly composed of Chaeto-plankton; warm-water Hyalochaete, Rhizosolenia and Thalassionema nitzschioides, while in the offings Chaetoceros coarctatus and Climacodium are prevalent, though the above mentioned neritic forms are also included. On the northwest coast of Kyushu, *Eucampia zoodiacus* and *Hyalochaete* are predominant, and on the west coast, such neritic diatoms as *Skeletonema costatum*, *Asterionella japonica* and warm-water *Hyalochaete* are abundantly collected. In Kagoshima Bay on the south coast of Kyushu, warm-water *Hyalochaete* and *Thalassionema* are dominant, and other forms even more preferring warm-water are found, indicating the direct influence of the Kuroshiwo Current. Diatom associations in the Inland Sea are different from those in other localities; Coscinodiscus is prevalent, occupying half or more of total diatom population. Thalassionema nitzschioides, Thalassiothrix Frauenfeldii and Coscinodiscus are dominant in the area from Osaka Bay to Kii Channel; in addition, Chaetoceros pseudocurvisetus is abundantly distributed off Wakayama. From off Cape Muroto to Tosa Bay, the above forms also occurred prevalently, and in addition, several other warm-water diatoms are found together, indicating the influence of Kuroshiwo water. Characteristic Kuroshiwo diatoms, e. g., warm-water *Hyalochaete* and other several tropical forms, prevail in the offing of Kii Channel, but *Chaetoceros decipiens* is also there abundantly included. Skeletonema costatum and Ch. pseudocurvisetus and other neritic diatoms are dominant on the east coast of the Kii Peninsula. Either Skeletonema costatum or Hyalochaete and Ch. decipiens are leading forms in the area extending from Enshu-Nada to Kashima-Nada; the former may be the indicator species of prevalent coastal water. On the Pacific coast of northern Honshu, *Chaetoceros Eibenii* and other *Chaetoceros* spp. are dominant to the south of Kinkazan, but in other localities, diatoms are extremely poor, represented by such forms as *Thalassionema nitzschioides*, *Rhizosolenia* and *Thalassiosira*. On the more northern coast of Honshu, Coscinodiscus, Thalassionema, Chaetoceros affinis, and Ch. decipiens are dominant. Only a few cold species of Hyalochaete and Coscinodiscus are collected there. #### Literature cited - Aikawa. H. (1934). On the quantitative analyses of plankton associations in the seas surrounding Japan II. *Jour. Imp. Fish. Sta.* (5), 236-272. (in Japanese). - (1936). A quantitative analysis of the plankton associations in the adjacent seas of Japan IV. Ibid. (7), 153-182. (in Japanese). - Asamushi Marine Biological Station (1946-49). Bulletin of the Marine Biological Station of Asamushi. (in Japanese). - Asaoka, O. (1955). On the variations of the conditions of plankton diatoms and the sea at a pier, Jogashima Island, in the period from March 1952 to May 1953. Jour. Oceanogr. Soc. Japan 11 Table 2. Relative abundance of leading species occupying more than 10 percent in cell number for total population of diatoms | Station | 1 2 3 | 4 5 | 6 7 | ' 8 9 | 10 1 | 1 12 1 | 3 14 1 | 5 16 1 | 7 18 19 | 9 20 21 | 22 25 | 3 24 2 | 5 26 2 | 27 28 2 | 29 30 3 | 1 32 | 33 34 | 37 38 | 39 40 |) 41 42 | 2 43 4 | 4 45 | 46 47 | 48 49 | 50 51 | 52 53 | 54 55 5 | 56 58 | 59 60 | 61 62 (| 63 64 65 (| |---|-------------|---------------|---------|----------|--------------|-------------|------------|---------|----------------------|---------|---------|--------|----------|------------|-----------|-------|---------|---------|---------|---------|---------------------------------------|---------|---------------------------------------|-----------|---------|-----------|------------|--------|-----------|--
--| | Asterionella japonica
Bacteriastrum varians
B, elongatum
B, comosum
Biddulphia sinensis | | | | | | | | 10 | Ó | | | | | | 1 | 9 | | | | | | | 10
24 | | | | | 15 | 29 | : | 11 | | Chaetoceros Eibenii | | | | | - | | | | | | | | | | | | | | | , | | | | | | | | | 48 | | | | C. coarctatus C. decipiens C. lorenzianus C. compressus | 57 33 | 13
10
9 | | 12
10 |) 20 2
14 | 20
9 9 1 | 94 59
4 | | 2
2 12 1 1 | 10
1 | 10 | 0 18 | 13 | 14 1
13 | 13
12 | | | | | | | | 10 18 | | 14 | 21 23 | 2 | 23 | 14 | | | | C. didymus
C. affinis | 12 23 21 | 14 | 22 17 | 10 19 | 12 1 | 7 12 1 | 3 | 11 | <u> </u> | 11 10 | | C. didymus C. affinis C. distans C. messanensis C. curvisetus | | | 9 11 | . 13 | | | | | 20 | 0 14 | | 13 | 0 13 | | | 11 | | | | | | | | 13 | | 11 | | | | | 11 12 | | C. pseudocurvisetus C. radicans C. socialis | | | | | | | | | 13 | 3 | 34 16 | 6 | | | 34 | | | | | 6 | 7 2 | 9 | | 53 13 | 35 | |] | 14 | | ······································ | 13 | | Climacodium biconcavum
C. Frauenfeldianum | | 10 | | | | | 1: | 1 | | | | | | | | | | 18 | | | | | | | | | | | | | 10 | | Coscinodiscus granii
C. wailesii
C. spp.
Corethron hystrix
Ditylum Brightwellii | | | | | | | | | | | | | | | - | | | 86 | 52 20 | 18 | 19 1 | 5 | 17 21 | | | | | | 14 | 37 18
10 | 10 11
11 | | Eucampia zoodiacus
Melosira nummuloides
Nitzschia seriata
Hemidiscus cuneiformis
Rhizosolenia alata | | 20 | | | | | | | 22 | , | | | | 56 1 | 17
19 | | | 18 | | | , , , , , , , , , , , , , , , , , , , | | · · · · · · · · · · · · · · · · · · · | 21 | | | | | | 10 1 | 12 | | R. Stolterfothii
Skeletonema costatum
Stephanopyxis palmeriana
Synedra spp. | | | | | | | | | | | | | | | 2 | 1 | | | | | · · · · · · · · · · · · | 20 | | 44 | 44 | | 81 16 | 25 | | | | | Syneara spp. Thalassionema nitzschioides | | | 13 12 | 22 20 |) | 12 | 7 | - | | | | 1 | 7 14 | | | | 31 50 | 38 | 21 | l | 41 | 25 | 17 | | | | 19 | | 57 | 29 | 16
11 18 (| | Thalassiosira spp. Thalassiothrix Frauenfeldii | | | | | | | • | - | | | | | | · | | | | | 19 | 9 25 | 1 | 1 20 | | | . , | | | 15 | | | Andrew Control of the | | Sum of other unimporant species | 31 44 79 | 61 63 | 56 60 | 43 51 | 54 5 | 4 47 6 | 6 6 30 | 72 56 | 66 56 | 86 90 | 66 74 | 4 69 6 | 3 60 7 | 73 44 5 | 8 47 6 | 0 89 | 69 50 | 26 14 | 48 40 | 57 33 | 3 40 4 | 5 35 | 39 46 | 44 22 | 51 56 | 79 66 | 19 65 6 | 63 45 | 38 | 63 33 5 | 50 68 46 3 | | Total | 100 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 10 | 0 100 10 | 0 100 10 | 0 100 100 | 0 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 10 | 0 100 1 | 100 100 1 | 100 100 1 | 100 100 | 100 100 1 | .00 100 10 | 00 100 | 100 100 1 | 00 100 10 | 00 100 100 10 | | Chatten | 1 2 | 3 4 | 5 | 6 7 | 8 | 9 10 |) 11 12 | 12 13 | 14 15 | 16 1 | 17 18 | 19 20 | 21 | 22 23 | 24 | 26 | 27 28 | 29 3 | 0 31 3 | 32 33 | 34 37 | 38 39 | 40 41 | 42 4 | 3 44 | 45 46 | 47 | 18 49 | 50 5 | 1 52 | 53 | 54 55 | 56 | 58 59 | 9 60 | 61 62 | 63 64 | 4 65 66 | |---|---|--|---|---|--|--|--|--|--|---|---|--------------------------------------|---|---|---
---|--|--|---|---|---|---|---|---|---|--|--|---|---|---|--|-------------------------|---|--|---|--|---|--| | Station Advantage Innaines | | 3 4 | | | | 1 | | | | | | | | 30 | 30 | | | | | | | 1 | | 780 | 540 | 480 | | 120 | | | 90 | 4 | 45 | | | | | | | Achnanthes longipes
Actinoptychus senarius
Arachinoidiscus ornatus
Asteromphalus flabellatus
Asterionella japonica | | 000 | | , | | | | • | | | | | | | | - 1 | | 420 | | 1530 800 | 30 | 210 | | 810 | | | | 150 | | | 180 | 3 | 210 | 60 | | | | | | Asteromphalus flabellatus
Asterionella japonica | 30 | 330 | | | 010 2520 | 402 | | 1920
420 14640 | 450 | | 1500 750
3300 | | | 19440
1320 24 | 1380
40 3120 | 2430 | | - | 950760 33
63600 | 3000 | 1080 | 1. | | 29580 | | 546 | 0 | 3150 | | | 9950 | | 9590 | | | | 390 6 | 690 5 | | Bacteriastrum varians
B. hyalinum
B. delicatulum | 210 | 2 | 120
350 | 330 | 570 | 7650
4500 | 20 210 | 420 14040 | 100 | | 600 300
1200 900 | | 1080
570 | 540 330
660 | 00 8400 38
00 4800 | 940 3520
4320 | 1680 117
7440 | | 020 62460 84 | | 189 | 4200 | | 156600 3 | 6900 | 400 | | 1260 | 23 | 280 18900
310
100 16350 | 1080 | 2880 | 2520
630 | | | | 390 | 090 | | B, elongatum | 84 | 0 2730 | 100 | 360 | 360 | 600 | | | | | 420 1050 | 2880 26 | 930
570 | 16560
2160 27 | 70 7800 15
70 7800 7800 | 5180 10440
1140 21600 | 7440
6480 600 | 3360 | 46920 33
75000 13 | 3200 21600 | 600 | ì | - | | 1050
750 | 408 | 0 | | 2100 2. | 8490 | | | 1680
840 | | 2520 | | | | | B. mediterraneum | | | 600 600 | | 225 | 10950 60 | 360 | 15840 | 300 | 4470 | 1230 7200 | 2400 7
5100 15 | 780
590 1290 | 84240 1419
693 | 96 2925
30 26910 9 | 2460 3060 | 780
7440 330 | | 89040 99
30210 189 | 9750 12000 | 360 | 8970 | | 6960
22620 | 300
600 | | 60 | 600
1050 | | 12660
29040
320 | | | 30
60 420 | 720 | 30 | 720 950 | 1410 12 | 290 1050 30 | | B. comosum
Biddulphia sinensis
B. mobiliensis | 15 | 630 3
0 150
0 150 | 300 | | 45 | | 170 150 | | | | 60 | 480 | 60 | | | 2160 720 | 39 | 1470 2 | 250 3180
3060 | 3300 4800
3150 4440
120000 | 300 | 1620 | 2440 | 22620 | 1800 | | | 840 | | 330 | 400 | | 120 | | 1680 | /20 | | 150 300 | | B. longicruris | | | - | 90 8 | 870 1140 | 3900 9 | 990 75 | 60 720 | | | 420 2400 | | 75 | | | | | | | 12000 | 300 | | | | | | | | | | | | 120 | 135 | 3570 | 6480 5610 | 1140 1 | 740 1350 3 | | B. pulchella
Coscinodiscus granii
C. wailesii | | | | | | 1 | | | | | | | | | 150 | 390 | | | 400 | 7200 | 1260 | 9640 137670 | 36210 50 | 70 154710 17 | 490 29250 | 7200 924 | 0 1650 | 2160 1260 | 23 | 100 4410 | 600 1 | 2060 2 | 120
90 | 90 | 1680 | 6480 5610
1020 3150
90 | 1140 17
0 960 8 | 840 360 2
90 3 | | C. spp. Coscinosira polychorda | 45 | 630 | 450 750
150 | 1 1 | 90 | | | | | | 1000 | | 510 | 4000 | | | 700 050 | | | 6600 8940 | | 1. | | | 450 | | | 360 420 | 2700 2 | 970 6930 | 180
1620 | 180 | 1050 | 270 | 210 | 63 | 0 1140 | 120 150 | | Corethron hystrix | | 4770 | 600 | | | 2700 3 | 330 | 400 | | 5460 | 1200 | 2400 1 | 120 510
270 | 4920 27 | | 1040 1080
7380 10260 | | 420 | | 0000 0540 | | | | - | 430 | 3780 168 | 80 | | 2.00 | | | | | | | , | | | | Ch. atlanticus v. neapolitana
Ch. atlanticus v. skeleton | | 900 | | 2970 | | 4650 | 570 | 480 | | | 1200 | 240 | 270 | 240 24 | 40 225
40 90 | 630 540 | | | | | | | | | | | | | 60 | 90 60 | | 60 | | | 330 | | | 1020 5 | | Ch. atlanticus v. neapolitana Ch. atlanticus v. skeleton Ch. densus Ch. Eibenii | | | | 040 | 200 0000 | 2450 1 | 500 240 | 030 | 7380 19200 | 17550 | 300 | | 285 | | 390
2535 | | 3840 | | 5700 | | | | 1200 | 24390
21750 | 150
120 | 1620 | 690 | | 2 | 250 | | | 1050 | | 68550
5460 | | 0 1 | 1020 3 | | Ch. coarctatus Ch. tetrastichon Ch. dadayi Ch. denticulatus | 2160 840 | 00 17650 | 600 615 | 840 | 360 3090 | 3450 15 | 60 | 930 | 7300 13200 | 17330 | | | | 1 | | | | | | 120 | | | 1000 | 00010 | 1000 | 540 | | 540 1680 | 19150 18 | 150 23940 | 2160 2 | 21600 | 3960 | 90 | 630 | | 1 | 1560 | | Ch. dadayı
Ch. denticulatus | 75 | | 300 | | | | 105
210 | 90 45 | | 1560 | 480 450 | | 570
180 | 105 | 60 | 1440 | 2640 13 | 50 1476 4 | 5600 108180 3 | 4650 24000 | 60 | | 1200 | 20010 | 1800 | 540 | | 540 1000 | 12130 16 | 23540 | 2100 2 | 21000 | | | | | | | | Ch. indicum
Ch. Okamural | | | .9 | , | | | | 30 | | | 60 | | | | 360 | | 330 | | 81000 | 4900 | | | 6000
1200 | | | 120 | 20 | | | 45990 | | 1800 | | | | | | | | Ch. danicus Ch. rostratus Ch. borealis | | | | | 210 | 1650 22 | 2280 | | | 1950 | 120
360 450 | 1440 2 | 210 60 | 2880
2880 | 5355
2340 | 9660 360
720 | | 30 | 31800 | 8250 4800
7200 | | | 1200 | | | | lo l | | | 610 | 540 | 1260 | | - | | 180 | 315 1 | 1170 | | Ch compolutus | 210 3 | 30 1890 | 150 120 | 1350 | 180 210 | 450
3600 6 | 660 1140 | 90 2160 | 150 | 14040
9360 | 300
60 900 | 480 | 20 150 | 2850 33 | 1950
1200 | 4140 | 1920
480 18 | 80 630 | 5700 18660 | 1650 9600 | | 4860 | | | | 540 | 300 | 420 | | 1890 | 180 | | 30 | | | 30 | 45 | | | Ch. pervienus Ch. Castracanei Ch. decipiens Ch. lorenzianus | | | 9000 | | FIGE 222 | 18900 131 | 8110 6720 | 450 25920 | , | 11700
61620 | 2040 2550 | | 180 1650
1040 3750 | | 240 13650 2
070 19050 10 | | 8640 1813
22660 1950 | 20 16800 1
00 14880 1 | 1400 145680 14
1400 139920 10 | 1900 40800
0500 52800 | 600
1020 | 7290 | 9000 8 | 50 136890
10 5220 | 840 10500
1650 | | 630
60 1440 | 720 10500
330 1680 | 46170 3
17550 14 | 960 261450
850 89460 | 17640
6750 | 540 | 15960
3360 | 150
120 | 19530
2130 | | | 1320 1050
240 150 | | Ch. lorenzianus Ch. Lauderi Ch. Weissflogii | 5. | 10 11550 | 7800 225 | 3120 | 765 660 | 19900 13) | 0/20 | 180 | | 01020 | 2000 | 210 | 90 | 1 | 240 | 390 | | 1 | | | | | | | | | | | | 360 | | | | | | 400 | | | | Ch. compressus | 450 | | 4200 300
2550 675 | 3150
9600 2 | 270 630
2430 5250 | 14700 93
36000 79 | 9330
7920 3960 | 30 8400
600 22560 | 120 | 41730
30690 | 3780 19200
480 2550 | 45120 44
9600 23 | 1800 1950
1230
1230 | 76320 2377
20700 1089 | | 6750 7560
8680 12240 | | 10 6720
30 1260 1 | 1700 222140 15 | 9650 273600
60150 8400 | 300 135 | | 1200 | 6090 | 2550 | 3240 25 | 20 | 3780
7560 | 25110 26 | 730 51600
94500 | 540
4140
4590 | | 5610 | 45 | 840
450 | | 270 | 180 | | Ch. didymus
Ch. constrictus | *200 000 | | | | 3250 | 73 | | 60 | | | | 120 | 900 570 | 69 | 130 | 1290 | | 70 | 82680 | | | | | | | | | 0040 1500 | 10000 | 000 04000 | , | | 2520 | | | 177 | 0 660 1 | 1920 1440 2 | | Ch. Van Heurckii
Ch. affinis
Ch. affinis v. circularis | 120 | 20 180
2850 | 1500 54 | | 765 | 150 | 510 1830 | 8160
270 | | 30420 | 120 6300 | | 3210 210
180 | 25200 115
3 | 550 8580 3
330 | 3800 4680
120 180 | | 60 6480 | 5700 95400 4 | 4550 96000
630 | 150 | | | 10440 | 120 | | | 2340 1500 | 13770 33 | 6000 64260
540
90 | | | 2520 | | | 177 | | | | Ch. affinis v. willei Ch. paradoxum | | | · . | 1560 | 420 | 450 1 | 1170 300 | | | 4680 | 900 | | | | 540 | | | | 4500 | 19000 | 400 | | | | | | | | | 45990 | 720 | | | - | | | | | | Ch. distans
Ch. messanensis | | 1260 | 750
1500 | 3810 | 1590 3510 | | 1830 1875
660 | 150 4680
8400 | | 12090 | 5850 | 85200 6 | 3210 1650
5750 2420 | 58260 267
54720 122 | 210 35295 28 | | 12000 9 | 20 2310
90 7980 | 54060 4
273480 31 | | 420
600 111 | | | | 120 | 1620 | 270 | 3600 2520 | | | | 720 | 840 | | | | | | | Ch. diversus
Ch. curvisetus | 4 | 20 11400
5280 | 2850 135
45 | 990
540 | 315 620
570 | | 1170
4200 225 | 1680 | + | 8190
2700 | 1950
2100 | | 540 2430 | | 560 1200
580 56160 | 3330 1200
3800 4440 | | | 15900
302100
50700 | | 1200 | | 4800 | 1993470 | 57750 | 2700
5400 50 | 40 | 2100
39900 | 2700
115020 7 | 330 34650
920 97650 | | 600
5220 | 30 1470
8820 | 120 | 1320
5550 | 42 | 80 | | | Ch. pseudocurvisetus Ch. debilis | | | 450 | | | 2750 | - | 270 | | | 3150
5400 | | 1770 1710 | 19440 82
374400 442 | 250 4680
220 9000 | 75900 2340 | 17 | 40 | 216000
37860 18 | | | | | | | | | 630 | 2700 | 5670
12600 | 1 | 8100 | 4500 | | 4200 | 600 | 450 | 330 930 | | Ch. radicans
Ch. tortissimus | | | | | | 1050 | | | | 2100 | 5400 | 56550 | | 442 | 4875 | | | | 216060 10 | 07250 | | 3 | | | | | | 630 | 2550 | 1260 | i - [| | 6720 | | | 103 | 35 | 1560 | | Ch. socialis
Cerataurina Bergonii | 60 | 300 | 150 | 370 | | | 2040 205 | 1920 | 60 3600 | 1560 | 600 | 240 | 456 150 | 1440 | 2340 | 360
360 | | 420 | | 912000 | 540 | 810 | 600 | 3480 | 1950 | | - | 630 | | | | 2 | 240 2520 | , | | | | | | Climacodium biconcavum C. Frauenfeldianum | | 90 3300
50 3300
7800 | 300
45
135 | 780 | 75 | | 3840 285
210
510 720 | 255
60 720
90 4800 | | | 900 | | 750 210 | 2880 | 570 | 6900 720 | ,20 | 630 | 6720 | 74400 | | | | | | | | | | | 450 | | 60 | | | | | | | Dactyliosolen mediterraneum
Diploneis splendida
Ditylum Brightwellii | | | 300
1650 | | 75 | | 336 | 30 240 | 60 90 | 390 | 6150 | 480 | 210 270 | 2880 2 | 270 390 | 2130 900 | 1440 13 | 365 1680 | 2250 22260 | 11550 2400 | 60 | 90 | 9000 3 | 850 5190 | 5940 4350 | 2160 4 | 20 90 | 840 | 4320 | 960 12600 | 2340 | 180 | 1050 | 360 | 15 1260 | 180 | 225 | 210 150 | | D. sol
Ethmodiscus sp. | | 30 | | 30 | | | | | | | | | | 2 | | | | 20000 | | -4550 | | 1500 | 12000 | 120 80040 | 4650 | 1620 | | 210 | 810 | 13230 | 150 | 1 | 120 1890 | 360 | 1050 | 180 | | | | Eucampia zoodiacus
E. cornuta | | | 8000 | | , | | | 720 | 60 | 2000 | 150 | | | | 460
320 180 | 2160 2700
5520 | 7440 2548
240
660 19 | | 5750 385380 | 4950 24000 | | 1560 | 12000 4 | 20 00040 | 2030 | 1020 | | 450 | | 2520 | | | | | | | | | | Fragilaria spp. Gossleriella tropica | 3 | 60 1740 | 1050 15 | 0 | | - | 480 | 480 | | 3900 | | | | | | | | | | 4800
9600 | | | - | 240 4350 | 390 1350 | | 60 | 630 | 10800 | 990 2520 | 180 | 1260 | 840 |) | 270 | , | | | | Guinardia flaccida
Grammatophora spp.
Hemiaulus Hauckii | | 1110 | 750 45 | | | 1.5 | 60 | 30 960 | 1 | 7410 | 1500 | 1920 | | 600 3 | 300 1170 | 540
1440 | 200 | 290 1470 | 1140 | 3300 12000 | | | | 40 4550 | 1050 | | 50 | 240 | | | | | | | | | | 150 | | Hemiaulus Hauckii
H. sinensis | 1 | .50 | 750 120
2100 | 0 420 | 90 210 | 2550 | 960 | 10800 | | 7410 | | 1 | 1800 | 8640 | 3315 | 5400 | | 160 5700 | | 177600
172800 | | 8100 | | | | | | | 2370 | | 180 | | | | | | | 150 | | H. indica
H. membranacus | | | 2100 | | 90 210 | + | | | 1 1 | | 1 1 | i l | 690 | | | 1 | 1 1 | | | | | |) ! | 2610 | | | | | 1 1 | i | 1 1 | | | | i J | | 1 | 1530 840 | | Hemidiscus cuneiformis | 30 1 | .65 | 180 | 0 | 90 210 | 1 | | | | | | | | | | | | | | 19650 | | 2250 4150 | | 2610
4350 | 270 | | | 2220 | | | i | | 30 210 | 1 | 5250 | 300 304 | 1350 | 1530 840 | | Hvalodiscus stelliger | 30 1 | .65 | | 0 | 50 24 | | | | | | | | | | | | | 420 | | | | | | | 270 | | | | | | | 2 | 240 | | | | 1350 | 120 840 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis | 30 1 | 300 | 186
300
1200 | 00 | 360 | | | 1680 | - | 3120 | | 1 | 1610 240 | 62640 92
14400 | 240 3900
180 | 8250 3060 | 3120 113 | | 3320 15360 1 | | 360 | | | 4350 | 270
1110 4800 | 1620 | 120 | 90 1050 | 12150 | 5610 6960
5670 | 6210 | 6120 | 30 210
240
75 1680 | | | 300 304 | 45 1350 | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus | 30 1 | | 300 180
300 | 540 | 360 | 600 | | 1680
2400 | | 3120 | | 11520 | 1610 240 | 14400 | 240 3900
180 | | 35 | 310 2310 1
510 630 | 3320 15360 1
18900 | 19650
57400 26400 | 360 540 | 2250 4150 | | 4350 | | 4 | 120 | 90 | 12150 | | | 6120 | 240 | | | | 45 1350 1 | 120 | | Hyalodiscus stelliger
Isthmia nervosa
Lauderia borealis
Leptocylindrus danicus
Licmophora abbreviata
Melosira nummuloides
M. Borreri | 30 1 | | 186
300
1200
600 | 540 | 360 | 600 | | 2400 | | 3120 | | | 270 | 14400 | 300 180 | 1800 | 35 | 310 2310 1
510 630 1 | 3320 15360 1
18900 | 57400 26400
52800 12000
14850 | 360 540 | 2250 4150
8910 | 0 1200 | 52200
73950 | 1110 4800
3300
2250 | | 120 | 90 1050 | 12150 | 5670 | D | 6120 | 240 | | | 600 | | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima | 30 1 | 300 | 186
300
1200
600 | 540 | 360
270 150
30 | 600 | 3690 | | | 3120 | 180 4650 | | 270 | 14400 | 180 | 1800 | 35
35
3120 445 | 310 2310 1
510 630 1
510 11 | 3320 15360 1
18900 | 57400 26400
52800 12000 | 360 540 | 2250 4150 | 0 1200 | 52200
73950 | 1110 4800
3300 | | 120 | 90 | 720 | | 0 630 | | 240 | | 4830 | 600 | | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa | | 300 | 300 186
300 1200
600 150 | 540 | 360 | 600 | 1690 | 2400 | | 3120 | 180 4650 | | 270 | 14400 | 300 180 | 1800
49920 3780 | 35
35
3120 445 | 310 2310 1
510 630 1
510 150 150 150 150 150 150 150 150 150 | 3320 15360 1
18900
1650 89100
3420 | 57400 26400
52800 12000
14850 | 360 540 | 2250 4150
8910
3
2430 | 1200 | 4350
52200
73950
. 6090 | 1110 4800
3300
1110 630
1230 750 | 540 | 120 | 90 1050
67200
1050 | 720 | 2700 1890 | 0 630 | | 240 | | 4830 | 600 | | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol | | 300
510
300 | 300 186
300 1200
600 150 1050 | 540 | 360 | 600 | 3690 | 2400 | | 3120 | 180 4650 | | 270 | 14400 | 300 180 | 1800 | 35
35
3120 445 | 310 2310 1
510 630 1
510 150 150 150 150 150 150 150 150 150 | 3320 15360 1
18900
2540 89100
3420
150 | 57400 26400
52800 12000
14850 | 360
540 | 2250 4150
8910 | 1200 | 4350
52200
73950
. 6090 | 1110 4800
3300
1110 630
1230 750
1230 450
150 | 540 | 120 | 90 1050 | 720 | 2700 1890
2460 | 630 | | 240 | | 4830 | 600 | | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata | 30 | 300
510
300
120 1290 | 180
300
1200
600
150
1050
150
1050
750 6 | 540 | 360
270
30
90 | 1800 | | 2400 | 300 | 5040 | 180 4650
360 34650
240 1950 | 11520 | 270 | 14400 3
64800 97
 | 300 180
750 10725 | 1800
49920 3780
360 | 35
45
3120
44
1
1
0
3300 | 310 2310 1
510 630 1
510 150 150 150 150 150 150 150 150 150 | 3320 15360 1
18900
2540 89100
3420
150
7980 6720 | 19650
57400 26400
52800 12000
14850
72000 | | 2250 4150
8910
3
2430 | 0 1200
0 540
4200 | 4350
52200
73950
. 6090 | 1110 4800
3300
1110 630
1230 750
1230 450 | 540 | | 90 1050
67200
1050 | 720 | 2700 1890 | 630 | 2700 | 240 | 0 450 | 4830 | 540 23 | | 120 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus | 30 | 300
510
300
120
1290
330 | 300
1200
600
150
1050 | 540 | 360 | 1800
900
1200 | 510 225
480 | 2400
10920
30 1200 | 300 | 0 5040
0 1560
390 |
360 34650
240 1950
60 | 240 | 270
1165 | 14400 3
64800 97
8
9900 9900 7200 16 | 750 10725
990 780
5070 | 1800
49920 3780
4140 360
4140 20700 3420 | 35
45
3120
44
1
1
0
3300
1920
7 | 310 2310 1
510 630 1
510 11
510 120 1
1470 2280 | 3320 15360 1
18900
2540 89100
3420
150
7980
5700 95400 | 19650
57400 26400
52800 12000
14850
72000
1650 4800
6150 21600 | | 2250 4150
8910
2430
120 16200 | 1200
1200
0 540
0 4200
0 1200 | 4350
52200
73950
6090 | 1110 4800
3300
1110 630
1230 750
1230 450
1200 300
60 1350 | 540 | 120 | 90 1050
67200
1050
210
2100 | 12150
720
1080 | 5670
2700 1890
2460
5940 2490
660 2520
330
1980 2460 | 630
300
900
0 450 | 2700 | 240
75 1680
90 | 0 450 | 1080 | 540 23 | 10 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. longissima N. losterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera | 30 3 | 300
510
300
120
120
1290
330 | 180
300
1200
600
150
1050
750
1950
4
300 1 | 540
510
0 2100
840
0 240 | 360
270
30
90 | 1800
900
1200
150
5 750 | | 2400
10920
30 1200 | 300 60 | 0 5040
0 1560
390 | 360 34650
240 1950 | 240
240
960 | 270
1165
120 570
1020 120 | 14400 3
64800 97
360 9900 97
7200 16 | 750 10725
990 780
5070 | 1800
49920 3780
4140 360
4140 20700 3420
6900 3240 | 35
45
3120
44
1
1
1
3300
1920
720
1 | 310 2310 1
510 630 1
510 15
510 15
1470 2280 050 | 3320 15360 1
18900
2540 89100
3420
150
7980
5700 95400
5850 3180 | 19650 26400
52800 12000
14850 72000
1650 4800
6150 21600
66300 192000
4950 12000 | | 2250 4150
8910
2430
120 16200
486 | 0 1200
0 540
0 4200
0 1200 | 4350
52200
73950
6090
640 600
13950 | 1110 4800
3300
1110 630
1230 750
1230 450
90 1200
300
60 1350 | 540 | 120
90
120 | 90 1050
67200
1050
210 | 720
1080 | 5670
2700 1890
2460
5940 2490
660 2520
330 1980 2460
330 630
1890 | 630
300
900
450 | 900 | 240
75 1680
90 | 0 450 | 1080
1680
840 | 540 23
0 600
0 60 33
30 5 | 10 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis V. latissima | 30 30 30 8 | 300
510
300
120
1290
130
1290
130
140
150
300
300 | 180
300
1200
600
150
1050
1050
750
1950
4
300
150
28
4 | 540
510
0 2100
840
0 240
0 660
0 0 | 360
270
30
90
180
210
90
285
30
60 | 1800
900
1200
150
750
2850 | 510 225
480 225
330 210
510 75
840 810 | 30 1200
45 3120
30 960
90 1200
30 | 300
60
150
90 2400
450 | 5040
0 1560
390
0 7020 | 360 34650
240 1950
60 300
60 300
60 2400 | 240
2400
960 | 120 570
1020 120
75
90 360 | 3600 3600 3600 3600 3600 3600 3600 3600 | 180
180
180
180
180
1925
1975
1975
1975
1976
1976
1977
1977
1977
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978 | 1800
49920 3780
4140 360
4140 20700 3420
6900 3240
2760 540
1350 1830
17940 1260
180 | 35
45
3120
44
1
1
1
3300
1920
720
1 | 310 2310 1
510 630 1
510 150 150 150 150 150 150 150 150 150 | 3320 15360 1
18900
2540 89100
3420
150
7980 6720
5700 95400
5850 3180
900 3120 | 19650 26400
52800 12000
14850 72000
1650 4800
6150 21600
66300 192000
4950 12000
4800
1500 3300 | | 2250 4150
8910
2430
120 16200
486 | 0 1200
0 540
0 4200
0 1200
0 1200
1140
1800 | 4350
52200
73950
6090
640 600
13950
24900 | 1110 4800
3300
1110 630
1230 750
1230 450
1200 300
60 1350 | 540
540
22 | 120
90
120
120
240
90 | 90 1050
67200
1050
210
2100
210 | 12150
720
1080
1620
480 | 5940 2490
660 2520
330 630 630
360 960 | 630
300
900
450 | 900 : | 240
75 1680
90 | 0 450 | 1080 | 540 23
0 600
0 60 33
30 5 | 10 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeurotia doliolus Rhizosolenia alata R. Stolter fothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis v. latissima R. calcar-avis R. hebetata f. semispina | 30 30 30 8 | 300
510
300
120
120
1290
330 | 180
300
1200
600
150
1050
750
1950
4
300
150
28
4
33 | 540
510
0 2100
840
0 240
0 660
0 0 | 360
270 150
90
180 210
75 | 1800
900
1200
150
750
2850 | 510 225
480 225
330 210
510 75
840 810 | 30 1200
45 3120
30 960 | 300
60
150
90 2400
450
90 1050 | 5040
1560
390
0 7020
0 5460
390 | 360 34650
240 1950
60 300
60 300 | 240
2400
960 | 270
1165
120 570
1020 120
75 | 3600 3600 3600 3600 3600 3600 3600 3600 | 750 10725
990 780
5070 330 570 330 195 | 1800
49920 3780
4140 360
20700 3420
6900 3240
2760 540
1350 1830
17940 1260
180
8280 2160 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640 | 310 2310 1
510 630 1
510 11
510 12
1460 1
150 120 1
780 2280 1
550 630 180 210 420 | 3320 15360 1
18900
2540 89100
3420
150
7980
5700 95400
5850 3180
900
900 3120 | 1650 26400
52800 12000
14850 72000
1650 4800
6150 21600
66300 192000
4950 12000
4800
1500 3300
1500 32400
2400 | | 2250 4150
8910
2430
120 1620
486
120 162 | 1200
1200
0 540
0 1200
0 1200
0 1400
1400
1800 | 4350
52200
73950
6090
640 600
13950
24900 | 1110 4800
3300
1110 2250
630
1230 750
1230 450
90 1200
300
60 1350
540 | 540
540
22
540 | 120
90
120
120
240
90 | 90 1050
67200
1050
210
2100
2100 | 12150
720
1080
1620
480 | 5670
2700 1890
2460
5940 2490
660 2520
330 630
1890
360 960
300 | 300
900
120
60 | 2700
900
360 | 240
75 1680
90
120 3150
30 30 | 0 450 | 1080
1680
840 | 540 23
0 600
0 60 33
30 5 | 10 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis
Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. calcar-avis R. hebetata f. semispina R. acuminata R. Bergonii R. Castracanei | 30 30 8 | 300
510
300
120
1290
130
1290
130
140
150
300
300 | 180
300
1200
600
150
1050
750
1950
4
300
150
28
4
33
150
150 | 540
510
0 2100
840
0 660
0 540 | 360
270
30
90
180
210
90
285
30
60 | 1800
900
1200
150
750
2850 | 510 225
480 330 210
510 75
840 810 | 30 1200
45 3120
30 960
90 1200
30
270 960 | 300
60
150
90 2400
450
90 1050 | 5040
1560
390
0 7020
0 5460
390 | 360 34650
240 1950
60 300
60 300
60 2400 | 240
2400
960 | 120 570
1020 120
75
90 360 | 360
9900
7200
360
9900
9900
9900
9900
9900
9900
990 | 990 780 990 330 195 2145 980 780 330 330 | 1800
49920 3780
4140 360
20700 3420
6900 3240
2760 540
1350 1830
17940 1260
180
8280 2160 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640
480 | 310 2310 1
510 630 1
510 150 150 120 1
780 2280 050 630 210 420 6600 240 | 3320 15360 1
18900
2540 89100
3420
150
7980
5700 95400
5850 3180
900
900 3120 | 1650 26400
52800 12000
14850 72000
1650 4800
6150 21600
66300 192000
4950 12000
4800
1500 3300
1500 32400 | 135
180
60
60
120 | 2250 4150
8910
2430
120 1620
486 | 1200
1200
0 540
0 4200
1200
0 1200
1140
1800 | 4350
52200
73950
6090
640 600
13950
24900 | 1110 4800
3300
1110 2250
630
1230 750
1230 450
90 1200
300
60 1350
540 | 540
540
22 | 120
90
120
120
140
90 | 90 1050
67200
1050
210
2100
210 | 12150
720
1080
1620
480 | 5940 2490
660 2520
330 630 630
360 960 | 300
900
120
60 | 2700
900
360 | 240
75 1680
90
120 3150
30 | 0 450 | 1080
1680
840 | 540 23
0 600
0 60 33
30 5 | 10 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis v. latissima R. calcar-avis R. hebetata f. semispina R. acummata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi | 30 30 8 | 300
510
300
120
1290
330
120
150
300
960
510
1590
165
330
5700 | 180
300
1200
600
150
1050
750
1950
4
300
150
150
28
4
33
150
150
30
30
30
30
30
30
30
30
30
3 | 540
510
0 2100
840
0 240
660
0 540 | 360 270 30 150 90 180 210 75 285 30 60 150 45 | 1800
900
1200
150
750
2850 | 510 225
480 330 210
510 75
840 810 | 30 1200
45 3120
30 960
90 1200
30 240
30 | 300
60
150
90 2400
450
90 1050
450
75 | 5040
1560
390
0 7020
0 5460
390
0 0 | 360 34650
240 1950
60 300
60 300
60 2400 | 240
2400
960
300 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60 | 360
9900
7200
3600
9900
7200
16
3600
36
3600
36
3600
36
3600 | 300 180 750 10725 990 780 5070 570 330 195 990 2145 980 780 330 330 330 585 | 1800
49920 3780
4140 360
4140 20700 3420
6900 3240
2760 540
1350 1830
17940 1260
180
8280 2160
1350 720 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640
480 | 310 2310 1
510 630 1
510 150 150 120 1
780 2280 050 630 210 420 600 240 | 3320 15360 1
18900
2540 89100
3420
150
7980 6720
5700 95400
5850 3180
900 3120
960 6120 | 1650 26400
12000 12000 14850 72000 14850 4800
6150 21600 192000 4800 1500 3300 1200 32400 2400 26400 1620 | 135
180
60
60
120 | 2250 4150
8910
2430
120 1620
486
120 162
120 75
324 | 1200
1200
0 1200
0 1200
0 1200
0 1200
0 13120 2 | 4350
52200
73950
6090
640 600
13950
24900
630
780 | 1110 4800
3300
1110 630
1230 750
1230 450
90 1200
300
60 1350
540 1500 | 540
540
22
540 | 120
90
120
120
240
90
300
180 | 90 1050 67200 1050 210 2100 210 210 150 120 | 12150
720
1080
1620
480 | 5670
2700 1890
2460
5940 2490
660 2520
330 1890
360 960
300 1830
3960 7770 60300 | 300
300
900
450
0
120
60
0
240 | 900 :
360 | 240
75 1680
90
120 3150
30 30
30 90 | 0 450 | 1080
1080
1680
840
720
2310 | 600
540 23
540 33
50 30
50 30
720 | 30 45
90 45
30 30 | 120
600
45 240
360 390
45 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolter fothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis v. latissima R. calcar-avis R. hebetata f. semispina R. acummata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi Skeletonema costatum | 30 3
30 30 8 | 300
510
300
120
1290
330
120
150
300
340
960
510
1590
165
330
5700 | 180
300
1200
600
150
1050
1050
750
1950
4
300
150
28
4
33
150
300
300
3930
9 | 540
510
510
0 2100
840
0 240
0 660
0 540
0 300 | 360 270 30 90 180 210 90 285 30 60 150 45 | 1800
900
1200
150
750
2850
3000 | 510 225
480 330 210
510 75
840 810 1140
990 75 | 30 1200
45 3120
30 960
90 1200
30
270 960 | 300
60
150
90 2400
450
90 1050
450
75
150 | 0 5040
1560
390
0 7020
0 5460
390
0 11550 | 360 34650
240 1950
60 300
60 300
60 2400 | 240
2400
960
300 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60 | 360 970 16
3600 36
3600 36
3600 19
5700 19 | 990 780 990 330 195 2145 980 780 330 330 | 1800
49920 3780
4140 360
4140 20700 3420
6900 3240
2760 540
1350 1830
17940 1260
180
8280 2160
1350 720 | 35
45
3120
44
1
1
3300
1920
720
1
2640
480
1580
1580
1580 | 310 2310 1
510 630 1
510 150 150 120 1
780 2280 050 630 210 420 600 240 | 3320 15360 1
18900
2540 89100
3420
150
7980 6720
5700 95400
5850 3180
900 3120
960 6120 | 1650 26400
12000 12000 14850 72000 14850 4800
6150 21600 192000 4800 1500 3300 1200 32400 2400 26400 1620 | 135
180
60
60
120 | 2250 4150
8910
2430
120 1620
486
120 162 | 1200
1200
1200
0 540
4200
1200
1200
1140
1800
0 3120
2 | 4350
52200
73950
6090
640 600
13950
24900
630
780 | 1110 4800 3300 1110 630 11230 750 1230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 300 | 540
540
22
540
1080
3780
2700 | 120
90
120
120
240
90 | 90 1050
67200
1050
210
2100
210
210
150
120 | 12150
720
1080
1620
480 | 5670
2700 1890
2460
5940 2490
660 2520
330 1890
360 960
300 1830
3960 7770 60300 | 300
300
900
450
0
120
60
0
240 | 900 :
360 | 240
75 1680
90
120 3150
30 30
30 90 | 0 450 | 1080
1080
1680
840
720
2310 | 600
540 23
540 33
50 30
50 30
720 | 30 45
90 45
30 30 | 120
600
45 240 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis v. latissima R. calcar-avis R. hebetata f. semispina R. acumnata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi Skeletonema costatum Stephanopyxis palmeriana Streptotheca thamensis | 30 3
30 3
30 8 | 300
510
300
120
1290
130
120
150
300
960
510
1590
165
130
5700
160
4440 | 180
300
1200
600
150
1050
1050
750
1950
4
300
150
28
4
33
150
300
300
300
3930
9
3 | 540
510
510
0 2100
840
0 660
0 540
0 300
0 300 | 360 270 150 90 180 210 90 285 30 60 150 45 630 570 210 | 1800
900
1200
150
750
2850
3000 | 510 225
480 330 210
510 75
840 810 990 75 | 30 1200
45 3120
30 960
90 1200
30 240
30 7680 | 300
60
150
90 2400
450
90 1050
450
75
150 | 5040
1560
390
0 7020
0 5460
390
0 11550
0 780 | 360 34650
240 1950
60 300
60 300
60 2400
1050 | 240
2400
960
300 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60
1590 750 | 360 9900 19 3600 3600 3600 3600 3600 3600 3600 360 | 300 | 1800 49920 3780 4140 360 4140 20700 3420 6900 3240 2760 540 1350 1830 17940 1260 180 8280 2160 1350 720 1380 25840 1440 |
35
45
3120
44
1
1
1
3300
1920
720
1
2640
480
1680
156
5 | 310 2310 1
510 630 1
510 150 150 120 1
780 2280 050 630 210 420 600 240 560 1890 3240 4390 | 3320 15360 1
18900 1650 2540 89100 3420 150 7980 6720 95400 5850 3180 900 900 3120 960 6120 4560 1068300 780 | 1650 26400
12000 12000 14850 72000 14850 72000 14850 12000 4800 1500 3300 1500 1200 2400 2400 26400 1620 29700 9600 | 180 135
60
60
120
30 30 | 2250 4150 8910 2430 120 16200 486 120 162 120 75 | 1200
1200
1200
0 540
0 1200
0 1200
1140
1800
0 3120
2 | 4350 52200 73950 6090 640 600 13950 24900 630 780 670 62400 22500 | 1110 4800 3300 1110 630 11230 750 1230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 300 | 540
540
22
540
1080
3780
2700 | 120
90
120
120
240
90
300
180
270
120 | 90 1050 67200 1050 210 2100 210 210 150 120 540 2250 139230 1260 | 12150
720
1080
1620
480 | 5670 2700 1890 2460 5940 2490 660 2520 330 1890 360 960 300 1830 3960 7770 60300 6300 6530 113400 | 630
630
300
900
450
120
60
240
60
240 | 900 :
360
180 | 240 75 1680 90 120 3150 30 30 30 90 480 | 0 450
0 1200
0 600 | 1080
1080
1680
840
720
2310
420 | 600
540
23
30
30
30
30
30
240
720
1620
103
0 600
89 | 30 45
90 45
30 50 1950
40 210 | 120
600
45 240
360 390
45
360 2
1950 2190 26 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolter fothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. calcar-avis R. hebetata f. semispina R. acumnata R. Bergonii R. Castracanei R. flagillissima Schröderla Schröderi Skeletonema costatum Stephanopyxis palmeriana Streptotheca thamensis Synedra spp. Thalassionema nitzschioides Thalassionera spp. | 30 30 8 30 8 30 8 30 8 30 8 30 8 30 8 3 | 300
510
300
120
1290
330
120
150
300
960
510
1590
165
330
5700
160
4440
500
15240 | 180
300
1200
600
150
1050
1050
750
1950
4
300
150
28
4
33
150
300
300
300
3930
9
3 | 540
510
510
0 2100
840
0 660
0 540
0 300
0 5580 | 360 270 30 90 180 210 90 285 30 60 150 45 | 1800
900
1200
150
750
2850
3000 | 510 225
480 330 210
510 75
840 810 990 75 | 30 1200
45 3120
30 960
90 1200
30 240
30 | 300
60
150
90 2400
450
90 1050
450
75
150 | 5040
1560
390
0 7020
0 5460
390
0 11550
780 | 360 34650
240 1950
60 300
60 300
60 2400
1050
4650 | 240
2400
960
300 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60 | 360 9700 1950 1950 1950 1950 1950 1950 1950 19 | 300 | 1800 49920 3780 4140 20700 3420 6900 3240 2760 540 1350 1830 17940 1260 180 8280 2160 1350 720 1380 25840 1440 41860 30240 | 355
450
3120
441
11
11
11
11
11
11
11
11
1 | 310 2310 1
510 630 1
510 150 150 150 150 120 1470 2280 150 630 210 420 1600 240 1600 3240 420 1600 3240 420 1600 3240 420 1600 3240 420 1600 3240 420 1600 1890 3240 420 1600 1890 3240 420 1890 42 | 3320 15360 1
18900 1650 2540 89100 3420 150 7980 6720 95400 5850 3180 900 960 6120 4560 1068300 780 67000 25500 | 1650 26400
12000 12000 14850 72000 14850 72000 4800 192000 4800 1500 1200 2400 1530 26400 1620 29700 9600 858500 1056000 64800 19200 64800 | 180 135
60
60
120
30 30 | 2250 4150 8910 2430 120 16200 486 120 162 120 75 | 1200
1200
1200
0 540
0 4200
1200
1140
1800
0 3120
2 37800
1 1 | 4350 52200 73950 6090 640 600 13950 24900 630 780 670 62400 22500 | 1110 4800 3300 1110 630 11230 750 11230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 17700 17650 17700 | 540
540
22
540
1080
3780
2700 | 120
90
120
120
240
90
300
180
270
120 | 90 1050 67200 1050 210 2100 210 210 150 120 540 2250 139230 1260 | 12150
720
1080
1620
480
1890
1620
5400 | 5670 2700 1890 2460 5940 2490 660 2520 330 1980 2460 330 630 960 300 1830 360 7770 60300 1980 6300 6530 113400 66 | 300
300
900
450
0 240
0 6840 2 | 900 :
360
180 | 240
75 1680
90
120 3150
30 30
30 90
480 | 0 450
0 1200
0 600 | 1080
1080
1680
840
720
2310 | 600
540
23
30
30
30
30
30
240
720
1620
103
0 600
89 | 30 45
90 45
30 30 50 1950 | 120
600
45 240
360 390
45 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis R. calcar-avis R. hebetata f. semispina R. acumnata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi Skeletonema costatum Stephanopyxis palmeriana Streptotheca thamensis Synedra spp. Thalassiosira spp. Thalassiosira spp. Thalassiothrix Frauenfeldii T. longissima | 30 30 8 30 8 30 8 30 8 30 8 30 8 30 8 3 | 300
510
300
120
1290
330
120
300
960
510
1590
165
330
5700
160
4440
500
15240 | 180
300
1200
600
150
1050
150
1050
750
1950
4
300
150
28
4
33
150
300
300
3930
9
3
5400
15 | 540
510
510
0 2100
840
0 660
0 540
0 300
0 300 | 360 270 150 90 180 210 90 285 30 60 150 45 630 570 210 | 1800
900
1200
150
750
2850
3000 | 510 225
480 330 210
510 75
840 810 990 75 | 30 1200
45 3120
30 960
90 1200
30 240
30 7680 | 300
60
150
90 2400
450
90 1050
450
75
150
300
45 | 5040
1560
390
0 7020
0 5460
390
0 11550
0 780 | 360 34650
240 1950
60 300
60 300
60 2400
1050 | 240
2400
960
960
19200 1 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60
1590 750 | 360 977 15 3600 3600 3600 3600 3600 3600 3600 360 | 300 | 1800 49920 3780 4140 360 4140 20700 3420 6900 3240 2760 540 1350 1830 17940 1260 180 8280 2160 1350 720 1380 25840 1440 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640
480
154
1680
154
154 | 310 2310 1
510 630 1
510 150 150 150 120 | 3320 15360 1
18900 1
1650 2540 89100 3420 150 7980 6720 95400 5850 3180 900 3120 960 6120 6120 4560 1068300 780 67000 25500 | 1650 26400
12000 12000 14850 72000 14850 72000 4800 192000 4800 1500 1200 26400 1530 26400 26400 9600 85800 1056000 56750 19200 | 180 135 180 60 60 120 30 30 9000 1110 120 | 2250 4150 8910 2430 120 16200 486 120 162 120 75 324 | 1200
1200
1200
1200
1200
1200
1400
1400
1800
0
0
3120
2
0
37800
1
33600
4 | 4350 52200 73950 6090 640 600 13950 24900 630 780 670 62400 22500 | 1110 4800 3300 1110 630 11230 750 11230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 17700 17650 17700 | 540
540
22
540
1080
3780
2700
34020
23 | 120
90
120
120
240
90
300
180
270
120 | 90 1050 67200 1050 210 2100 210 210 150 120 540 2250 139230 1260 | 12150 720 1080 1620 480 1890 1620 5400 18 | 5670 2700 1890 2460 5940 2490 660 2520 330 1980 2460 330 630 960 300 1830 360 7770 60300 1980 6300 6530 113400 66 | 300
300
900
450
0 240
0 6840 2 | 900 :
360
180 | 240 75 1680 90 120 3150 30 30 30 90 480 | 0 450
0 1200
0 600 | 1080
1080
1680
840
720
2310
420 | 600
540
23
30
30
30
30
30
240
720
1620
103
0
600
89 | 30 45
90 45
30 50 1950
40 210 | 120
600
45 240
360 390
45
360 2
1950 2190 26 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolter fothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis R. calcar-avis R. hebetata f. semispina R. acumnata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi Skeletonema costatum Stephanopyxis palmeriana Streptotheca thamensis Synedra spp. Thalassiosira spp. Thalassiosira spp. Thalassiothrix Frauenfeldii T. longissima Triceratium favus | 30 30 8 30 8 30 8 30 8 30 8 30 8 30 8 3 | 300
510
300
120
1290
330
120
150
300
960
510
1590
165
330
5700
160
4440
500
15240 | 180
300
1200
600
150
1050
150
1050
750
1950
4
300
150
28
4
33
150
300
300
3930
9
3
5400
15 | 540
510
510
0 2100
840
0 240
0 660
0 540
0 300
0 5580
240 | 360 270 150 90 180 210 90 285 30 60 150 45 630 570 210 | 1800
900
1200
150
750
2850
3000
450
900
37050 | 510 225
480 330 210
510 75
840 810 990 75 | 30 1200
45 3120
30 960
90 1200
30 240
30 7680
90 1170 12000 | 300
60
150
90 2400
450
90 1050
450
75
150
300
45 | 0 5040
1560
390
0 7020
0 5460
390
0 11550
780
0 29250
1950 | 360 34650
240 1950
60 300
60 2400
1050
4650
180 23550
900 | 240
2400
960
960
19200 1 | 270
1165
120 570
1020 120
75
90 360
210 1950
210 60
1590 1290
750
2280 2820 | 360 977 15 3600 3600 3600 3600 3600 3600 3600 360 | 300 | 1800 49920 3780 4140 20700 3420 6900 3240 2760 540 1350 1830 17940 1260 180 8280 2160 1350 720 1380 25840 1440 41860 30240 1200 3060 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640
480
154
1680
154
154 | 310 2310 1
510 630 1
510 150 150 150 120 | 3320 15360 1
18900 1
1650 2540 89100 3420 150 7980 6720 95400 5850 3180 900 3120 960 6120 6120 4560 1068300 780 67000 25500 | 1650 26400
12000 12000 14850 72000 14850 72000 4800 192000 4800 1500 1200 2400 1530 26400 1620 29700 9600 858500 1056000 64800 19200 64800 | 180 135 180 60 60 120 30 30 9000 1110 120 | 2250 4150 8910 2430 120 16200 486 120 162 120 75 324 | 0 1200
0 540
0 4200
0 1200
0 1200
1140
1800
0 3120 2 | 4350 52200 73950 6090 640 600 13950 24900 630 780 670 62400 22500 | 1110 4800 3300 1110 630 11230 750 11230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 17700 17650 17700 | 540
540
22
540
1080
3780
2700
34020
23 | 120
90
120
120
240
90
300
180
270
120 | 90 1050 67200 1050 210 2100 210 210 150 120 540 2250 139230 1260 | 12150 720 1080 1620 480 1890 1620 5400 18 | 5670 2700 1890 2460 5940 2490 660 2520 330 1980 2460 330 630 960 300 1830 360 7770 60300 1980 6300 6530 113400 66 | 300
300
900
450
0 240
0 6840 2 | 900 :
360
180 | 240 75 1680 90 120 3150 30 30 30 90 480 | 0 450
0 1200
0 600 | 1080
1080
1680
840
720
2310
420 | 600
540
23
30
30
30
30
30
240
720
1620
103
0 600
89 | 30 45
90 45
30 50 1950
40 210 | 120
600
45 240
360 390
45
360 2
1950 2190 26 | | Hyalodiscus stelliger Isthmia nervosa Lauderia borealis Leptocylindrus danicus Licmophora abbreviata Melosira nummuloides M. Borreri Navicula membranacea Nitzschia seriata N. longissima N. closterium N. paradoxa Pleurosigma spp. Planktoniella sol Pseudoeunotia doliolus Rhizosolenia alata R. Stolterfothii R. cylindrus R. robusta R. setigera R. styliformis R. styliformis R. styliformis R. calcar-avis R. hebetata f. semispina R. acumnata R. Bergonii R. Castracanei R. flagillissima Schrödella Schröderi Skeletonema costatum Stephanopyxis palmeriana Streptotheca thamensis Synedra spp. Thalassiosira spp. Thalassiosira spp. Thalassiothrix Frauenfeldii T. longissima | 30 3
30 3
30 8
30 8 | 300
510
300
120
1290
330
120
150
300
960
510
1590
165
330
5700
160
4440
500
150
150
150
150
150
150
15 | 180
300
1200
600
150
1050
1050
750
1950
4
300
150
28
4
33
150
300
300
3930
9
3
5400
15
6 | 540
510
510
0 2100
840
0 240
0 660
0 540
0 300
0 300
0 5580
240
0 150 | 360 270 150 90 180 210 90 285 60 150 45 630 570 210 1650 5820 | 1800
900
1200
150
750
2850
3000
450
900
37050
2100 | 510 225
480 330 210
510 75
840 810 990 75 | 30 1200
45 3120
30 960
90 1200
30 240
30 7680
90 1170 12000
240 | 300
60
150
90 2400
450
90 1050
450
75
150
300
45 | 0 5040
1560
390
0 7020
0 5460
390
0 11550
780
0 29250
1950
1200 | 360 34650
240 1950
60 300
60 300
60 2400
1050
4650
180 23550
900
450 | 240
2400
960
960
300 | 120 570 1165 120 570 1020 120 75 90 360 210 1950 210 60 1590 1290 750 1290 2280 2820 150 | 360 970 19 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 300 | 1800 49920 3780 4140 20700 3420 6900 3240 2760 540 1350 1830 17940 1260 180 8280 2160 1350 720 1380 25840 1440 41860 30240 41860 30240 1200 3060 28800 2700 | 35
45
3120
44
1
1
1
3300
1920
720
1
2640
480
1680
156
156
156
156 | 310 2310 1
510 630 1
510 150 1
120 1470 2280 0
050 630 210 420 600 240 1
560 1890 3240 4
450 560 1 | 3320 15360 1
18900 1
2540 89100 3
3420 150 7980 6720 95400 5850 3180 900 3120 960 6120 6120 6120 6120 6120 6120 6120 61 | 1650 26400
12000 12000 14850 72000 14850 72000 4800 192000 4800 1500 1200 26400 1620 29700 9600 858500 1056000 56750 19200 64800 750 14400 | 180 135
60 60
120 30 30
9000 1110
120 360 | 2250 4150
8910
2430
120 16200
4860
120 75
324
1560
2997 | 1200
1200
1200
1200
1200
1200
1300
0
1200
1300
0
3120
2
37800
1
33600
4
2100
7200 | 4350 52200 73950 6090 640 600 13950 24900 630 780 670 62400 22500 | 1110 4800 3300 1110 630 11230 750 1230 450 90 1200 300 60 1350 540 1500 1500 1500 1500 17700 22050 | 540 540 22 540 1080 3780 2700 34020 23820 | 120
90
120
120
120
120
1300
180
270
120
1350 | 90 1050 67200 1050 210 2100 210 210 150 120 540 2250 139230 1260 2760 12480 | 12150 720 1080 1620 480 1890 1620 5400 18 22410 162970 | 5670 2700 1890 2460 5940 2460 330 2460 330 630 360 960 300 1830 360 6300 36530 113400 66300 6530 113400 66300 | 300
300
900
450
120
60
240
1170
90 | 900 :
360 :
180 : | 240 75 1680 90 120 3150 30 30 30 480 30 1140 60 30 180 | 0 450
0 1200
0 600
0 720
0 720 | 1080 1080 1680 840 720 2310 420 60 720 5880 | 600
540 21
540 21
60 30
30 30
50 30
720 1620 103
600 894 | 30 45
90 45
30 30
50 1950
40 210
420 | 120
600
45 240
360 390
45
360 2
1950 2190 26 | - (12), 1-6. (in Japanese). - Hakodate Marine Observatory (1954). Ten-day marine and meteorological report of the Hakodate Marine Observatory. - Inoue, N., Sasaki T. & Oaki, R. (1953). "Kuroshio" Undersea Observation Chamber. Rec. Oceanogr. Whs. Japan, N. S. 1 (1), 52-62. (in Japanese). - Kawarada, Y. (1953). On the plankton associations in Japan Sea. Jour. Oceanogr. Soc. Japan 9 (2), 1-8. (in Japanese). - (1954). On the seasonal variations of the microplankton at Jogashima Island. Oceanogr. Rep. Centr. Meteor. Obs. 3 (4), 29-34. (in Japanese). - Kokubo, S. (1931-40). Plankton-jihô. nos. 1-15. The National Research Council of Japan. (in Japanese). - Maekawa, K., Inoue, T., Utsunomiya, T., Yanai, T., Chiba, T. & Tsuruta, T. (1953). On the seasonal change of oceanographical conditions and the plankton in Suho-Nada. *Yamaguchi-ken Naikai Suisanshikenjo Chosa Kenkyu Gyoseki* 5 (1), 73-83. (in Japanese). - Marumo, R. (1951). On the planktological conditions of Sagami Bay, from September, 1947 to July, 1948. Oceanogr. Rep. Centr. Meteor. Obs. 2 (1), 25-32. (in Japanese). - (1954a). Diatom plankton in the south of Cape Shionomisaki in 1953. Oceanogr. Mag. Centr. Meteor. Obs. 6 (3), 145-182. - of Kinkazan in winter. Jour. Oceanogr. Soc. Japan 10 (2), 77-84. (in Japanese). - Motoda, S. (1954). Handy Underway Plankton Catchers. Bull. Fac. Fish., Hokkaido Univ. 5 (2), 149-152. - Shimomura, T. (1953). A study of the production and distribution of the microplankton and their relation to oceanographical conditions II. *Bull. Japan Sea Reg. Fish. Res. Lab.* (1), 1-120. (in Japanese). - (1954a). Planktological studies on the warm Tsushima Current region I. Ann. Rep. Japan Sea Reg. Fish. Res. Lab. (1), 1-138. - (1954b). Planktological studies on the warm Tsushima Current region II. *Ibid*. (1), 139-152. - Tamura, T. (1951). On the seasonal change of the planktons making their appearance in the vicinity of Funka-Bay. Sci. Papers Hokkaido Fish. Sci. Inst. (8), 26-38. (in Japanese). - Ueno, F. (1953). Report of the plankton collected by R. M. S. Shumpu Maru in Osaka-Wan (Regular monthly collection) Jan.-Dec., 1952. *Kobe Mar. Obs.* (Mimeogr. in Japanese).