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FUNDAMENTAL STUDIES ON THE INTERNAL PRESSURE 

BENT TUBE FOR HOLDING NET FORM-I 

Katsutaro YAMAMOTO* 

Introduction 

Until now the opening and spreading of the fishing net and the holding of the 
net form have been solved as functions on the relative forces between the floats 
and the sinkers in fluid and the resistance-forces of the net weight, the rope, etc. 

When a fire hose or a home vinyl hose is under water pressure, its flattened 
parts swell up firmly to form a fine round hose, and then if a small force shold be 
applied from the outside, its form will not be altered. When a bicycle tube is 
filled with compressed air, it becomes a circle and we can ride easily, but if it loses 
its air it limps again. Evidently these well known phenomena, are concerned 
with internal pressure. 

The purpose of this study is to get basic data on the internal pressure bent 
tube (we shall use the term 'bent tube' for short hereafter) in order to apply them 
to the opening, spreading and holding of the fishing net form. 

To obtain a fully pressurized bent tube, in the first place internal pressure is 
brought into the bent tube; little by little limp parts swell up to get a fine curved 
bent tube. Then we must think of a means to hold the bent tube form. 

Therefore we set up the problem points of this study as follows. 
I) Outward normal force of the bent tube 

II) Relation between the internal pressure and the flection of the bent tube 
III) The buckling of the bent tube 
From a practical point of view I), II) are concerned with the holding-force of 

the net form, III) is concerned with the opening-force and spreading-force of the 
net. 

In this paper we describe theoretical consideration and experiments of I) 
and II). III) will be discussed in a subsequent paper. 

In future, if we use the bent tube together with a roundhaul net and a haul 
sein net, it will quicken fishing work. It will go a step forward if we can set up 
an automatic device for internal compression, then fishing will be more functional 
than today. 
----------

* Laboratory of Fishing Gear Design, Faculty of Fisheries, Hokkaido University 
(;jt.~m#l~7.kii.~$YfrI.~~lH"~~~) 
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Theory 

I. Outward normal force of the bent tube 
When pressure p acts on the whole internal surface of a Bourdon tube, its 

elementary ring P1QIQ2P2 recieves the outward normal force AF. Sunatani1 ) 

obtained this AF according to Green's theorem: 

AF = p dcp f (R + x) cos (x, n) dm = p.A dcp , (1) 

.A being the cross-sectional area of the hollow part of the tube, R the radius of 
curvature of the tube, cp the included angle of the tube end faces, n the normal 
unit vector, dm the elemental length of the internal circumference of the cross­
section. 

We should obtain the holding-force of the bent tube, namely, the holding-force 
of the net form, by geometrically obtaining the same AF and slightly inquiring 
about the reasons of occurrence of the outward normal force of the bent tube. 

Fig. I-A shows a part of the section of the bent tube. The total outward 
normal force AF of the elemental ring P1QIQ2P2 cut by two cross-sections P1Ql 
and P2Q2 could be obtained as follows. When cross-section Q2R is cut parallel 
to cross-section Q1P1, through point Q2' the outward and inward normal forces of 
the part P1QIQ2R are equal, therefore we may take into account only the 
triangular part RQ2P2' Fig I-B shows the same enlarged part RQ2P2' T1,S and T2 

®
~'/"'~' 

"" ,e' .; 

, , 

() 

c 

Fig. I-A. Figure of tube P1Q1Q~2 receiving 
the normal force AF caused by internal pressure 
p in ~he ~ube 
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Fig. I-B. Enlarged figure of the 
part RQ2P 2 of the Fig. I-A 
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become the intersecting points on the y-axis of the sectional circumference of the 
tube at the cross-sections QIP l> Q2R and Q2P2 of the tube when the x-axis is in 
direction of the tube cross-section and the y-axis is vertical to it. The resultant 
outward normal force JF, caused by the internal pressure p acting on the segment 
RP2T2, are calculated as follows. 

Let us put l parallel to the center axis on the tube wall, and JO, Jl and Jm 
sufficiently small, the outward normal force JF of this small part shows that, 

here we can put 

thus we have 

Jj = P sin (0 + JO) (l + Jl) (Jm) , 

Jm = r dO, l + Jl = 2 r .dcp sin (0 + JO) , 

Jj = p sin (0 + JO) {2 r Jcp sin (0 + JO)} r .dO 

= 2 r2 p .dcp sin2 (0 + JO) .dO , 

there the resultant outward normal force JF is obtained by integrating clockwize 
from zero to 7t/2 with respect to angle 0, provided that y-axis is angle zero, we have 

~/2 1 
JF = 2 r2 p Jcp J sin20dO = 2 7tr2 p, 

o 

here "Jt1"2 is the cross-sectional area, let us put 7tr2=A, we have 

Since we get the same one as RP2T2 symmetrical to P2Q2 axis, we double the 
above equation and finally we have the next equation: 

(2) 

Generally when the included angle of the tube end faces is cp, we have from 
the above equation 

F=Apcp, 

and as for the closed tube, cp=27t, we have 

F=27tAp. 

(3) 

(4) 

Next let us consider the case of the tube in Fig. 2 where the tube is in-curved 
in some parts and cross-sections varied parts. From (3) at each part the resultant 
outward normal force is, 

and 

at part 

at part 

at part 

ABGH Apa, 

BCFG -Apb, 

CDEF 
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E 

Fig. 2. Expla.natory figure of the relation between the tube form a.nd the included 
angle of the end faces 

therefore collectively, 
Ap (a + c - b), 

here let us put b=d+e and cp=j+g, we have 

a+c=e+d+j+g=b, 

hence this can be written a+c-b=cp, therefore we have 

Ap(a+c-b)=Apcp. 

Therefore we know that, if the tube has critical parts, that is, if the included 
angle of the tube end face is given, the Qutward normal force of the whole tube is 
given by equation (3). 

II. Outward normal force of each part of the bent tube 
In the preceding section we saw that the outward normal force produced by 

internal pressure acting on the intrnal wall of the bent tube is F =A pcp. Then how 
to express the outward normal force dimensions on each part of the tube? 

Generally each part of the curvature of the tube being different, the outward 
normal force dimensions are also different whether the curvature is large or small. 
The equation (3) doesn't show the outward normal force dimensions but the 
outward normal force of the whole tube. In regard to the holding of the net form, 
to say nothing of the outward normal force of the whole tube, we must consider the 
external force acting locally on the tube parts. 

-15 -
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If we consider that each tube part forms a part of a continuous matter of the 
real circle with the differential curvature and express the outward normal force 
dimensions of the bent tube by which 271Ap (total outward normal force of the 
closed bent tube) is divided by the circumference of the real circle, we could 
compare the external force acting on the tube parts with the holding force of the 
tube. 

At the cross-sections P1Ql and P2Q2 in Fig. I-A, let us put Rl and R2, several 
radii of curvature, the several outward normal force dimensions f (R) could be 
expressed respectively in linear densities 

generally, 

f(Rl ) = A plRl , 

f(R2) = A p1R2 , 

f(R) = ApIR. (5) 

III. Relation between the internal pressure and the flection of the bent tube 
When the external force acts on the bent tube, how far does the flection of 

the tube, namely, how far the deformation of the net form is a factor of conclusion 
to choose what sort of bent tube (e.g. matter, thickness, size, length and internal 
pressure of the tube) could be holding the net form under outside conditions (wave, 
net-weight etc.). 

Here, we can solve the bent tube flection by the equation of the curved beam 
flection. On the curved beam flection, let us consider the adequate x-y coordinates 
being the origin at the center axis of the beam. The flections to x and y directions 
of the center axis spontaneous point F(x,y), ox and oy are expressed as follows: 

ox = J (Yl - y) [ANE + A ~ R + A %k R J dO + J (:E + A ~ R ) dx , 

(6) 

J [ N M M - J( N M) 
oy= - (Xl-X) AE + AER + AEkR JdO + AE + AER dy, 

where A is the cross-sectional area, E the modulus of longitudinal elasticity, k the 
form factor, M the moment, R the radius of curvature, N the vertical force to 
cross-section and W the load. 

Here, if the diameter is less than the radius of curvatuTe and the curved 
variation is small, the equation (6) could be written as follows2): 

oy = - J (xl - x) A%kR dO + J :E dy. 

-16-
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y 

y, 

D~~~t-----------~~O~--~-----L---+X 
Fig. 3. Figure of the standing bent tube that the load Wand the internal pressure 

p acting on the tube wall 

Fig. 3 is an illustration of one end fixed bent tube of which the origin of x-y 
coordinates is put on the center axis of the fixed end. When the load W acts on 
the free end face AB, the vertical force N acts on the tube wall. The outward 
normal force Ap/R of the internal pressure and the self-weight 0> acts on the whole 
center axis. The flection to the y-axis direction Sy of the point E (X1,Yl) on the 
free center axis end is calculated by the equation (7). That is, since the moment 
M of the spontaneous point F(x,y) on the center axis is summed up, the monent of 
the load W, of the self-weight 0>, of the outward normal force Ap/R and of the 
internal pressure p acting on the free end face AB; if we obtain separately each 
moment and finally sum them up, we could obtain the moment M of the equation 
(7), whose positive moment is running clockwize. 
(1) The moment caused by the load W: 

M = W(XI-X), 

here, x1-x=R(cosO-coscp), hence 

M = W R (cosO - coscp). 

(2) The moment caused by the self-weight 0>: 

(8) 

We know that the tube mass Z from the coordinates F(x,y) to the coordinates 
E(Xt,Yl)' If the center axis curve is the function y=f(x) and the linear density 
is p(x), is read as follows; 

"'I 

Z = J p(x) 11'1 + {j' (x)J2 dx 

'" 
and the coordinates G(X, Y) of the center of gravity gives 

1 "'I 

X=Z J p(x) v' 1 + {j'(x)J2xdx, 

'" -17-
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1 ~1 
Y = z J p (x) V 1 + {f' (x)J2 y dx • 

" 
Now this case, since we can put as follows: 

p(x) = Q), 

thus 

f (x) = V R2 - (x - R)2 , 

X = R (1 - cos 0) , 

y=RsinO, 

{i' (x)}2 = cosec 0 , 

dx=RsinOdO, 

~ . 
z = J p(x) vI + {f' (x)} 2 dx = J Q)cosecO RsinOdO = Q)R (q. - r. J 

" 0 

1 "t 
X=Z J p(x) V 1 + {i'(x»)Bxdx 

" 
1 • 

= Q)R (tp _ 0) 10 Q) cosec 0 R (1 - cosO) R sin 0 dO 

R ( . .) 
( ) 

tp-O-smtp+smO, 
qJ-O 

therefore the moment of the self-weight Q) becomes 

M = Z (X - x) = Q) R2 (tp - sin 0 - 0 + sin 0) - Q) R2 (tp - 0) (1 - cos 0). (9) 

(3) The sum of the moment caused by the normal force ApjR and the moment 
caused by pressure acting on the tube free end face is zero as Sunatani1 ) obtained. 
Therefore the moment M finally is the sum of the moment caused by load Wand the 
moment caused by self-weight Q). Namely, in addition to (8) and (9), we can 
obtain the following: 

M = W R (cosO - costp) + Q)R2 (tp - sintp - 0 + sinO) 

- Q) R2 (tp - 0) (1 - cos 8) . (10) 

Next N, in (7), is the vertical components of the internal pressure Ap and the 
load W acting on the tube free end face to the cross-section: 

N =Ap + Wcostp. (11) 

If we put (10) and (11) into (7) and integrate each term from zero with respect 

-18-
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to angle 0, we can obtain the flection to y-axis direction of the coordinates 

E(Xt,Yl)· 
Consequently those are; 

( 
N R '" 

AE dy= AE J (Ap + Wcoscp)cosOdO 
o 0 

= A~ (Ap + Wcoscp)sincp, (12) 

r
7 

M R 
- (Xl-X) AEkR dO= AEkR (cosO-coscp) 

J 

'" X U (W R - W Rcoscp - R2 rocpcosfJ + roR1lJCOSlJ)dlJ} 
o 

= 1 (~ W R2 sin 2 cp- W R2 cp cos2 cp - -.L W R2 cp 
AE kR 4 2 

- ~ ro R3 cos2 cp + 2 ro R3 cos cp) , (13) 

f.here 

4), 

3y= A~ (Ap+ Wcoscp)sincp+ AE\R (! WR2 sin2cp 

1 3 1 
- W R2cpCOS2cp - 2 W R2cp - T roR3 - 4 roR3cp2 

-+ roR3cp sin 2 cp + W R3 sin2 cp - ~ roR3 cos2 cp + 2 roR3 coscp). 

(14) 

Then the dimensionless from factor is determined by the tube form3) (see Fig. 

{1(f2)21(f2)4 }] - fl2 T ~ + 8 ~ + ..... , (15) 

where fl is the internal radius, f2 the external radius and the of curvaturea). 

-19 -
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o 

Fig. 4. Expla.na.tory figure for the form fa.ctor k 

Let us put that 3y(p) is a flection caused by only the internal pressure p and 
pick up the term involved p from the equation (14), we have 

3y (p) = PER sintp. (16) 

The equation (16) shows that the flection at the tube end is caused by the 
internal pressure p under condition with the one end fixed bent tube on the 
water-surface, ignoring the tube self-weight and the water resistance. The 
cross-sectional area A of the tube is not included in the equation (16), namely, as 
a result of the bent tube flection caused by the internal pressure p was uncon­
cerned with cross-sectional area A. 

On the flection of the closed bent tube, we must think of the ring of the 
closed bent tube. In the present paper, we shall not try to solve the flection of the 
ring, but we can anticipate, that the flection of the closed tube caused by internal 
pressure should be zero, in other words the intrnal pressure p should not be 
concerned in the flection of the closed tube. This thing may be easy to anticipate 
by reason of the total vector of the circumference with respect to the linear 
density ApjR of the normal force caused by the intrnal pressure when it IS zero, 
that is, 

Ap f dS=O 
R J ' (11) 

therefore, in the case of the closed tube, 2n:Ap, which previously we theoretically 
obtained at the expression (4), shows the normal force acting on the tube wall 
caused by the internal force. At least let us call it the holding force of the bent 
tube. 

Next if we put in (14) the constants A,p,k,co,W and tp, we shall measure 3y 
by experiment, in opposition we could obtain the modulus of longitudinal 
elasticity E. From the expression (7), we have 

- 20-
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11· 
E = - A cy- { k R J (Xl - X) M dO - J N dy }. (18) 

The form fa.ctot k in (15) and the modulus of longitudinal elasticity E being the 
characteristic values of the bent tube, we can choose the bent tube having k and 
E to answer our purpose. 

Methods and Materials 

As an experimental tube, we used a bicycle tube (26x Ii, B/E, JIS K 6304, JIS K 
6305), see Fig. 5. The tube self-weight is 1.1 g/cm, the thinkness is 1.0 mm and 
the stopper load of the tube end is 7.0 g. Fig. 6 shows the relation between the 
stress and strain of the experiment tube using the tensile testing machine (Type 

83' 

Fig. 5. Schematic figure of experimental tube 

kO-cm-2 
120 

110 

100 .' 90 A peace of experimental tube 

" 
80 

<I) 70 '" ., ... 
'" 60 

-;:; 
50 E ... 

0 z 40 

30 

20 

10 

0 2 4 5 6 7 8 9 

Normal strain £ 

Fig. 6. Relation between stress and strain of the experimental tube 
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SH 100 kg). From this graph we . obtained aboht 8000 g/cm2 as modulus of 
longituidinal elasticity Eo. 

The apparatus used in the experiment is shown in Fig. 7. 
was at the maximum range of O. 2 kg/cm2 (BT Xl00 x O.2). 

The pressure gauge 
In the experiment 

we first put air into the tube by compressor, switched off the compressor motor, 
loaded on the tube end and then photographed the tube form and t he gauge index 
with a camera (see Fig. 8. ). Varying the pressure within the tube, we repeated as 

Fig. 7. Schematic figure of experimental apparatus 
1 : Camera 2 : Air tank 3: Pressure gauge 4: Stand 
5 : Tube 6: Load 7 : Compressor 8: Switch 

Fig. 8. E xamples of t ube bending under t he internal pressurs 1'"", 164 glcm' 
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o·cm- 2 

150 

150 0 .... -2 

Gauge pressure 

Fig. 9. Correction of gauge pressure Fig. 10. Method to measure the flection 

above. The correction of the gauge pressure is shown in Fig. 9. There was 
hardly a difference in correction on different days. 

Then we magnified the negative film, and we read the flection of the tube end 
and then the index of the pressure gauge. For measuring the flection, we have 
drawn ready beforehand the tube form under conditions without suspending the 
load, the self-weight and the internal pressure, that is, we drew an arc of a radius 
of 30 cm with the center angle of 83°, and projected the above negative film on it, 
and we measured the traveling length of the tube end (see Fig. 10). 

Next we obtained flections caused by internal pressure only. Previously we 
had fixed the one end of the bent tube filled by compressed air, set it on the water 
surface in a basin, the tube self-weight being negligible, we then obtained the 
flections of the tube free end under several pressures. 

Results and Discussion 

We measured the flections of the tube end as described above. Next, we 
obtained the modulus of longitudinal elasticity E by using these flections. 

We put into the expression (18) the flection 'By, then the internal pressure p and 
the load W, and calculated the modulus of the longitudinal elasticity E. Result 
shown on Table 1. So calculation constants were as follows, 1]1=83°, R=30.0 em, 
A=8.0 cm2, w=1.1 glcm, W =7.0 g and k=0.00l3 (from the equation (15)). We 
used the empirical formula of E and p by the method of least squares (see Fig. 11). 

- 23-
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Ta.ble 1. Tube fiection8 and modulu8 of longitudinal ela8ticity 

No p W -ay 
:R J (x,. - x) M de -JNdY k~ f(X I - x) M de - Aay E 

-Ndy 
(g.cm-S) (g) (em) (g. em) (g. cm) (g.cm) (cm-I) (g.cm-S) 

1 164 7.0 19.0 274xl03 -391 X 102 235xl03 152 155xl0 
2 " 8.4 20.5 293 H 253 164 154 
3 " 9.4 21.4 306 " 267 171 155 
4 " 12.3 23.4 344 " 305 187 162 
5 159 7.0 18.5 274 -379 236 148 160 
6 " 8.4 20.4 293 " 255 163 156 
7 " 9.4 21.4 306 n 268 171 156 
8 157 7.0 19.4 274 -374 237 155 152 
9 154 7.0 19.7 274 -367 238 157 151 

10 " 8.4 20.7 293 n 256 165 154 
11 " 9.4 21.5 306 n 269 172 156 
12 " 12.3 23.7 344 " 307 189 162 
13 133 7.0 20.7 274 -317 243 165 146 
14 " 8.4 22.7 293 " 261 181 143 
15 " 9.4 23.2 306 " 274 185 147 
16 H 12.3 25.7 344 H 312 205 151 
17 113 7.0 22.0 274 -269 247 176 140 
18 H 8.4 23.2 293 H 266 185 143 
19 " 9.4 24.0 306 " 279 192 145 
20 n 12.3 27.5 344 " 317 220 144 
21 103 7.0 22.7 274 -245 250 181 137 
22 H 8.4 24.2 293 n 268 193 138 
23 H 9.4 25.7 306 n 281 205 136 
24 101 8.4 24.0 293 -241 269 192 140 
25 99 7.0 23.0 274 -236 251 184 136 
26 97 7.0 23.2 274 -231 251 185 135 

E = 3.1 P + 1064 (g!cm2) • (19) 

Now, we should consider the phsical mean of the constant 1064 (g/cm2). 

Calculating the modulus oflongitudinal ela.sticty by using (18), we put A the cross­
sectional area of the bent tube like the column. Here, we should consider the 
cross-sectional area A, of the tube wall except by the cross-sectional area of the 
hollow of the tube, and we compare A with it, that is, 

A 
A, 

(20) 

Then if we make the constant 1064 (g/cm2) in the expression (19) times 8.2, 
we have 8.7X103 (g cm2). This 8.7x103 (g/cm2) could fit likely for Eo=8.0X103 

(g/cm2) that was obtained at the tensile test of the experiment tube. Namely, when 
we would use the equation (7) that shows the flection of the curved beam, as the 
modulus of longitudinal elasticity E, by using the whole tube cross-sectional area 
A or the tube wall cross-sectional area A" we must distinguish whether E is 
given by the equation (19) or is given by the tensile test. Accordingly, if we 

-24-
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g.cm- 2 

2000 

50 100 
Internal pressure l' 

150 g·cm-2 

Fig. 11. Relation between the internal pressure and the modulus of longitudinal elasticity 

consider that the bent tube is a column made of two different materials and the 
cross-sectional area A, the modulus of longitudinal elasticity E of the bent tube is 
shown in it next equation,. but m is a constant, 

E=mp + (A,/A) Eo. (21) 

Next we compared the experimented flections with the calculated flections 
by formula (16). The results are shown on Table 2. The calculated value fairly 
well coinciding with the experimented value, we may then consider that the flection 
caused by internal pressure is given by formula (16). But here is one question 
whether the formula (16) doesn't involve the form factor k. This means, in spite 
of a different form factor, that if the same material, the cross-sectional area and 

Table 2. Compared the experimented 
and calculated flections 

pressure 

164 (g/cm2) 
144 
123 
101 
81 

experimented 
value 

2.9 (cm) 
2.6 
2.3 
2.0 
1.7 

-25-
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value 

3.1 (cm) 
2.8 
2.5 
2.0 
1.6 
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the included angle are given, the flection caused by internal pressure could be 
obtained. That solves the flection of the bent tube, so far as we use the formula 
of a curved beam. This should be taken into consideration. 
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