<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>魚類筋肉脂質の冷凍貯蔵中における変化：Ⅱ 数種魚類筋肉脂質</td>
</tr>
<tr>
<td>作者</td>
<td>高間 博藏, 座間 宏一, 五十嵐 久尚</td>
</tr>
<tr>
<td>搭載</td>
<td>北海道大学水産学部研究彙報</td>
</tr>
<tr>
<td>タイトル</td>
<td>未定</td>
</tr>
</tbody>
</table>

以下は、具体的な詳細情報が含まれていないため省略します。
魚類筋肉脂質の冷凍貯蔵中における変化

I 数種魚類筋肉脂質*

高間浩浩**・座間宏一**・五十嵐久尚**

Changes in the Flesh Lipids of Fish during Frozen Storage.

Part II. Flesh lipids of several species of fish

Kôzô TAKAMA, Kôichi ZAMA and Hisanao IGARASHI

Abstract

The minced flesh of five species of fish was stored at -20°C for up to 100–120 days, and the samples were withdrawn at intervals throughout the stored period. The properties of the lipids extracted from these samples were compared.

The rates of free fatty acid production in this minced flesh, exhibited as μM/day/100 g, were approximately as follows: Alaska pollack 12.0 (up to 40 days, and then the free fatty acid development held at a level of ca. 450 μM/100 g of flesh), mackerel 8.0, yellowtail 3.1 and northern blenny and flying squid 2.0, respectively. The accumulating amounts of the liberated free fatty acids were fairly less when compared with those of decreased lipids.

From these findings, the lipid degradations were attributed to the influences of hydrolysis and oxidation.

緒 言

低温貯蔵中の魚肉脂質の変化に関しては、すでに多くの研究があり**3）**4）。脂質の水解に伴う遊離脂肪酸の生成が定説になっているようである。遊離脂肪酸の生成は魚肉蛋白の不溶化と関係があり**4）**5）、魚肉の品質保持に影響する重要な一因子と考えられている。

著者らは前報9）において、近海魚種ホンマグロ細碎肉の-20°C貯蔵時の脂質成分の変化について報告したが、細碎肉として貯蔵した場合、フィーレー状、あるいは魚体そのままで貯蔵された従来の研究報告とは異なり、遊離脂肪酸の蓄積は少く、脂質減少の顕著な時期にはとくに不飽和酸が消失することなどから、酸化分解の程度の大きさを推察した。さらにカラのような少脂魚においては脂質のみの分解が知られているが、ホンマグロの場合、トリアギリソリドの分解することも認めた。

今回、さらに数種の魚類細碎肉について同様の検討を行ったので報告する。

実 験

試料 次の5種類の魚肉を用いたが、いずれも入手後直ちに精肉部位をとり、チョッパーで細碎後、ポリエチレン袋に詰め-20°Cに貯蔵した。その時点を0日貯蔵とした。

スクエウダラ (Theragra chalcogramma, PALLAS) は1967年1月北海道砂原沖で水揚げし、冷室に一夜放置したものを用いた。サバ (Scromber japonicus, HOUTTUYN) は1967年9月北海道森

* 日本水産学会（昭和44年10月、仙台市）にて一部講演発表
** 北海道大学水産学部食品化学第一講座
沖で捕獲されたものを用いた。ナガブザ（Stichaeus grigorjewi, HERZENSTEIN）は1968年6月に森沖で得られたものを一夜冷蔵室に放置したもの。またフクラゲ（Seriola quinquergata, T. et S.）は1968年10月北海道松前沖で水揚げされ、面積倉庫に入荷されたものである。スケットウダラは500gずつ、ナガブザは250gずつ。またサバとフクラゲは脂質含有率、それぞれ100gずつをポリエチレン袋に詰めた。さらに硬骨魚類とは組織的にも著しく異なり、しかも実際に冷凍貯蔵が行われているスルメイカ（Todarodes pacificus, STEENSTRUP）を併用した（1966年9月、函館近海産）。この場合は、側部を“ひらき”にしたのみで4尾ずつずつ貯蔵し、試験日には剥皮後、1/8量の海砂とともに想定し脂質抽出に供した。

脂質抽出 各試料とも、試験日には凍結状態のもとのまま細切し、クロロホルム・メタノール（2:1, by vol）混液3倍容で1度、2倍容で2〜3度撹拌抽出を繰返し、抽出液をFolchの洗浄法で水洗し、クロロホルム層を乾燥。濃縮して得られた残留物を総脂質とした。

ケイ酸カルムクロマトグラフィー I. リン脂質と単純脂質の分別 軽量（2〜2.5g）の30倍量のケイ酸（Mallinckrodt製、前報）のようにメタノール処理後110℃で活性化）をクロロホルムに懸濁させ3×30cmの二重管式カラムに充填し、5℃の流水を通しながらN2気用中でクロマトを行った。試料は出来るだけ少量のクロロホルム溶液としてカラムに供し、クロロホルム700mLおよびアセトン500mLの溶出液を単純脂質区分とし、続いて得られるメタノール（750mL）溶出液をリン脂質区分として分離した。

2. 遊離脂肪酸の分別 関東化学製ケイ酸をメタノールに懸濁させ微粒子を除去後、アセトンで1度、エチルで1度洗浄、風乾したのち、その15gをMCCARTHYら（前報）の方法で処理、イソプロパノール・乳性カリ溶液（1.8gの乳性カリを30mLのイソプロパノールにとかす）30mLとエチル90mLに混合し、5分後にカラム（2×15cm）に充填した。Iで分取した単純脂質1gを少量のエチルエーテル溶液としてカラムに供し、エチルエーテル150mLでの溶出液を中性脂質区分とし、さらに2％酢酸・エチル200mLでの溶出区を遊離脂肪酸区分として得た。

その他の実験法 固相抽出の検索を前報と同様にしてメチルエステルを調製後、日立F-6Dガスクロマトグラフ、ジャパンレギョール・コク酸ポリエステル固定相（直径2.5cm×2m スチールカラム）分析を行った。脂質成分確認のための薄層クロマトグラフィーはWakogel-B-0プレートを110℃、30 分活性化後、単純脂質区分にはヘキサノール・エーテル・酢酸（90:10:1, by vol）を、リン脂質区分にはクロロホルム・メタノール・酢酸・水（25:15:4:2, by vol）を展開剤として行った。また酸価は常法により、ヨウ素価はW18S法によって測定した。

結果および考察

チョッパー細碎肉をポリエチレン袋として−20℃に貯蔵した際の経日的な脂質変化を全脂質、リン脂質、中性脂質および遊離脂肪酸について示すとTable1のようである。またFig.1に試料肉100g中の脂質量の変化を示したが、遊離脂肪酸の生成量（μg/100g肉）を経日に示すと Fig.2のようである。Table1およびFig.1より脂質減少のパターンの類似性からは3群（リン脂質が主に変化するスケットウダラ・イカ群、中性脂質が主に変化するサバ・フクラガ群および双方とも減少するナガブザ・ホンマグロ群）に大別されるが、脂肪酸生成量からみるとFig.2のようにスケットウダラおよびイカは40日以後は殆ど遊離脂肪酸が生成されない。しかしスケットウダラの遊離脂肪酸生成速度は貯蔵後40日位で約12.0μM/日と極めて高い。サバは約8.0μM/日で脂質含量や血合筋含量との関係で速度が高いためと思われる。ナガブザは約2.0μM/日の速さで遊離脂肪酸を生成するが、貯蔵後40日位のイカも同程度の速さを示している。フクラガはサバとナガブザとの間の3.1μM/日を示している。全脂質の約80%がリン脂質で占められている。スケットウダライカでは比較
Table 1 Lipid data for the minced flesh of various species of fish during storage at -20°C

<table>
<thead>
<tr>
<th></th>
<th>Total lipid</th>
<th>Total PL<sup>a</sup></th>
<th>Total NL<sup>b</sup></th>
<th>FFA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of minced flesh</td>
<td>A.V.</td>
<td>I.V.</td>
<td>% of TL<sup>d</sup></td>
</tr>
<tr>
<td>Alaska pollack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.85</td>
<td>27.2</td>
<td>191.9</td>
<td>81.2</td>
</tr>
<tr>
<td>10</td>
<td>0.76</td>
<td>43.3</td>
<td>194.5</td>
<td>73.7</td>
</tr>
<tr>
<td>30</td>
<td>0.83</td>
<td>49.6</td>
<td>197.0</td>
<td>66.3</td>
</tr>
<tr>
<td>40</td>
<td>0.79</td>
<td>54.4</td>
<td>195.6</td>
<td>66.6</td>
</tr>
<tr>
<td>60</td>
<td>0.77</td>
<td>65.4</td>
<td>180.4</td>
<td>61.0</td>
</tr>
<tr>
<td>90</td>
<td>0.76</td>
<td>60.7</td>
<td>198.0</td>
<td>60.5</td>
</tr>
<tr>
<td>120</td>
<td>0.76</td>
<td>62.7</td>
<td>202.0</td>
<td>60.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total lipid</th>
<th>Total PL<sup>a</sup></th>
<th>Total NL<sup>b</sup></th>
<th>FFA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of minced flesh</td>
<td>A.V.</td>
<td>I.V.</td>
<td>% of TL<sup>d</sup></td>
</tr>
<tr>
<td>Flying squid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.73</td>
<td>27.6</td>
<td>171.8</td>
<td>81.5</td>
</tr>
<tr>
<td>7</td>
<td>1.72</td>
<td>26.0</td>
<td>163.8</td>
<td>80.8</td>
</tr>
<tr>
<td>21</td>
<td>1.70</td>
<td>30.2</td>
<td>165.9</td>
<td>80.0</td>
</tr>
<tr>
<td>28</td>
<td>1.60</td>
<td>27.2</td>
<td>193.5</td>
<td>79.5</td>
</tr>
<tr>
<td>42</td>
<td>1.79</td>
<td>26.1</td>
<td>164.8</td>
<td>79.3</td>
</tr>
<tr>
<td>70</td>
<td>1.51</td>
<td>30.8</td>
<td>182.1</td>
<td>78.5</td>
</tr>
<tr>
<td>98</td>
<td>1.30</td>
<td>30.6</td>
<td>173.7</td>
<td>76.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total lipid</th>
<th>Total PL<sup>a</sup></th>
<th>Total NL<sup>b</sup></th>
<th>FFA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of minced flesh</td>
<td>A.V.</td>
<td>I.V.</td>
<td>% of TL<sup>d</sup></td>
</tr>
<tr>
<td>Northern blenny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.63</td>
<td>8.5</td>
<td>166.8</td>
<td>34.3</td>
</tr>
<tr>
<td>10</td>
<td>1.42</td>
<td>10.6</td>
<td>173.8</td>
<td>35.9</td>
</tr>
<tr>
<td>20</td>
<td>1.46</td>
<td>13.5</td>
<td>172.3</td>
<td>36.3</td>
</tr>
<tr>
<td>25</td>
<td>1.61</td>
<td>13.1</td>
<td>170.4</td>
<td>39.2</td>
</tr>
<tr>
<td>40</td>
<td>1.58</td>
<td>13.6</td>
<td>178.7</td>
<td>36.1</td>
</tr>
<tr>
<td>60</td>
<td>1.50</td>
<td>14.3</td>
<td>182.0</td>
<td>36.7</td>
</tr>
<tr>
<td>120</td>
<td>1.31</td>
<td>15.5</td>
<td>170.2</td>
<td>30.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total lipid</th>
<th>Total PL<sup>a</sup></th>
<th>Total NL<sup>b</sup></th>
<th>FFA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of minced flesh</td>
<td>A.V.</td>
<td>I.V.</td>
<td>% of TL<sup>d</sup></td>
</tr>
<tr>
<td>Yellowtail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.01</td>
<td>6.3</td>
<td>157.2</td>
<td>18.4</td>
</tr>
<tr>
<td>7</td>
<td>5.80</td>
<td>6.5</td>
<td>164.7</td>
<td>16.4</td>
</tr>
<tr>
<td>14</td>
<td>4.61</td>
<td>7.2</td>
<td>165.2</td>
<td>18.6</td>
</tr>
<tr>
<td>21</td>
<td>5.81</td>
<td>5.9</td>
<td>188.6</td>
<td>14.3</td>
</tr>
<tr>
<td>28</td>
<td>5.41</td>
<td>7.2</td>
<td>193.6</td>
<td>15.5</td>
</tr>
<tr>
<td>56</td>
<td>5.74</td>
<td>7.4</td>
<td>186.4</td>
<td>14.4</td>
</tr>
<tr>
<td>84</td>
<td>5.65</td>
<td>9.0</td>
<td>186.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total lipid</th>
<th>Total PL<sup>a</sup></th>
<th>Total NL<sup>b</sup></th>
<th>FFA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of minced flesh</td>
<td>A.V.</td>
<td>I.V.</td>
<td>% of TL<sup>d</sup></td>
</tr>
<tr>
<td>Mackerel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15.53</td>
<td>2.3</td>
<td>149.4</td>
<td>6.2</td>
</tr>
<tr>
<td>10</td>
<td>15.25</td>
<td>3.5</td>
<td>162.9</td>
<td>5.5</td>
</tr>
<tr>
<td>20</td>
<td>15.92</td>
<td>3.7</td>
<td>150.9</td>
<td>4.1</td>
</tr>
<tr>
<td>30</td>
<td>14.71</td>
<td>3.8</td>
<td>141.4</td>
<td>5.9</td>
</tr>
<tr>
<td>40</td>
<td>14.95</td>
<td>3.7</td>
<td>146.4</td>
<td>5.6</td>
</tr>
<tr>
<td>60</td>
<td>14.69</td>
<td>3.6</td>
<td>106.3</td>
<td>5.9</td>
</tr>
<tr>
<td>80</td>
<td>14.43</td>
<td>4.8</td>
<td>149.5</td>
<td>5.5</td>
</tr>
<tr>
<td>110</td>
<td>14.42</td>
<td>4.8</td>
<td>149.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

^a Phospholipid, ^b Neutral lipid, ^c Free fatty acid, ^d Total lipid
Fig. 1 Changes of lipid content in several stored species of fish at -20°C

--- Phospholipid, --- : Neutral lipid, ----- : Free fatty acid

* From data in previous report*1

的短期間（約40日）のうちに遊離脂肪酸の生成が止まり，全脂質の約60%以上が中性脂質によって占められるナガサケ，フクラゲ，サバの場合と異った結果を示している。生成遊離脂肪酸の飽和酸：モノ不飽和酸：高度不飽和酸量比（Table 3-c）をみるとほとんどの一定の値であるところから，脂質成分の水解は均一的に行われ，特異的に遊離されるものではないようである。たとえ，脂質成分の顕著な減少を示す貯蔵後10〜20日前後では主に高度不飽和酸が減少しており，酸化分解による消失によるも
Fig. 2 Development of free fatty acid during storage at -20°C of various species of fish.

Numbers in Fig. show the development amounts of free fatty acid a day.

Fig. 3 Relation between decrease of phospholipid (as lecithin) and development of free fatty acid during storage at -20°C.

Numbers in Fig. show the molar ratio of increased free fatty acid per decreased phospholipid (as lecithin).
Table 2 Fatty acid composition of the minced flesh of various species of fish during storage at \(-20^\circ\text{C}\)

<table>
<thead>
<tr>
<th>Days</th>
<th>Alaska pollack</th>
<th></th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>60</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:0</td>
<td></td>
<td>F</td>
<td>2.6</td>
<td>2.6</td>
<td>2.2</td>
<td>4.4</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>2.7</td>
<td>2.8</td>
<td>1.9</td>
<td>2.6</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>16:0</td>
<td></td>
<td>F</td>
<td>32.9</td>
<td>34.6</td>
<td>26.6</td>
<td>45.3</td>
<td>41.9</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>40.8</td>
<td>42.0</td>
<td>37.1</td>
<td>51.4</td>
<td>33.8</td>
<td>37.0</td>
</tr>
<tr>
<td>16:1</td>
<td></td>
<td>F</td>
<td>5.7</td>
<td>6.6</td>
<td>6.1</td>
<td>5.6</td>
<td>5.2</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>5.9</td>
<td>9.2</td>
<td>7.7</td>
<td>4.0</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>18:0</td>
<td></td>
<td>F</td>
<td>6.4</td>
<td>5.3</td>
<td>4.4</td>
<td>4.3</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>8.3</td>
<td>7.6</td>
<td>8.2</td>
<td>4.3</td>
<td>10.9</td>
<td>10.6</td>
</tr>
<tr>
<td>18:1</td>
<td></td>
<td>F</td>
<td>22.8</td>
<td>22.9</td>
<td>21.0</td>
<td>19.9</td>
<td>21.1</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>24.7</td>
<td>23.6</td>
<td>25.2</td>
<td>24.3</td>
<td>26.6</td>
<td>26.3</td>
</tr>
<tr>
<td>20:1</td>
<td></td>
<td>F</td>
<td>4.3</td>
<td>1.2</td>
<td>4.3</td>
<td>3.2</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>4.6</td>
<td>4.3</td>
<td>5.2</td>
<td>4.5</td>
<td>5.5</td>
<td>4.9</td>
</tr>
<tr>
<td>20:5</td>
<td></td>
<td>F</td>
<td>14.9</td>
<td>10.2</td>
<td>18.0</td>
<td>8.8</td>
<td>9.7</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>2.9</td>
<td>3.2</td>
<td>4.0</td>
<td>1.2</td>
<td>5.7</td>
<td>5.0</td>
</tr>
<tr>
<td>22:6</td>
<td></td>
<td>F</td>
<td>4.3</td>
<td>4.4</td>
<td>9.6</td>
<td>2.5</td>
<td>3.4</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>3.8</td>
<td>0.8</td>
<td>3.7</td>
<td>2.5</td>
<td>5.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Flying squid</th>
<th></th>
<th>0</th>
<th>7</th>
<th>21</th>
<th>28</th>
<th>42</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>17.9</td>
<td>10.7</td>
<td>9.2</td>
<td>8.3</td>
<td>6.8</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>3.8</td>
<td>3.8</td>
<td>3.4</td>
<td>3.6</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>5.5</td>
<td>3.0</td>
<td>3.9</td>
<td>2.9</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>14:0</td>
<td></td>
<td>N</td>
<td>13.7</td>
<td>15.8</td>
<td>27.0</td>
<td>27.4</td>
<td>45.7</td>
<td>50.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>49.3</td>
<td>48.8</td>
<td>41.5</td>
<td>48.0</td>
<td>37.1</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>48.6</td>
<td>50.4</td>
<td>54.1</td>
<td>62.0</td>
<td>59.5</td>
<td>69.3</td>
</tr>
<tr>
<td>16:0</td>
<td></td>
<td>N</td>
<td>11.1</td>
<td>12.1</td>
<td>9.3</td>
<td>7.1</td>
<td>10.8</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>3.6</td>
<td>3.8</td>
<td>2.5</td>
<td>2.5</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16:1</td>
<td></td>
<td>N</td>
<td>10.7</td>
<td>9.2</td>
<td>7.4</td>
<td>8.5</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>15.3</td>
<td>15.9</td>
<td>12.4</td>
<td>16.7</td>
<td>12.5</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>10.0</td>
<td>8.8</td>
<td>11.1</td>
<td>8.4</td>
<td>10.9</td>
<td>11.0</td>
</tr>
<tr>
<td>18:0</td>
<td></td>
<td>N</td>
<td>18.3</td>
<td>23.2</td>
<td>20.5</td>
<td>21.5</td>
<td>14.3</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>7.5</td>
<td>7.2</td>
<td>6.8</td>
<td>8.5</td>
<td>9.1</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>6.9</td>
<td>5.8</td>
<td>7.4</td>
<td>6.6</td>
<td>8.2</td>
<td>6.6</td>
</tr>
<tr>
<td>18:1</td>
<td></td>
<td>N</td>
<td>8.7</td>
<td>9.7</td>
<td>10.6</td>
<td>9.7</td>
<td>6.4</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>7.1</td>
<td>6.6</td>
<td>8.2</td>
<td>7.7</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>6.6</td>
<td>5.8</td>
<td>8.0</td>
<td>5.5</td>
<td>5.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

- 295 -
Table 2 Continued

Flying squid

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>7</th>
<th>21</th>
<th>28</th>
<th>42</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:5</td>
<td>N</td>
<td>2.6</td>
<td>3.3</td>
<td>5.0</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.6</td>
<td>1.8</td>
<td>1.4</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>22:5</td>
<td>N</td>
<td>2.5</td>
<td>5.3</td>
<td>1.7</td>
<td>8.0</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3.5</td>
<td>4.6</td>
<td>7.2</td>
<td>4.1</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>10.2</td>
<td>10.2</td>
<td>6.7</td>
<td>3.1</td>
<td>4.1</td>
</tr>
<tr>
<td>22:6</td>
<td>N</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.4</td>
<td>5.2</td>
<td>14.3</td>
<td>5.7</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>7.5</td>
<td>11.7</td>
<td>4.0</td>
<td>1.1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Northern blenny

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>15</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>N</td>
<td>6.5</td>
<td>4.6</td>
<td>5.7</td>
<td>4.2</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>3.0</td>
<td>5.0</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.2</td>
<td>1.8</td>
<td>1.4</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>16:0</td>
<td>N</td>
<td>18.3</td>
<td>17.8</td>
<td>16.9</td>
<td>18.9</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>18.0</td>
<td>21.3</td>
<td>17.5</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>22.5</td>
<td>48.6</td>
<td>50.9</td>
<td>32.9</td>
<td>33.3</td>
</tr>
<tr>
<td>16:1</td>
<td>N</td>
<td>15.3</td>
<td>15.7</td>
<td>14.7</td>
<td>15.7</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>12.0</td>
<td>14.7</td>
<td>12.9</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>5.7</td>
<td>7.9</td>
<td>6.6</td>
<td>10.0</td>
<td>7.5</td>
</tr>
<tr>
<td>18:0</td>
<td>N</td>
<td>3.3</td>
<td>3.6</td>
<td>4.7</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>5.9</td>
<td>6.7</td>
<td>5.3</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>13.1</td>
<td>6.9</td>
<td>7.6</td>
<td>9.5</td>
<td>9.7</td>
</tr>
<tr>
<td>18:1</td>
<td>N</td>
<td>28.4</td>
<td>29.8</td>
<td>32.6</td>
<td>29.8</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>26.4</td>
<td>26.9</td>
<td>30.2</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>28.9</td>
<td>21.5</td>
<td>20.6</td>
<td>24.3</td>
<td>24.7</td>
</tr>
<tr>
<td>20:1</td>
<td>N</td>
<td>8.6</td>
<td>11.5</td>
<td>11.8</td>
<td>9.2</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>6.3</td>
<td>8.0</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>4.9</td>
<td>4.7</td>
<td>4.1</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>22:6</td>
<td>N</td>
<td>9.1</td>
<td>0.5</td>
<td>—</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>—</td>
<td>6.0</td>
<td>4.8</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Yellowtail

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>14</th>
<th>28</th>
<th>42</th>
<th>56</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>N</td>
<td>5.0</td>
<td>5.9</td>
<td>4.3</td>
<td>4.3</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3.5</td>
<td>2.7</td>
<td>2.2</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.6</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>16:0</td>
<td>N</td>
<td>23.7</td>
<td>19.7</td>
<td>23.8</td>
<td>29.8</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>25.3</td>
<td>22.3</td>
<td>24.7</td>
<td>27.5</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>27.4</td>
<td>46.1</td>
<td>37.8</td>
<td>46.8</td>
<td>35.5</td>
</tr>
<tr>
<td>16:1</td>
<td>N</td>
<td>9.3</td>
<td>10.9</td>
<td>8.7</td>
<td>7.8</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>6.6</td>
<td>6.7</td>
<td>9.0</td>
<td>8.8</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>8.7</td>
<td>3.6</td>
<td>5.6</td>
<td>4.4</td>
<td>tr</td>
</tr>
</tbody>
</table>
Table 2 Continued

Yellowtail

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>14</th>
<th>28</th>
<th>42</th>
<th>56</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:0</td>
<td>N</td>
<td>6.8</td>
<td>8.0</td>
<td>5.9</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>10.8</td>
<td>9.8</td>
<td>8.6</td>
<td>7.3</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>25.0</td>
<td>17.0</td>
<td>17.6</td>
<td>14.0</td>
<td>20.2</td>
</tr>
<tr>
<td>18:1</td>
<td>N</td>
<td>34.8</td>
<td>33.8</td>
<td>28.3</td>
<td>22.8</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>21.9</td>
<td>21.3</td>
<td>24.6</td>
<td>21.1</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>21.0</td>
<td>16.0</td>
<td>16.7</td>
<td>15.4</td>
<td>18.2</td>
</tr>
<tr>
<td>20:1</td>
<td>N</td>
<td>5.4</td>
<td>6.9</td>
<td>4.9</td>
<td>4.4</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3.9</td>
<td>4.1</td>
<td>3.5</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>3.0</td>
<td>2.3</td>
<td>2.0</td>
<td>0.1</td>
<td>1.8</td>
</tr>
<tr>
<td>22:1</td>
<td>N</td>
<td>4.7</td>
<td>5.1</td>
<td>3.8</td>
<td>4.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>5.2</td>
<td>7.7</td>
<td>6.3</td>
<td>8.3</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.9</td>
<td>2.0</td>
<td>5.2</td>
<td>5.5</td>
<td>4.4</td>
</tr>
<tr>
<td>23:6</td>
<td>N</td>
<td>0.7</td>
<td>0.8</td>
<td>4.0</td>
<td>5.3</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>10.9</td>
<td>11.8</td>
<td>9.7</td>
<td>11.4</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.9</td>
<td>0.7</td>
<td>—</td>
<td>—</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Mackerel

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>5</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>N</td>
<td>2.6</td>
<td>3.7</td>
<td>7.8</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.5</td>
<td>2.9</td>
<td>2.4</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.1</td>
<td>1.7</td>
<td>3.2</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>16:0</td>
<td>N</td>
<td>26.2</td>
<td>35.2</td>
<td>30.0</td>
<td>25.5</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>29.0</td>
<td>32.1</td>
<td>23.8</td>
<td>23.5</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>48.2</td>
<td>34.3</td>
<td>40.3</td>
<td>35.6</td>
<td>38.1</td>
</tr>
<tr>
<td>16:1</td>
<td>N</td>
<td>9.1</td>
<td>6.2</td>
<td>10.0</td>
<td>6.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>8.4</td>
<td>7.9</td>
<td>7.5</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>4.1</td>
<td>4.3</td>
<td>4.2</td>
<td>5.3</td>
<td>4.5</td>
</tr>
<tr>
<td>18:0</td>
<td>N</td>
<td>6.4</td>
<td>5.5</td>
<td>4.8</td>
<td>5.2</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>12.1</td>
<td>11.3</td>
<td>8.7</td>
<td>8.3</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>21.6</td>
<td>29.4</td>
<td>17.2</td>
<td>22.4</td>
<td>18.0</td>
</tr>
<tr>
<td>18:1</td>
<td>N</td>
<td>33.8</td>
<td>27.5</td>
<td>30.2</td>
<td>28.2</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>24.1</td>
<td>31.7</td>
<td>31.8</td>
<td>31.7</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>15.4</td>
<td>21.9</td>
<td>20.0</td>
<td>25.8</td>
<td>24.4</td>
</tr>
<tr>
<td>20:1</td>
<td>N</td>
<td>7.2</td>
<td>6.0</td>
<td>5.1</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.5</td>
<td>4.4</td>
<td>5.5</td>
<td>6.1</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.9</td>
<td>2.2</td>
<td>1.0</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>20:5</td>
<td>N</td>
<td>4.5</td>
<td>3.0</td>
<td>3.1</td>
<td>4.8</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1.5</td>
<td>1.7</td>
<td>5.6</td>
<td>3.2</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>22:1</td>
<td>N</td>
<td>4.8</td>
<td>3.0</td>
<td>2.0</td>
<td>5.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1.0</td>
<td>0.7</td>
<td>3.0</td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>22:6</td>
<td>N</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
<td>7.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1.8</td>
<td>3.3</td>
<td>6.5</td>
<td>1.3</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

* N: Neutral lipid, F: Free fatty acid, P: Phospholipid

297
Table 3 Fatty acid content of minced flesh of various species of fish during storage at −20°C

<table>
<thead>
<tr>
<th>Days</th>
<th>Std. acid</th>
<th>Monoenoic acid</th>
<th>Polyenoic acid</th>
<th>*M.M.W. of FA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/100 g flesh</td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
</tr>
<tr>
<td>0</td>
<td>256</td>
<td>53%</td>
<td>172</td>
<td>36%</td>
</tr>
<tr>
<td>10</td>
<td>209</td>
<td>54%</td>
<td>146</td>
<td>38%</td>
</tr>
<tr>
<td>20</td>
<td>179</td>
<td>59%</td>
<td>143</td>
<td>39%</td>
</tr>
<tr>
<td>60</td>
<td>186</td>
<td>61%</td>
<td>108</td>
<td>34%</td>
</tr>
<tr>
<td>120</td>
<td>168</td>
<td>53%</td>
<td>115</td>
<td>38%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Flying squid</th>
<th>Monoenoic acid</th>
<th>Polyenoic acid</th>
<th>*M.M.W. of FA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
</tr>
<tr>
<td>0</td>
<td>639</td>
<td>64%</td>
<td>166</td>
<td>16%</td>
</tr>
<tr>
<td>7</td>
<td>619</td>
<td>63%</td>
<td>133</td>
<td>13%</td>
</tr>
<tr>
<td>31</td>
<td>676</td>
<td>70%</td>
<td>165</td>
<td>17%</td>
</tr>
<tr>
<td>28</td>
<td>724</td>
<td>51%</td>
<td>121</td>
<td>13%</td>
</tr>
<tr>
<td>42</td>
<td>748</td>
<td>75%</td>
<td>175</td>
<td>17%</td>
</tr>
<tr>
<td>98</td>
<td>556</td>
<td>55%</td>
<td>100</td>
<td>14%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Northern blenny</th>
<th>Monoenoic acid</th>
<th>Polyenoic acid</th>
<th>*M.M.W. of FA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
</tr>
<tr>
<td>0</td>
<td>458</td>
<td>34%</td>
<td>631</td>
<td>49%</td>
</tr>
<tr>
<td>20</td>
<td>439</td>
<td>39%</td>
<td>590</td>
<td>52%</td>
</tr>
<tr>
<td>40</td>
<td>447</td>
<td>36%</td>
<td>588</td>
<td>48%</td>
</tr>
<tr>
<td>130</td>
<td>410</td>
<td>35%</td>
<td>609</td>
<td>52%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Yellowtail</th>
<th>Monoenoic acid</th>
<th>Polyenoic acid</th>
<th>*M.M.W. of FA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
</tr>
<tr>
<td>0</td>
<td>1.8 g</td>
<td>41%</td>
<td>2.3 g</td>
<td>52%</td>
</tr>
<tr>
<td>7</td>
<td>2.1 g</td>
<td>45%</td>
<td>2.1 g</td>
<td>46%</td>
</tr>
<tr>
<td>14</td>
<td>1.6 g</td>
<td>40%</td>
<td>2.1 g</td>
<td>52%</td>
</tr>
<tr>
<td>21</td>
<td>1.6 g</td>
<td>32%</td>
<td>2.3 g</td>
<td>46%</td>
</tr>
<tr>
<td>28</td>
<td>1.9 g</td>
<td>43%</td>
<td>2.0 g</td>
<td>44%</td>
</tr>
<tr>
<td>84</td>
<td>1.2 g</td>
<td>28%</td>
<td>2.7 g</td>
<td>62%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Mackeral</th>
<th>Monoenoic acid</th>
<th>Polyenoic acid</th>
<th>*M.M.W. of FA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
</tr>
<tr>
<td>0</td>
<td>5.3 g</td>
<td>33%</td>
<td>7.4 g</td>
<td>53%</td>
</tr>
<tr>
<td>10</td>
<td>6.7 g</td>
<td>45%</td>
<td>7.0 g</td>
<td>47%</td>
</tr>
<tr>
<td>20</td>
<td>6.5 g</td>
<td>46%</td>
<td>6.7 g</td>
<td>46%</td>
</tr>
<tr>
<td>40</td>
<td>5.8 g</td>
<td>44%</td>
<td>6.4 g</td>
<td>48%</td>
</tr>
<tr>
<td>110</td>
<td>4.9 g</td>
<td>39%</td>
<td>6.3 g</td>
<td>50%</td>
</tr>
</tbody>
</table>
Table 3 Continued

<table>
<thead>
<tr>
<th>Days</th>
<th>Alaska pollack<sup>c1</sup></th>
<th>Flying squid<sup>c1</sup></th>
<th>Northern blenny<sup>c1</sup></th>
<th>Yellowtail<sup>c1</sup></th>
<th>Mackerel<sup>c1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/100 g flesh</td>
<td>% of Total FA</td>
<td>mg</td>
<td>% of Total FA</td>
<td>mg</td>
</tr>
<tr>
<td>0</td>
<td>17</td>
<td>42</td>
<td>13</td>
<td>33</td>
<td>10</td>
</tr>
</tbody>
</table>

a) Calculated from the fatty acid composition of phospholipid (as lecithin)
b) Calculated from the fatty acid compositions of phospholipid (as lecithin) and neutral lipid (as triglyceride)
c) Calculated from the fatty acid composition of free fatty acid fraction

* M.M.W.: Mean molecular weight
北大学産業報

を導き難いが、たとえば場合の経験にあたって度数不飽和酸を減少し、飽和酸が多く占めるようになる結果を示している。しかも、この場合でも θ=0.2 で遊離脂肪酸蓄積量が極めて低く、とくに高度不飽和酸の酸化分解による影響と考えられる。

凍結魚肉製品の空気酸化については CHIZHOV と 10 の研究によれば、2段階に別れて行われ、最初は組織内酸素（0.7〜1.0×10^4 g/g）により酸化が行われ、2段階目は外部からの拡散酸素によって酸化が行われることが認められている。脂肪質をプロットして得た Fig. 1 の結果でも、貯蔵後 10〜20 日前後の顕著な酸化酸分解と 40〜50日以後の慢性な脂質減少が認められ、とくに細部内酸性時の混入空気の影響も加わって貯蔵初期（10〜20日前後）の脂質減少が大きいものと考えられる。

文 献

8) Anderson, M.L. and Steinberg, M.A. (1964) Ibid., 29, 327-330
9) 高間巧雄・高間英一・五十嵐久尚 (1967) 本誌, 18, 240-247