2. Dermatolithon Corallinae (CROUAN) FOSLIE

Pl. I, Figs. 1-4, Pls. II, IV & V

Foslie, in Børjesen, 1902, p. 402.

Japanese name. Hitogoromo (n. n.).

Habit and distribution in literature. - Epiphytic on Corallina officinalis, Furcellaria fastigiata, and Phyllophora membranifolia. Sweden; Denmark; Germany; Atlantic coasts of Europe and North America; Mediterranean Sea; Adriatic Sea.

Thallus in the form of reddish violet crusts, epiphytic on Corallina pilulifera, surrounding the host partly or entirely, or peltate with free margins and up to 2-5 mm diam., mostly polystromatic consisting of (2-)5-25 cell-layers, 170-700 μ thick in the inner thicker portion, monostromatic marginal portion narrow; hypothallium consisting of oblique cells which are sometimes elongated, 12-80(-90) μ, mostly over 30 μ, long, tapering towards the base; perithallium consisting of several layers of cells of various length, 17-50 μ long, 5-12 μ diam., transversal pits present but transversal cell-fusion lacking; cells of epithallium more or less triangular, 3-7 μ high, 5-9 μ diam.; sporangial conceptacles immersed, sometimes slightly convex, up to 190-250 μ broad, sporangia tetrasporic, 75-115 μ long; 25-60 μ diam., 5-10 sporangia standing on the periphery of floor in each conceptacle, central part of conceptacle floor occupied by a columella which is stained not so dark with anilin blue, orifice with poorly developed papillae; female conceptacles nearly flat or slightly elevated on surface, matured but unfertilized conceptacles 50-85 μ high and up to 110 μ broad, cystocarpic conceptacles slightly convex, 105-155 μ high and 165-210 μ broad, orifice with more or less well developed papillae; spermatangial conceptacles 55-85 μ high and 95-140 μ broad, sometimes coexisting with female conceptacles in one and the
same crust, slightly or not elevated on surface, immersed not so deeply, orifice short, sometimes extended into a spout, conceptacles in older crust frequently overgrown, spermatia narrowly cylindrical, 8 μ long and 2 μ diam., never produced at the end of long sterigmata.

This species has been known to be rather common in Europe and the North Atlantic coasts. It is reported here for the first time to occur in Japan. The writers’ specimens agree in general characters quite well with the descriptions of the species given by the authors cited above, except in dimensions; they are of somewhat thicker crusts consisting of a little fewer cell-layers. The sporangial conceptacles are always tetrasporic. Bisporic sporangia are not found in the writers’ specimens, though Rosenvinge (1917), Suneson (1943) and Taylor (1937, 1957) described only bisporic sporangial conceptacles in this species. However, the plant from the Mediterranean has been known to produce tetrasporic and that from the Adriatic to produce both bisporic and tetrasporic sporangia (cf. Suneson, 1943, p. 47). In a recent treatise on the bisporas in the Corallinaceae, Suneson (1950) reports that the present species from the west coast of Sweden is found to have both tetrasporas and binucleate, and even uninucleate, bisporas in the material collected in early May while the material collected in summer has been known to produce only uninucleate bisporas. The dimensions of the sporangia in the writers’ specimens are somewhat greater than those given by previous authors. Spermatangial conceptacles were described by Suneson (1943, p. 45) as very small; he gives a figure of a conceptacle resting on only six vertical cell rows (fig. 25 A). The male conceptacles illustrated by Rosenvinge (1917, fig. 189 A & B) rest on five and eight cell rows respectively. On the other hand, the male conceptacles in the writers’ specimens are somewhat larger as illustrated in two figures, one of which shows a conceptacle resting on eleven cell rows (Pl. V, fig. 4) and the other a conceptacle on seventeen cell rows (Pl. IV, fig. 6). Sterigmata have been observed by Rosenvinge (1917, fig. 159 A & C, fig. 189 A & B) in spermatangial conceptacles of Melobesia Lejolitii ROSANOFF and the present species but not by Suneson (1943) nor by the present writers. According to Suneson’s interpretation given under Melobesia Lejolitii (1937, p. 12), the sterigmata are nothing but long stretched spermatangium mother-cells which have become sterigma-like after having repeatedly cut off spermatangia in advanced seasons.

3. Melobesia zostericola FOSLIE

Pl. I, Figs. 5 & 6, Pls. III, VI-VIII

Foslie, 1907, p. 25 (as Melobesia (Heteroderma) zostericola); De Toni, 1924, p. 648.

Syn. Lithophyllum zostericolum FOSLIE f. tenuis FOSLIE, 1900, p. 5. Lithophyllum zostericolum FOSLIE; Yendo, 1902, p. 188; De Toni, 1905, p. 1795; Cotton, 1915, p. 113. Heteroderma zostericola FOSLIE, 1909, p. 56; Yendo, in Okamura, 1916,
Japanese name. Mokasa (Yendo).

Habit and distribution in literature. – Epiphytic on Zostera and Phyllospadix.
Pacific coast of Honshū, and Hokkaido, Japan; Saghalien; Korea; China.

Thallus at first small roundish patches, later becoming confluent and more or less overlapping, at last covering the host surface extensively, purple red in colour, monostromatic in the vegetative part, cells in section 5-9 μ long and 5-12 μ diam., cell-fusion frequent, each cell except those along the thallus margins cutting off obliquely a cover cell, cover cells in section 7-9 μ high and 7 μ diam., trichocysts lacking; thallus polystromatic in the neighborhood of conceptacles, composed of 3-6(-8) layers of cells, cells 7-9 μ diam., the second or third cell from the base elongated, up to 50 μ long, the basal cells or cells of hypothallium usually flattened; sporangial conceptacles nearly flat or slightly convex on surface, 60-100(-140) μ high* and (90-)100-170(-210) μ broad, floor single cell-layered, sporangia tetrasporic in the material from Hakodate but tetrasporic or bisporic in the material from Saghalien and Akkeshi, bispores binucleate, each sporangium standing on a small stalk cell in the periphery of the conceptacle, 40-85 μ long and 20-63 μ diam., central part of conceptacle floor occupied by a columella; female conceptacles slightly convex, 42-60(-105) μ high and 38-55 μ diam. when young, 55-84(-105) μ high and 84-126(-147) μ diam. when carpospores are formed, floor two cell-layered, orifice provided with a few papillae; spermatangial conceptacles slightly prominent in the center, 30-75 μ high and (40-)50-84(-112) μ broad, spermatia ellipsoidal, 4 μ long and 0.8 μ diam.; female and male conceptacles usually occurring separately in different crusts, but rarely together with each other in one and the same crust.

This species was first described by Foslie (1900) as Lithophyllum zostericolum f. tenuis on the basis of the Japanese plant collected by K. Yendo at Misaki,** Prov. Sagami, on the Pacific coast of middle Honshū. In placing the present species in the genus Melobesia instead of Heteroderma or Fosliella, the writers follow the idea of Kylin (1956, p. 209) in respect to the generic names.

Up to the present, the zonately divided sporangium has been the only described reproductive organ in this species (cf. De Toni, 1924, p. 648). The writers’ specimens, however, are often found to have tetrasporangial conceptacles together with the bisporangial

* The height of conceptacles in this species is measured from the base of the crust to the tip of the orifice, as has been done by Suneson (1943) in Melobesia species.

** The “Marine Laboratory at Sagami province” (Foslie, 1900, p. 5) is situated at Misaki.
ones in one and the same crust, and sometimes even to have tetrasporangia mingled with
the bisporangia in one and the same conceptacle. The bispores are always binucleate. On
the other hand, sexual plants bearing female and male conceptacles are also commonly
met with. The conceptacles of both sexes are rarely found in one and the same crust.
In surface view, the female crust has smaller vegetative cells than both the male and
sporangial crusts (cf. Pl. III, figs. 4 & 5). This difference in the size of the cells is
hardly discernible in sections. The thickness of the crust in Lithophyllum zostericolum
was given by Foslie (1900) as 60 μ for f. tenuis and as up to 150 μ for f. mediocre.
This range of thickness, 60–150 μ, was cited by Yamada (in Okamura, 1936) without
mentioning the forms in the Japanese diagnosis of Heteroderma zostericola. However, the
Californian f. mediocre was later raised to the rank of species by Foslie (1907, p. 27).
So the crust of Melobesia zostericola is now known from the literature to be 60 μ in
thickness. Comparing with this value, the writers' material has a thicker crust, being up
to 75 μ thick in the male, to 84–105 μ in the female, and to 100 μ (rarely even to 140 μ)
in the sporangial specimens.

Summary

1. Dermatolithon Corallinae (CROUAN) FOSLIE which has previously been reported
from Europe and the North Atlantic coasts, is here described as new to Japan on the basis
of the specimens collected in Hokkaido. Tetrasporic, not bisporic, sporangial conceptacles,
as well as procarpic, cystocarpic, and spermatangial conceptacles were observed.

2. Melobesia zostericola FOSLIE, a species originally described on the basis of the
material from Japan, is reported herein to be represented not only by the previously known
sporangial plant but also by female and male plants. Sporangial conceptacles are found to
have not only tetrasporangia but also bisporangia, either separately or coexistently.
Bispores are binucleate.

Literature

10 (1).

(3), 107–113.

—288—
Masaki & Tokida : Studies on the Melobesioideae of Japan. II

EXPLANATION OF PLATES

PLATE I

Dermatolithon Corallinae (Crouan) Foslie

Fig. 1. Habit of plant encircling a stem of *Corallina pilulifera* from Tachimachi-misaki, Hakodate. × 1.9

Fig. 2. Enlargement of a portion of the specimen shown in Fig. 1. × 6.7

Fig. 3. Habit of peltate plant attached to a branch of *Corallina pilulifera* from Tachimachi-misaki, Hakodate. × 2

Fig. 4. Enlargement of a portion of the specimen shown in Fig. 3. × 6.7

Melobesia zostericola Foslie

Fig. 5. Habit of plant growing on a leaf of *Phyllospadix iwatensis* from Akkeshi. × 2

Fig. 6. Enlargement of a portion of the specimen shown in Fig. 5. × 6.5
T. Masaki & J. Tokida: Studies on the Melobioideae of Japan. II
PLATE II

Dermatolithon Corallinae (Crouan) Foslie

Photomicrographs of vertical sections of plant encircling the stem of *Corallina pilulifera* from Nansehama, Hakodate. × 89

Fig. 1. Tetrasporangial crust.
Fig. 2. Procarpic and cystocarpic crust.
Fig. 3. Cystocarpic crust.
Fig. 4. Spermatangial crust.
Fig. 5. Section of a crust bearing both cystocarpic and spermatangial conceptacles.
T. Masaki & J. Tokida: Studies on the Melobesiideae of Japan. II
PLATE III

Melobesia zostericola Foslie

Photomicrographs of surface views (Figs. 1–5) and vertical sections (Figs. 6–10) of fertile specimens from Yamasedomari, Hakodate.

Fig. 1. Marginal portion of a crust with elongated, regularly arranged, marginal cells. (Cf. Pl. VI, Fig. 3). × 227.5

Fig. 2. Marginal portion of a crust with short, irregularly disposed, marginal cells. (Cf. Pl. VI, Fig. 4). × 227.5

Fig. 3. Sporangial crust. × 62

Fig. 4. Sporangial and cystocarpic crusts adjoining each other. × 62

Fig. 5. Spermatangial crust. × 62

Fig. 6. Spermatangial conceptacle. × 227.5

Fig. 7. Sporangial conceptacles. (Cf. Pl. VII, Fig. 1). × 154

Fig. 8. Sporangial conceptacle. (Cf. Pl. VII, Fig. 4). × 227.5

Fig. 9. Spermatangial conceptacle. × 560

Fig. 10. Cystocarpic conceptacle. × 227.5.
T. Masaki & J. Tokida: Studies on the Melobesioidae of Japan. II
PLATE IV

Dermatolithon Corallinae (CROUN) FOSILIR

Fig. 1. Vertical section through marginal portion of a crust. × 500

Fig. 2. Vertical section through marginal portion of a crust thickened abruptly within the margin. × 500

Fig. 3. Tetrasporangial conceptacle. × 275

Fig. 4. Section through the center of a young ring-shaped sporangial conceptacle. × 300

Fig. 5. Section through the periphery of a young ring-shaped sporangial conceptacle. × 300

Fig. 6. Spermatangial conceptacle. × 650
PLATE V

Dermatolithon Corallinae (Crouan) Foslie

Fig. 1. Vertical section of young procarpic conceptacle.
Fig. 2. Vertical section of procarpic conceptacle.
Fig. 3. Vertical section of cystocarpic conceptacle.
Fig. 4. Vertical section of spermatangial conceptacle with a spout.
PLATE VI

Melobesia zostericola Fosl

Fig. 1. Vertical section of the marginal monostromatic portion of a crust. $\times 650$

Fig. 2. Vertical section of the marginal monostromatic and distromatic portions of a crust. $\times 650$

Figs. 3. & 4. Surface view of the marginal portion of a crust. (Cf. Pl. III, Figs. 1 & 2). $\times 550$

Fig. 5. Vertical section of procarpic conceptacle. $\times 1300$

Fig. 6. Vertical section of spermatangial conceptacle. $\times 650$
PLATE VII

Melobesia zostericola Foslie

Vertical sections of sporangial conceptacles. × 400

Fig. 1. Tetra- and bisporangia in one and the same conceptacle. (Cf. Pl. III, Fig. 7).

Fig. 2. A large tetrasporangium lying on the central part of conceptacle floor, pushing aside the columella.

Fig. 3. A typical tetrasporangial conceptacle with a columella at the center of the floor.

Fig. 4. Bisporangial conceptacle with binucleate spores. (Cf. Pl. III, Fig. 8).
PLATE VIII

Melobesia zostericola Fossile

Fig. 1. Vertical section of sporangial conceptacle with young sporangia. × 550
Figs. 2. & 3. Vertical section of cystocarpic conceptacle. × 650