<table>
<thead>
<tr>
<th>Title</th>
<th>Instructions for use: Variations of Synlophoides of Orientostongylus ezoi, Tada, 1975 (Nematoda: Heligmonellidae) among different populations in Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fukumoto, Shin-ichiro; Ohbayashi, Masashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 33(1-2): 27-43</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1985-04-30</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/jjvr.33.1-2.27</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/2317</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00002374278.pdf</td>
</tr>
</tbody>
</table>
VARiATIONS OF SYNLOPHE OF ORiENTOSTRONGYLUS EZOENsIS TADA, 1975 (NEMAToDA: HELiGMONELLiDAE) AMONG DIFFERENT POPULATIONS IN JAPAN

Shin-ichiro FUKUMOTO¹ and Masashi OHBAYASHI²

(Received for publication January 28, 1985)

The cuticular longitudinal ridges on the body surface (synlophe) of the rat nematode, Orientostrongylus ezoensis TADA, 1975, from different host populations in Japan were examined. The number of longitudinal ridges was found to be inconsistent among the populations, i.e., (1) in adult females and males, (2) in nematodes from wild caught hosts, Rattus norvegicus, collected in geographically different areas of Japan, (3) in nematodes recovered from laboratory maintained rats. The number of longitudinal ridges was differed among the various body regions and increased posteriorly. The synlophe was also studied by a scanning electron microscopy.

Keywords: Orientostrongylus ezoensis, Rattus norvegicus, synlophe, Japan

INTRODUCTION

In Japan, O. ezoensis TADA, 1975 was found from Rattus norvegicus in Hokkaido,²¹ and recently was also reported in other regions of Japan.⁸,²³-²⁶

The number and distribution of longitudinal ridges (synlophe) have been used for determining species or subspecies of trichostrongylid nematodes.²,³,⁵,⁹-¹⁷

In this paper, the authors reexamined the specimens of O. ezoensis from wild hosts collected in several regions of Japan and the specimens maintained in laboratories using experimental animals. These specimens were examined especially for the differences in number and distribution of longitudinal ridges.

¹ Laboratory of Parasitology, Department of Veterinary Medicine College of Dairying, Ebetsu, 069-01, Japan
² Department of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060, Japan.
MATERIALS AND METHODS

The following specimens of natural infections from wild caught hosts were examined (fig. 1).

a) Orientostrongylus ezoensis in Hokkaido: The specimens were collected from R. norvegicus in Sapporo, Hokkaido.
b) O. ezoensis in Hyogo Prefecture: The specimens were isolated from R. norvegicus caught on the artificial island (Port Island) of Kobe, Hyogo Prefecture (Uga et al., 1981).
c) O. ezoensis in Ehime Prefecture: The nematodes were isolated from the small intestine of R. norvegicus which was preserved in formalin and collected in Matsuyama, Ehime Prefecture.
d) O. ezoensis in Aichi Prefecture: The nematodes sent by Dr. K. Makiya, Department of Parasitology, College of Medicine, Nagoya University, which were collected from R. norvegicus caught in Nagoya City, Aichi Prefecture.

Samples passaged in the laboratories were as follows.
a) O. ezoensis in Saitama Prefecture: The nematode was passaged in Saitama Medical College using laboratory rats. The nematode was originated from Rattus norvegicus, collected in Saitama Prefecture.
b) O. ezoensis in Hokkaido: The nematode was maintained in the Department of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, and originated from R. norvegicus, collected in Sapporo, Hokkaido (Fukumoto, 1979).

The specimens were treated with lacto-phenol for microscopy. Measurements and drawings were done using a camera lucida (OLYMPUS, BH2–DA).

The synlophe was studied by examining the surface of whole mounts and preparing cross sections of fixed and cleared nematodes. Cross sections were made at three locations, i.e., (a) in the esophageal region, (b) in the midbody and (c) near the proximal extremity of spicules in males or near the vulva in females. The longitudinal ridges were examined and counted using an interference microscope (OLYMPUS, BH2–NIS).

The specimens examined by a scanning electron microscope were fixed in 5% glutaraldehyde and dehydrated through a series of increasing concentrations of ethyl alcohol. After dipping the worms in isoamyle acetate, specimens were dried by critical-point drying using CO₂ substitution (HITACHI, HCP–1). Specimens were then coated with a layer of gold in an ioncoater, (EIKO, IB–2) and studied with a scanning electron microscope (SEM, AKASHI, MSM4T) at 15KV.
Figure 1 Geographical origin of specimens of *O. ezoensis* from *Rattus norvegicus*

A: Sapporo after TADA, 1975
B: Saitama sent by Dr. K. FUJIMOTO, Saitama Medical College
C: Tokyo after UCHIDA et al., 1984
D: Nagoya sent by Dr. K. MAKIYA, Nagoya University
E: Kobe after UGA et al., 1981 & 1983
F: Miki after UGA et al., 1982
G: Matsuyama sent by Prof. H. NISHIDA, Ehime University
RESULTS

The measurements of specimens are shown in tables 1 and 2, and the number of longitudinal ridges is shown in tables 3 and 4.

Although it was impossible to separate the specimens into different species or subspecies, variations in the number of longitudinal ridges at the midbody were observed among the groups of specimens from various localities.

The following characteristics were noted. The ridges were usually uninterrupted, and the longitudinal ridges were originated from the posterior margin of the cephalic vesicle (fig. 2). The ridges extend to the bursa in males and posterior to the anus in females (figs. 3–4). The number of transverse striations between longitudinal ridges is approximately 3 per μm (fig. 5).

The number of ridges increased posteriorly in males and females (tab. 3, figs. 6–11). The number of ridges at midbody varied from 20 to 26 in males and from 25 to 34 in females. The longitudinal ridges of females were significantly greater in number than those of males (P<0.05, tabs. 3 & 4). There was no significant difference in the number of longitudinal ridges between the populations collected from the wild caught R. norvegicus caught in Sapporo and those passaged in laboratory rats in Hokkaido.

DISCUSSION

Durette-Desset (1970, 1971) described that the genus Orientostrongylus stands at the base of the evolution branch of the subfamily Nippostrongylinae in the family Heligmonellidae, due to primitive characters in morphology, i.e., the pattern of synlophe, dorsal ray and synthetic shape of its caudal bursa. Durette-Desset & Liat (1974) confirmed the primitiveness of the genus Orientostrongylus by the findings from primitive hosts, i.e., O. krishnansamyi from Petauristinae, Iomys horsfieldi, and O. dendrogali from Tupaiidae (Primates).

In Japan, O. ezoensis was reported only from Rattus norvegicus.21,23–26) Fukumoto (1979) described that O. ezoensis infected laboratory maintained rats and mongolian gerbils, Meriones unguiculatus, but not mice (BALB/cA-nu/nu, BALB/cA-nu/± and ICR). The present authors recommend that further studies be done on the parasitic fauna of wild-rodents, especially, Rattus spp. and Mus spp., in Japan and in neighboring
<table>
<thead>
<tr>
<th>HOSTS</th>
<th>NATURAL INFECTION</th>
<th></th>
<th>LABORATORY MAINTAINED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Localities</td>
<td>Sapporo</td>
<td>Kobe</td>
<td>Matsuyama</td>
<td>Sapporo</td>
</tr>
<tr>
<td>No. examined</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Body length (mm)</td>
<td>2.82±0.12</td>
<td>1.48±0.28</td>
<td>(1.09 - 1.65)</td>
<td>2.09±0.14</td>
</tr>
<tr>
<td></td>
<td>(2.71 - 2.94)</td>
<td></td>
<td>(1.77 ; 1.90)</td>
<td>(1.85 - 2.33)</td>
</tr>
<tr>
<td>Width</td>
<td>95±9</td>
<td>54±8</td>
<td>(48 - 67)</td>
<td>55±9</td>
</tr>
<tr>
<td></td>
<td>(86 - 104)</td>
<td></td>
<td>(65 ; 71)</td>
<td>(43 - 76)</td>
</tr>
<tr>
<td>Esophagus length</td>
<td>318±22</td>
<td>239±16</td>
<td>(218 - 255)</td>
<td>346±26</td>
</tr>
<tr>
<td></td>
<td>(296 - 340)</td>
<td></td>
<td>(203 ; 206)</td>
<td>(306 - 391)</td>
</tr>
<tr>
<td>Nerve ring**</td>
<td>132±2</td>
<td>123±12</td>
<td>(111 - 135)</td>
<td>134±25</td>
</tr>
<tr>
<td></td>
<td>(129 - 133)</td>
<td></td>
<td>(113 ; 206)</td>
<td>(88 - 167)</td>
</tr>
<tr>
<td>Excretory pore**</td>
<td>194±8</td>
<td>199±8</td>
<td>(149 ; 158)</td>
<td>185±33</td>
</tr>
<tr>
<td></td>
<td>(186 - 201)</td>
<td></td>
<td>(141 - 247)</td>
<td>(141 - 247)</td>
</tr>
<tr>
<td>Spicule length</td>
<td>91±7</td>
<td>73±9</td>
<td>(59 - 83)</td>
<td>90±12</td>
</tr>
<tr>
<td></td>
<td>(84 - 98)</td>
<td></td>
<td>(78 ; 78)</td>
<td>(75 - 117)</td>
</tr>
</tbody>
</table>

* Values mean ± SD, range in parentheses
** Distance from anterior extremity

Measurements in μm unless otherwise indicated
<table>
<thead>
<tr>
<th>Localities</th>
<th>Sapporo</th>
<th>Kobe</th>
<th>Matsuyama</th>
<th>Sapporo</th>
<th>Saitama</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. examined</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Body length (mm)</td>
<td>3.91 ± 0.64</td>
<td>2.58 ± 0.28</td>
<td>2.35 ± 0.25</td>
<td>2.90 ± 0.55</td>
<td>2.96 ± 0.28</td>
</tr>
<tr>
<td>(3.48 ± 0.64)</td>
<td>(2.60 ± 3.48)</td>
<td>(2.07 ± 2.63)</td>
<td></td>
<td>(2.09 ± 4.13)</td>
<td>(2.29 ± 3.28)</td>
</tr>
<tr>
<td>Width</td>
<td>90 ± 7</td>
<td>48 ± 4</td>
<td>60 ± 4</td>
<td>57 ± 12</td>
<td>81 ± 9</td>
</tr>
<tr>
<td>(84 ± 98)</td>
<td>(43 ± 52)</td>
<td>(54 ± 65)</td>
<td></td>
<td>(41 ± 75)</td>
<td>(65 ± 98)</td>
</tr>
<tr>
<td>Esophagus length</td>
<td>308 ± 22</td>
<td>291 ± 27</td>
<td>260 ± 25</td>
<td>362 ± 51</td>
<td>301 ± 41</td>
</tr>
<tr>
<td>(298 ± 326)</td>
<td>(260 ± 326)</td>
<td>(228 ± 304)</td>
<td></td>
<td>(300 ± 431)</td>
<td>(257 ± 381)</td>
</tr>
<tr>
<td>Nerve ring**</td>
<td>166 ± 24</td>
<td>161 ± 22</td>
<td>128 ± 15</td>
<td>140 ± 23</td>
<td>169 ± 32</td>
</tr>
<tr>
<td>(120 ± 189)</td>
<td>(139 ± 183)</td>
<td>(113 ± 143)</td>
<td></td>
<td>(95 ± 167)</td>
<td>(120 ± 283)</td>
</tr>
<tr>
<td>Excretory pore**</td>
<td>206 ± 11</td>
<td>190 ± 7</td>
<td>159 ± 22</td>
<td>265 ± 38</td>
<td>195 ± 42</td>
</tr>
<tr>
<td>(198 ± 226)</td>
<td>(183 ± 196)</td>
<td>(135 ± 182)</td>
<td></td>
<td>(149 ± 250)</td>
<td>(152 ± 283)</td>
</tr>
<tr>
<td>Vulva***</td>
<td>130 ± 10</td>
<td>140 ± 16</td>
<td>126 ± 30</td>
<td>125 ± 18</td>
<td>150 ± 31</td>
</tr>
<tr>
<td>(122 ± 144)</td>
<td>(112 ± 156)</td>
<td>(133 ± 156)</td>
<td></td>
<td>(101 ± 167)</td>
<td>(126 ± 167)</td>
</tr>
<tr>
<td>Anus***</td>
<td>72 ± 10</td>
<td>58 ± 10</td>
<td>41 ± 6</td>
<td>57 ± 15</td>
<td>66 ± 11</td>
</tr>
<tr>
<td>(62 ± 85)</td>
<td>(52 ± 74)</td>
<td>(33 ± 48)</td>
<td></td>
<td>(33 ± 69)</td>
<td>(48 ± 80)</td>
</tr>
</tbody>
</table>

* Measurements in μm unless otherwise indicated
Values mean ± SD, range in parentheses
** Distance from anterior extremity
*** Distance from posterior extremity
<table>
<thead>
<tr>
<th>Hosts</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anterior **</td>
<td>Midbody</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mean ± SD, range in parentheses; N means number of specimens examined
** Cross section made in esophageal region
*** Cross sections made in near proximal extremity of spicules in males or anterior to vulva in females
TABLE 4 Number of longitudinal ridges (midbody) of *O. ezoensis* collected from different hosts in Japan

<table>
<thead>
<tr>
<th>HOSTS</th>
<th>LOCALITY HOST COLLECTED OR MAINTAINED</th>
<th>NUMBER OF LONGITUDINAL RIDGES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rattus norvegicus</td>
<td>Sapporo, Hokkaido</td>
<td>23 ± 1 (21–24) 26 ± 1 (25–28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 15 N = 21</td>
</tr>
<tr>
<td>R. norvegicus</td>
<td>Kobe, Hyogo Prefecture</td>
<td>24 ± 1 (23–26) 26 ± 1 (25–28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 5 N = 5</td>
</tr>
<tr>
<td>R. norvegicus</td>
<td>Matsuyama, Ehime Prefecture</td>
<td>25, 25 28, 30, 32, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 2 N = 4</td>
</tr>
<tr>
<td>Laboratory rat</td>
<td>Hokkaido University, Sapporo</td>
<td>23 ± 1 (21–24) 26 ± 1 (25–28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 25 N = 23</td>
</tr>
<tr>
<td>Laboratory rat</td>
<td>Saitama Medical College, Saitama Prefecture</td>
<td>22 ± 2 (20–24) 29 ± 2 (25–32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 15 N = 13</td>
</tr>
</tbody>
</table>

* Mean ± SD, range in parentheses; N means number of specimens examined

areas. At present, the origin and the invasion route of the genera *Rattus* and *Mus* into the Japanese Archipelago remain unclear. The authors suggest that the origin of rats in Japan be given further reconsideration and study.

The number of longitudinal ridges is used as an important criterion for classification of species of the genus *Orientostrongylus* Durette-Desset, 1970. Up to now, however, variations in the number of longitudinal ridges in the species have not been reported.

Lichtenfels (1971) revealed considerable differences in the synlophe among various body regions of *Citellinema grisei* (Trichostongyloidea: Heligmosomidae) of *Sciurus griseus*.

Lichtenfels (1974) also reported the consistent number and distribution of longitudinal ridges of *Nippostrongylus brasiliensis* (Travassos, 1914) (Heligmonellidae: Nippostrongylinae), a parasite of rats, among several populations. In his study, no differences in synlophe were found among five populations: (a) each raised in laboratory rats, hamsters and mice for a long period; (b) raised in different hosts; (c) immature and stunted nematodes; (d) different sizes or ages of nematodes; (e) wild caught hosts from widely separated geographic areas.

Lichtenfels (1977, 1983), and Lichtenfels & Pilitt (1983a, b) described that the differences in synlophe of the genera *Cooperia*, *Nematodirella* and *Nematodirus* (Trichostrongyloidea: Trichostrongylidae) are very useful for identifying closely related species. In these genera, the synlophe provides a character for identifying...
Synlophe of Orientostrongylus ezoensis

<table>
<thead>
<tr>
<th>SPECIES & AUTHORS</th>
<th>HOST</th>
<th>LOCALITY</th>
<th>NUMBER OF LONGITUDINAL RIDGES (MIDBODY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>male</td>
</tr>
<tr>
<td>O. tenorai</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURETTE-DESSET, 1970</td>
<td>Mus musculus</td>
<td>Afghanistan</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandicota bengalensis</td>
<td>India</td>
</tr>
<tr>
<td>OHBAYASHI & KAMIYA, 1980</td>
<td>Bandicota spp.</td>
<td>Thailand</td>
<td>15</td>
</tr>
<tr>
<td>OW YANG et al., 1983</td>
<td>Rattus spp.</td>
<td>Malaysia</td>
<td>ND*</td>
</tr>
<tr>
<td>O. chinensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURETTE-DESSET, 1970</td>
<td>Cricetulus barabensis</td>
<td>China</td>
<td>20</td>
</tr>
<tr>
<td>O. brevispiculais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINGH, 1962</td>
<td>Rattus norvegicus</td>
<td>India</td>
<td>12</td>
</tr>
<tr>
<td>O. dendrogali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURETTE-DESSET & LIAT, 1974</td>
<td>Dendrogale melanula</td>
<td>Malaysia</td>
<td>14</td>
</tr>
<tr>
<td>O. krishnansamyi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURETTE-DESSET & LIAT, 1974</td>
<td>Iomys horsefieldi</td>
<td>Malaysia</td>
<td>16</td>
</tr>
<tr>
<td>OW YANG et al., 1983</td>
<td>Rattus spp.</td>
<td>Malaysia</td>
<td>ND</td>
</tr>
<tr>
<td>O. ezoensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TADA, 1975</td>
<td>Rattus norvegicus</td>
<td>Japan</td>
<td>23</td>
</tr>
<tr>
<td>Present authors, 1985</td>
<td>Rattus norvegicus</td>
<td>Japan</td>
<td>20–26</td>
</tr>
<tr>
<td>O. ratti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHBAYASHI & KAMIYA, 1980</td>
<td>Rattus spp.</td>
<td>Thailand</td>
<td>19</td>
</tr>
<tr>
<td>O. siamensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHBAYASHI & KAMIYA, 1980</td>
<td>Rattus surifer</td>
<td>Thailand</td>
<td>21</td>
</tr>
</tbody>
</table>

* ND: not described.
Figure 12 Geographical distribution of eight species of the genus Orientostrogylus

Od: *O. dendrogali* Durette-Desset et Liat, 1974
Oe: *O. ezoensis* Tada, 1975
Ok: *O. krishnansamyi* Durette-Desset et Liat, 1974
Or: *O. ratti* Ohbayashi et Kamiya, 1980
Os: *O. siamensis* Ohbayashi et Kamiya, 1980
Ot: *O. tenorai* Durette-Desset, 1970
species by female specimens.

Measures & Anderson (1983 a, b, c, 1984) identified Obeliscoides cuniculi (Graybill, 1923) Grahlbill, 1924 into two subspecies, O. cuniculi cuniculi (Graybill, 1923) and O. cuniculi multistriatus Measures et Anderson, 1983 using characteristics of the synlophe, incidence among wild hosts and hybridization experiments with two subspecies.

In the case of O. ezoensis, the number of ridges differs among various body regions, among populations from geographically different hosts, and between sexes. The variations in number did not change between the wild-caught host population and the laboratory maintained population using rats.

The ridges at the midbody of O. ezoensis are greatest in number among the eight species of the genus Orientostrongylus in Asia (tab. 5, fig. 12). The ridges seem to be greater in number in the north-eastern species than in the south-western species. It was considered that the number of ridges might have increased during the geographical spreading of their hosts, mainly Rattus spp..

Acknowledgements

The authors express their gratitude to Drs. K. Fujimoto, Saitama Medical College, K. Makiya, Nagoya University, S. Uga, Kobe University and Prof. H. Nishida, Ehime University, for sending us the nematode specimens. We would especially like to extend our appreciation to Drs. K. Yagi, Hokkaido Institute of Public Health, and Y. Oku and M. Kamiya, Hokkaido University, for their constant advice, enthusiasm and kind assistance.

References

14) MEASURES, L. N. & ANDERSON, R. C. (1983a): New subspecies of the stomach worm, Obeliscoides cuniculi (Graybill) of lagomorphs Ibid., 50, 1-14

16) MEASURES, L. N. & ANDERSON, R. C. (1983c): Development of the stomach worm, Obeliscoides cuniculi (Graybill), in lagomorphs, woodchucks and small rodents Ibid., 19, 225-233

EXPLANATION OF PLATES

PLATE I

Figs. 2-5 Scanning electron micrographs of adult *O. ezoensis* from *Rattus norvegicus* in Hokkaido

Fig. 2 Cephalic region of female. Note the cross striations at anterior part of cephalic vesicle and the longitudinal cuticular ridges extending to the posterior margin of cephalic vesicle. Scale 50 μm

Fig. 3 Bursa of male. Note the longitudinal ridges extending to the bursa. Scale 30 μm

Fig. 4 Posterior end of female. Note the longitudinal ridges extending posterior to the anus. Scale 50 μm

Fig. 5 Fine striations on body surface (midbody). Scale 1 μm
Plate II

Figs. 6–11 Cross sections of males and females of *O. ezoensis* in various body regions

Figs. 6–8 Males
Fig. 6 At esophageal region
Fig. 7 Midbody
Fig. 8 Near the proximal extremity of spicules

Figs. 9–11 Females
Fig. 9 At esophageal region
Fig. 10 Midbody
Fig. 11 Near vulva