<table>
<thead>
<tr>
<th>Title</th>
<th>MYSIDACEA AND EUPHAUSIACEA COLLECTED IN THE SOUTH-EAST OF HOKKAIDO, JAPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TANIGUCHI, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学水産学部研究彙報 = BULLETIN OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 20(2): 43-59</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1969-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/23379</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>20(2)_P43-59.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
The plankton samplings were made on board the training ship "Oshoro Maru" of Hokkaido University at a station Os 0801, 42°10'N, 142°41'E, at the south of Cape Erimo on May 22, 1964, at the 5 stations Os 1301-Os 1305 on a line, 42°00'N, 146°00'E-42°49'N, 144°33'E, in south-east of Kushiro on May 7-9, 1965 and at a station Os 2301 which was located at the same position as Os 1301 on April 23, 1967 (Fig. 1). The samples were obtained from 3-7 layers between the surface and a maximum depth about 3000 m by towing several numbers of 56 cm-ring closing nets horizontally for nearly one hour. General accounts of this net are given by Motoda (1967). Hydrography of the sampling area for each year and data of samplings are given in Data Record of Oceanographic Observations and Exploratory Fishing, Hokkaido University, Nos. 9-10 and 12 (1965, 1966, 1968).

In this paper 5 species of Mysidacea and 5 species of Euphausiacea are reported. Vertical distribution and vertical movement of these species are discussed.

Fig. 1. Location of stations. Os 0801, May 22 1964: Os 1301-Os 1305, May 7-9 1965: Os 2301, April 23 1967

* Laboratory of Planktology, Faculty of Fisheries, Hokkaido University

(北海道大学水産学部浮遊生物学講座)
The author wishes to express his sincere thanks to Professor Sigeru Motoda, Dr. Teruyoshi Kawamura and Dr. Takashi Minoda of Hokkaido University, for their encouragement during this study. He is grateful to Dr. Naoyoshi Ii for his kind criticism of the manuscript.

Order Mysidacea

Family Lophogastridae

1. *Gnathophausia gigas* Willemoes-Suhm, 1873

(Fig. 2a–c)

Gnathophausia drepanephora, Holt & Tattersall, 1905, p. 113, figs. 1–7.
Gnathophausia gigas, Ortmann, 1906, p. 36, pl. 2, figs. 1a–b.
Gnathophausia gigas, Banner, 1948, p. 357, pl. 1, fig. 1a–c.

Fig. 2. *Gnathophausia gigas* W. -Suhm, a. juvenile from left side, b. right antennal scale, c. telson with left uropod
Three juvenile specimens are obtained. They have long rostrum and long post dorsal spine projected upwards, which are the characteristics of immature form of *Gnathophausia gigas*. Antennal scale is furnished with 44 hairs on the inner margin and 4 sharp denticles on the outer margin.

Length: 29–31 mm.

Distribution: Common in the deep water of almost whole areas of the world oceans, at a temperature of 4°C (Fage, 1941). Bering Sea and North Pacific Ocean (Ortmann, 1906; W.M. Tattersall, 1951; Pequegnat, 1965); Equatorial Pacific Ocean (Ortmann, 1906, 1908; Fage, 1941; W.M. Tattersall, 1951); South Pacific Ocean (Fage, 1941; Pequegnat, 1965); Kagoshima Bay (W.M. Tattersall, 1951); from South Atlantic Ocean to Greenland (G.O. Sars, 1885; Holt & Tattersall, 1905; Ortmann, 1906; W.M. Tattersall, 1951; Illig, 1930; Fage, 1941; O.S. Tattersall, 1955); Indian Ocean (G.O. Sars, 1885; W.M. Tattersall, 1939b; O.S. Tattersall, 1955); Antarctic Ocean (O.S. Tattersall, 1955).

Family Eucopiidae

2. *Eucopia unguiculata* (Willemoes-Suhr, 1875)

(Fig. 3a–c)

Eucopia australis, (parts) G.O. Sars, 1885, p. 55, pls. 9–10, figs.

Eucopia unguiculata, Hansen, 1910, p. 20, pl. 1, fig. 3a–b.

Eucopia hansenii, Fage, 1942, p. 47, figs. 28, 30, 32.

Eucopia unguiculata, Banner, 1948, p. 359, pl. 1, fig. 2a–c.

Eucopia unguiculata, O.S. Tattersall, 1955, p. 50, fig. 4a–b.

This species was separated by Willemoes-Suhr (1875, cited from O.S. Tattersall, 1955) from a closely allied species, *Eucopia australis* by the characteristics that in *E. unguiculata* eyes are smaller, setiferous lobe on the third segment of antennal peduncle is smaller, convexity of frontal margin of carapace is inferior, convexity of outer margin of antennal scale is also inferior and terminal segment of exopod of uropod is shorter than in *E. australis*. Banner (1954b) considered that *E. unguiculata* is synonymous with *E. australis* because there are large variations in the above all characters. In the present specimens there is no variation in size of eyes and setiferous lobe on antennal peduncle within the specimens of 16–35 mm in body length. Terminal segment of uropod is as long as or slightly longer than breadth, being identical with *E. unguiculata* described by O.S. Tattersall (1955).
Fig. 3. *Eucopia unguiculata* (W. Suhm), a. first antennal peduncle of male, b. antennal scale, c. telson with right uropod

However, ratio of breadth to length in convexed portion of frontal margin of carapace varies 3–5, and the convexity of outer margin of antennal scale is larger in large specimens than in small specimens.

Length: 16–35 mm.

Distribution: Common in the deep water from Bering Sea to off Peru. Sea of Okhotsk, Bering Sea and North Pacific Ocean (Ortmann, 1906; Banner, 1948; W.M. Tattersall, 1951); Equatorial Pacific Ocean (Hansen, 1912); South Pacific Ocean (W.M. Tattersall, 1951); Central and subpolar regions of Atlantic and Indian Oceans (G.O. Sars, 1885; Hansen, 1910; Illig, 1930; Leavitt, 1938; W.M. Tattersall, 1939b, 1951; O.S. Tattersall, 1955).

Family Mysidae

3. *Boreomysis californica* Ortmann, 1894

(Fig. 4a-d)

Boreomysis media, Hansen, 1912, p. 190, pl. 1, fig. 5a-i.
Boreomysis californica, Banner, 1948, p. 367, pl. 4, fig. 5a-i.
Boreomysis kincaidi, Banner, 1948, p. 362, pl. 2, fig. 3a-j.
Boreomysis californica, W.M. Tattersall, 1951, p. 52, figs. 9–10.

In the present specimens, rostrum is acute and well developed, projecting upwards. The eyes in grown specimens are slightly smaller than those reported by
W.M. Tattersall (1951). Number of spines on telson varies between 12–23. The length of antennal scale is as long as first antennal peduncle, shorter than in figures of W.M. Tattersall (1951).

Length: 12 mm (largest specimen).

Distribution: Common in Pacific Ocean from 13°S to Bering Sea. Sea of Okhotsk, Bering Sea and North Pacific Ocean (Hansen, 1912; Banner, 1948, 1954b); South Pacific Ocean (Hansen, 1912; W.M. Tattersall, 1951); scarce in Atlantic and Indian Oceans (Illig, 1930).

4. *Meterythrops robusta* Smith, 1879

(Fig. 5a-e)

Meterythrops robusta, W.M. Tattersall, 1951, p. 113, fig. 35a-d.

Banner (1948) examined the variations in size and shape of eyes of *Meterythrops robusta* and found great individual variation which has no specific significance. Further, he considered that *M. microphthalmia* reported by W.M. Tattersall (1951) as a new species may be synonymous with *M. robusta* (Banner,
1954c). Although in the present seven adults, eyes are very small and antennal scale is slender like *M. microphthalmalma* described by W.M. Tattersall (1951), there are spines on the inner margin of inner uropod varying the number from 15 to 34, that is identical with *M. robusta*. No specimen having no spine on inner uropod as observed by W.M. Tattersall (1951) is found in the present collections.

Length: 11–18 mm.

Distribution: Mainly in polar and subpolar regions of Pacific Ocean near Unimak, Aleutian Islands and west coast of America (W.M. Tattersall, 1939a, 1951; Banner, 1948); North and Arctic parts of Atlantic Ocean (Zimmer, 1904). W.M. Tattersall (1951) recorded *M. microphthalmalma* from western North Pacific Ocean around Japan.

5. *Acanthomysis dimorpha* II, 1936

(Fig. 6a-c)

Acanthomysis dimorpha II, 1936, p. 593, figs. 33–46.
Acanthomysis dimorpha, II, 1964, p. 473, fig. 120a-g.
A long row of spines consisting of 25 spines on female, 26 spines on male, along inner margin of the inner uropod is a characteristic of this species. Sexual dimorphism of telson is distinct.

Length: Male, 12 mm; female, 10 mm

Distribution: This species was reported by Ii (1936) from east coast of Korea for the first time.

Order Euphausiacea

Family Euphausiidae

6. *Euphausia pacifica* Hansen, 1911

Euphausia pacifica Hansen, 1911, p. 28, fig. 10a-b.

Euphausia pacifica, Hansen, 1912, p. 241, pl. 7, fig. 5a-b.

Euphausia pacifica, Hansen, 1915, p. 81, pl. 1, fig. 2a-g.

Euphausia pacifica, Banner, 1949, p. 33, pl. 3, fig. 24a-d.

Euphausia pacifica, Boden *et al.*, 1955, p. 333, fig. 24a-c.

Euphausia pacifica, Komaki & Matsue, 1958, p. 140, fig. 8a-c.

Euphausia pacifica, Komaki, 1960, p. 191, fig. 5a-e.

7. *Thysanoessa longipes* Brandt, 1851

Thysanoessa longipes, Hansen, 1911, p. 38, 40.
Thysanoessa longipes, Hansen, 1915, p. 87, pl. 1, fig. 3a-d, pl. 2, fig. 1a-c.
Thysanoessa longipes, Banner, 1949, pl. 21.
Thysanoessa longipes, Boden et al., 1955, p. 352, fig. 34a-c.
Thysanoessa longipes, Komaki & Matsue, 1958, p. 148, fig. 10a-c.
Thysanoessa longipes, Komaki, 1960, p. 129, figs. 6a, 6d.

8. *Thysanoessa inspinata* Nemoto, 1963

Thysanoessa inspinata Nemoto, 1963, p. 41, fig. 2a-c.
Thysanoessa longipes (spineless form), Komaki, 1960, p. 192, fig. 6b-c.

Recently this species was separated from *Thysanoessa longipes* by differences in position of lateral denticle on lower margin of carapace and size of terminal and proximal processes of male copulatory organ (Nemoto, 1963), i.e., in *Thy. inspinata* lateral denticle is located far on posterior part of carapace, and terminal and proximal porcesses of male copulatory organ are equal in size and shorter than those of *Thy. longipes*. According to Nemoto (1963), spineless form of *Thy. longipes* also exists, which is distinguished easily from *Thy. inspinata* by the distinct differences in above mentioned characteristics between these two species. In the present collection, this species exceeds *Thy. longipes* in individual number and no spineless form of *Thy. longipes* is found.

Distribution: Similar to *Thy. longipes*, somewhat spreading further to southern area (Brinton, 1962 as “Unspine form of *Thy. longipes*”; Ponomareva, 1963

9. *Thysanoessa inermis* (KRØYER), 1846

Only one heavily damaged female specimen is obtained at 50–65 m depth at station Os 2301. This specimen is identified as *Thysanoessa inermis* by a post dorsal spine on the sixth abdominal segment.

10. *Tessarabrachion oculatus* HANSEN, 1911

Tessarabrachion oculata Hansen, 1911, p. 47.
Tessarabrachion oculatum, Hansen, 1915, p. 103, pl. 4, fig. 1a-m.
Tessarabrachion oculatum, Banner, 1949, p. 32.
Tessarabrachion oculatus, Boden *et al.*, 1955, p. 362, fig. 39a-c.
Tessarabrachion oculatus, Komaki, 1960, p. 194, figs. 7a-e, 8a-e.

Length: 18–25 mm.

Vertical Distribution

Reliable quantitative data are available on the collection at station Os 2301 (Tables 1–4). In this sampling, the volume of water filtered by the net and the depth at which the net was towed were recorded with a depth-distance meter mounted at a net positioned at the deepest layer. The number of euphausiids counted is converted to the value per 1000 m3 of water. In other samplings, no depth-distance meter was used, so that the absolute number of animals per unit volume of water is not accurately known, only the ratio of occurrence of animals at each different depth in one tow is being available.

Areal and annual variation:

There is a great variation in the total catches of euphausiids in the stations, and the number of years at the same station. Station Os 0801 quite differs from the other stations in euphausiid population, i.e., no adult specimen appears at this station (Table 5). In the south-east of Kushiro, great numbers of adults were captured at station Os 2301 in May 1967. Contrary to the 1967 catch, it is poor at the same position (Station Os 1301) (Table 5) in April 1965. In 1965, swarming of euphausiids is observed at station Os 1303. Hydrographic data indicate that stations Os 2301 (1967) and Os 1303 (1965) are located at the boundary of the currents (*Data Rec. Oceanogr. Obs. Expl. Fish.*, Nos. 10, 12). Suzuki (1963b) mentioned that there is a swarming of *E. pacifica* around the east coast of Hokkaido, causing marked DSL, and that the area corresponds to the current
boundary between Tsugaru Warm Current and Oyashio Current. The station Os 0801 where euphausiid larvae are abundant, no adults were found (Table 5), the station probably has shifted from the boundary and is located in a gyre of the Tsugaru Warm Current Extension having about 400 m thickness with temperature of 10.3°C–3.2°C, which is higher than in Oyashio Current (Data Rec. Oceanogr. Obs. Expl. Fish., No. 9).

Mysidacea species do not show any marked areal and annual variations due to their bathypelagic habit.

Euphausia pacifica (Table 1):

Daily migration of this species is clear in both adults and juveniles.

The maximum number occurs at a 100–135 m depth in daytime and at the surface at night, although a certain number of adults remain in deeper water than 150 m at night. The distribution of this species as a whole ranges from the surface to a 150 m depth so far as the present observations are concerned. Number integrated in 0 m through 400 m in daytime is small compared with that at night. This might be partly caused by the net avoidance, though Brinton (1967) mentioned the net avoidance of this species in shallow layer is negligible. The net avoidance can not be neglected when the sampling is made with a relative small net towed rather slowly as in the present samplings. Even though, day-night difference of vertical distribution is too great, it suggests that there is a real vertical migration of this species.

Table 1. Occurrence of adults and juveniles of _Euphausia pacifica_ at station Os 2301 in the south-east of Kushiro in daytime and at night (individual number/1000 m³)

<table>
<thead>
<tr>
<th>Depth of sampling (m)</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Juvenile</td>
</tr>
<tr>
<td>7</td>
<td>3573</td>
<td>544</td>
</tr>
<tr>
<td>50–65</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>100–135</td>
<td>531</td>
<td>50</td>
</tr>
<tr>
<td>150–200</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>200–265</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>245–335</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>295–400</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>613</td>
<td>95</td>
</tr>
</tbody>
</table>

The preceding investigators also observed the daily vertical migration of this species. Their reports indicate that the animals go down to or exceed 1000 m depth in daytime, though major population still appears in upper 200 m (Hansen, 1915; Banner, 1949; Brinton, 1962; Ponomareva, 1963).

Motoda & Anraku (1954) and Brinton (1962, 1967) observed noticeable diel vertical migration of _E. pacifica_ in the Sea of Japan and in the northern North
Pacific Ocean. Suzuki & Ito (1967) mentioned that *E. pacifica* is distributed only at the first layer of DSL and migrates vertically with a rise and down of isolumes of 10^{-5}–10^{-7} lux in the northwestern area of the North Pacific Ocean.

It is summarized that *E. pacifica* is distributed mainly in 100–150 m layer in daytime and rises to 0–100 m layer at night in western part of the northern North Pacific Ocean (Ponomareva 1963; Suzuki 1963a, 1963b; Suzuki & Ito, 1967), while it is distributed in 200–300 m layer in daytime and in 0–100 m layer at night in the eastern North Pacific Ocean especially in its southern part such as in the California Current (Brinton, 1962, 1967). The difference of vertical distribution of this species between the northern and southern areas will be caused by difference of intensity of underwater illumination or other factors, though this is not examined in the present study.

Thysanoessa longipes, Thy. inspinata (Tables 2, 3):

Although the number of collected specimens is small, the vertical migration is observed in both species similarly to that of *E. pacifica*. Brinton (1962) mentioned

Table 2. Occurrence of adults and juveniles of *Thysanoessa longipes* at station Os 2301 in the south-east of Kushiro in daytime and at night (individual number/1000 m³)

<table>
<thead>
<tr>
<th>Depth of sampling (m)</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Juvenile</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>50–65</td>
<td>17</td>
<td>66</td>
</tr>
<tr>
<td>100–135</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>150–200</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>200–265</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>245–335</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>295–400</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>116</td>
</tr>
</tbody>
</table>

Table 3. Occurrence of adults and juveniles of *Thysanoessa inspinata* at station Os 2301 in the south-east of Kushiro in daytime and at night (individual number/1000 m³)

<table>
<thead>
<tr>
<th>Depth of sampling (m)</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Juvenile</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50–65</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>100–135</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>150–200</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>200–265</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>245–335</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>295–400</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>17</td>
</tr>
</tbody>
</table>
that *Thy. longipes* (Spine form) migrates upwards from 140–280 m to 0–140 m at night, while no vertical movement of Unspine form (*Thy. inspinata*) is observed.

Thy. longipes seems to inhabit a shallower layer than in *Thy. inspinata* in the present observations as reported by Nemoto (1966). The depth of distribution of the latter species goes down to a 1000 m depth in daytime (Os 1301) (Table 5). According to several authors, both species mainly live in the upper 500 m layer and their maximum depth is 1000 m (Hansen, 1915; Banner, 1949; Brinton, 1962; Nemoto, 1962, 1966; Ponomareva, 1963).

Day-night difference in integrated number of *Thy. inspinata* through upper 400 m is greater than that of *Thy. longipes*. This might mean that net avoidance capability of *Thy. inspinata* is higher than that of *Thy. longipes* despite the smaller size of the former species.

Tessarabrachion oculatus (Table 4): Night movement of adults and juveniles to upper water is observed. However, the greatest number of adults appears in 295–400 m layer at night, suggesting that the distribution extends further to a deeper water level than 400 m. Brinton (1962) illustrated the vertical distribution of this species in daytime and at night, and suggested that the comparable numbers of specimens in the upper layer remain in deeper water (700–1000 m) at night. Banner (1949) also recorded this species from a level as deep as 100–1500 m, off Alaska. Thus the distribution of this species likely extends to deep water, 1000 m or more, although Ponomareva (1963) reported that *T. oculatus* is not found below 500 m depth. The scarcity in distribution might cause the missing in samples from the deep water.

Table 4. Occurrence of adults and juveniles of *Tessarabrachion oculatus* at station Os 2301 in the south-east of Kushiro in daytime and at night (individual number/1000 m²)

<table>
<thead>
<tr>
<th>Depth of Sampling (m)</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Juvenile</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>50–65</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>100–135</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>150–200</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>200–265</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>245–335</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>295–400</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Mysidacea:

All species collected in the present study belong to meso- and bathy-pelagic forms except *Acanthomysis dimorpha* which is recognized as a coastal and semi-benthic species (Os 1305) (Table 5). Pelagic forms other than *A. dimorpha* do not
Table 5. Occurrence of Mysidacea and Euphausiacea at 7 stations in the south-east of Hokkaido. The *italic* type means occurrence of juveniles (individual number/tow)

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth of sampling (m)</th>
<th>Mysidacea</th>
<th>Euphausiacea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G. spinicauda</td>
<td>E. pacifica</td>
</tr>
<tr>
<td>0</td>
<td>70</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>140</td>
<td>210</td>
<td>86</td>
<td>9</td>
</tr>
<tr>
<td>350</td>
<td>700</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>45-48</td>
<td>90-98</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>455-490</td>
<td>906-980</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1812-1960</td>
<td>2718-2940</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60-72</td>
<td>94-112</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>362-432</td>
<td>695-832</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1370-1638</td>
<td>2040-2430</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>77</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>766</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>766</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>490</td>
<td>490</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>980</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>7</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>1688</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Carylopsis larva
Table 5. Continued

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth of sampling (m)</th>
<th>Mysidacea</th>
<th>Grn. gigas</th>
<th>E. weinhardi</th>
<th>E. californica</th>
<th>M. robusta</th>
<th>A. ammoniaca</th>
<th>E. pacifica</th>
<th>Thy. longipes</th>
<th>Thy. inspinata</th>
<th>P. oculata</th>
<th>Purpria larvae</th>
<th>Caryotopus larvae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os 1304</td>
<td></td>
</tr>
<tr>
<td>Night</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
<td>80</td>
<td>42</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97-98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>483-490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os 1305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawn</td>
<td>5-10</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-67</td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td>(75)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
<td>56</td>
<td>55</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
<td>8</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115-125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>175-185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235-245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>290-310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>350-370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Os 2301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Night</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>50-65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>552</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>150-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200-285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>245-335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>285-400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
show a perceivable vertical migration and are absent from the upper 200 m if the depth at the bottom is sufficiently large. Murano* noted that there is no evidence for vertical migration in the 15 species of mysids in Sagami Bay.

Among Mysidacea, *Boreomysis californica* shows the widest range of vertical distribution, covering from 350 m to 2430 m in depth. This species is recorded from a 400–600 m depth and also from a 100–1500 m layer (Banner, 1948). W.M. Tattersall (1951) mentioned that this species occurs mainly at 200–400 fathoms (360–720 m) depth.

Eucopia unguiculata is captured from shallow layer, even though this species has been reported as a typical bathypelagic species. Although this species is sometimes collected from shallow layer, 287–395 fathoms (517–711 m) (Ortmann, 1906), its main range of vertical distribution is probably between 400–1500 m in the Pacific Ocean (Ortmann, 1906; Banner, 1948; W. M. Tattersall, 1951) and about 2000 m in the South Atlantic and Indian Oceans (O. S. Tattersall, 1955). The deepest record was made by O. S. Tattersall (1955) from 2000–2500 m in the South Atlantic Ocean.

Metererythrops robusta is distributed at 97–432 m (Table 5). Banner (1948) reported that this species mainly lives within 30–150 fathoms (54–270 m) and its distribution ranges from 50 m to 900 m depth. According to W. M. Tattersall (1951), the maximum depth of vertical distribution of this species never exceeds 130 fathoms (234 m), while *M. microphthalma* lives between 200 and 1000 fathoms (360–1800 m). Furthermore, he suggested that the size of the eyes of the latter species being small may be correlated with its bathypelagic inhabit.

In spite of sufficient depth of sampling, no adult *Gnathophausia gigas* is captured probably due to high capability of the net avoidance or low density of the population. According to the previous records, regardless of the developmental stages, *Gn. gigas* inhabits the water at very wide range of depth from 600 m to 4000 m, sometimes deeper than 5000 m (Fage, 1941), in the whole area of world oceans (Ortmann, 1905, 1906, 1908; Fage, 1941; W. M. Tattersall, 1939b, 1951; O. S. Tattersall, 1955; Pequegnat, 1965).

Summary

1. Five species of Mysidacea and 5 species of Euphausiacea are identified from the samples collected in the south-east of Hokkaido.

2. Comparing the samples from various depths, the vertical distribution and vertical movement of each species are discussed. Four species of euphausiids exhibit daily vertical migration, while no perceivable vertical migration is observed in all species of the mysids which are primarily bathypelagic forms.

* Lecture at the Symposium of Oceanographic Society of Japan, Tokyo, April 1969.
These 15 species are referable to Tribe Erythropini of Mysidacea.
Literature Cited

Anonymous (1965). Data Record of Oceanographic Observations and Exploratory Fishing, Faculty of Fisheries, Hokkaido University, (9), 106–127.

--- & Y. Mateue (1958). Ecological studies on the Euphausiacea distributed in the
TANIGUCHI: Mysidacea and Euphausiacea in the south-east of Hokkaido

