<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>脂質酸化生成物の生体におよぼす影響: Ⅱ．ドコサヘキサエン酸ハイドロパーオキサイドのラット臓器脂質におよぼす影響</td>
</tr>
<tr>
<td>著者</td>
<td>小川 晃 (五十嵐 久尚)</td>
</tr>
<tr>
<td>キーワード</td>
<td>北海道大学水産学部研究彙報</td>
</tr>
<tr>
<td>発行日</td>
<td>1973-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/23483</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>23(4)_P191-203.pdf</td>
</tr>
</tbody>
</table>
Influence of Oxidized Lipids on the Living Body

II. The influence of methyl docosahexaenoic acid hydroperoxide upon rat organolipids

Akira OGAWA*** and Hisanao IGARASHI**

Abstract

Hepatotoxicity caused by the long term ingestion of docosahexaenoic acid hydroperoxide was investigated with rats. The methyl docosahexaenoate fraction was prepared with squid oil. The fatty acids of this fraction comprised C\textsubscript{22:6} 82.8% and C\textsubscript{20:5} 12.5%. This fraction was autoxidized at 4°C as reported previously. When peroxide value had attained 500~1000 meq/kg, the oxidation was stopped, and the hydroperoxide fraction was prepared by the fractional extraction with n-hexane from the oxidized methyl docosahexaenoate.

Adult male rats, Wistar strain, were divided into three groups: one (C group) administered with purified soy bean oil, another (D group) with the unoxidized methyl docosahexaenoate, and the remaining one (DH group) with the methyl docosahexaenoate hydroperoxide, respectively for 13 weeks. Increase of body weight in the DH group began to be lax after 3 weeks, and in the D group after 5 weeks using C group as a control. In the experimental period, no diarrhea and alopecia were recognized, however the hypertrophy of the liver and kidney of rats were observed in the DH group.

TBA value of organolipids increased in the liver, spleen, stomach and intestine of rats in the DH group.

The total lipid content of the liver decreased in the DH group, however phospholipid was slightly higher than in the C group. The decrease of linoleic and arachidonic acid was observed, and the increase of docosahexaenoic acid in the phospholipids of the liver of the D and DH groups was also observed.

Total lipid, phospholipid, and cholesterol contents in the rat blood serum were decreased, and the levels of the GOT and the GPT of the blood serum were high in the D and DH groups.

In conclusion, the lipid synthesis of the liver was unfavorably influenced by the long term ingestion of docosahexaenoic acid hydroperoxide.

C22:6

Autoxidized at 4°C
(for 1–1.5 month)

Oxidized C22:6

Dissolved in 10 vol. of n-hexane and stored for overnight at -15°C

sol.

washed with distd. water

insol.

Polymer + ROOH
(3.6%)

C22:6 + C22:6 ROOH
(86.7%)

Water solute products
(9.7%)

C22:6: Methyl docosahexaenoate fraction
C22:6 ROOH: Methyl docosahexaenoate hydroperoxide fraction

Fig. 1. Preparation of docosahexaenoic acid hydroperoxide.

期自動酸化物をラットに1ケ月間経口投与すると、肝臓、腎臓が肥大し、各種臓器に過酸化物が蓄積し、また必須脂肪酸が減少することを報告した。そして、この毒性を予めして C22:6 の自動酸化過程で生成するハイドロパーオキサイドに起因すると推定した。そこで、著者らは初期自動酸化物中のハイドロパーオキサイドを長期間採取することにより肝臓や他の各種臓器の脂質代謝に障害を及ぼすと推定し、本実験では第1報の知見に基づき、更にドコサヘキサエン酸メチルエステルハイドロパーオキサイド（以下 C22:6 ROOH）の毒性発現のメカニズムについて亜急性毒性という観点から検討を加えることにした。また、自動酸化生成物中にはハイドロパーオキサイド以外にも毒性を示すと思われる重合物や低級アルデヒド類の存在が推定されるので、ハイドロパーオキサイドの毒性を検討するためにはハイドロパーオキサイド以外の毒性物質を除去する必要がある。それで本実験では C22:6 自動酸化物より C22:6 ROOH を製製してラットに投与した。投与期間は第1報の結果、1ケ月間では体重増加に影響しないことが認められたので、更に期間を延長して3ヶ月間に飼育実験期間とした。特に肝臓における脂質代謝障害を中心に追求した。

また、第1報のラットに見られた各種の症状が高度不飽和脂肪酸である C22:6 の大量摂取によって起こることを考慮されるので、自動酸化を受けない精製 C22:6 についても検討した。
Table 1. Properties of dietary oils.

<table>
<thead>
<tr>
<th>Dietary oil (group)</th>
<th>I.V.</th>
<th>P.O.V.</th>
<th>TBA-V.</th>
<th>(n^2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soy bean oil (C)</td>
<td>131.9</td>
<td>0.0</td>
<td>0.0002</td>
<td>1.4756</td>
</tr>
<tr>
<td>C(_{22:6}) *</td>
<td>360.8</td>
<td>0.0</td>
<td>0.0103</td>
<td>1.4954</td>
</tr>
<tr>
<td>Oxidized C(_{22:6})</td>
<td>347.6</td>
<td>626.9</td>
<td>0.3209</td>
<td>1.4964</td>
</tr>
<tr>
<td>C(_{22:6}) ROOH** (DH)</td>
<td>350.8</td>
<td>423.8</td>
<td>0.0818</td>
<td>1.4955</td>
</tr>
</tbody>
</table>

* C\(_{22:6}\): Methyl docosahexaenoate fraction
** C\(_{22:6}\) ROOH: Methyl docosahexaenoate hydroperoxide fraction

Table 2. Fatty acid composition of dietary oils (weight %).

<table>
<thead>
<tr>
<th>(C_{m:n}) *</th>
<th>Soy bean oil</th>
<th>C(_{22:6}) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>16:0</td>
<td>10.9</td>
<td>—</td>
</tr>
<tr>
<td>16:1</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>18:0</td>
<td>4.9</td>
<td>—</td>
</tr>
<tr>
<td>18:1</td>
<td>23.2</td>
<td>—</td>
</tr>
<tr>
<td>18:2</td>
<td>47.4</td>
<td>—</td>
</tr>
<tr>
<td>18:3</td>
<td>8.6</td>
<td>—</td>
</tr>
<tr>
<td>20:1</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>20:2</td>
<td>tr</td>
<td>—</td>
</tr>
<tr>
<td>20:3</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td>20:4</td>
<td>1.1</td>
<td>12.5</td>
</tr>
<tr>
<td>20:5</td>
<td>0.6</td>
<td>2.2</td>
</tr>
<tr>
<td>22:5</td>
<td>—</td>
<td>82.8</td>
</tr>
<tr>
<td>22:6</td>
<td>2.5</td>
<td>—</td>
</tr>
</tbody>
</table>

* \(m \): Number of carbon atoms * \(n \): Number of double bonds
** Methyl docosahexaenoate fraction

試料および実験の方法

ドコサヘキサエン酸ハイドロバーオキサイドの調製:

イカ油メチルエステル（日本化学飼料 K.K.）より第1報と同様にして C\(_{22:6}\) 区分を調製した。（純度 82.8%）

ハイドロバーオキサイドの調製法については、向流分配法、クロマトグラフィー等が報告されているが、何れも大量に調製する場合には不都合な点が少ない。著者等はハイドロバーオキサイドを純粋に取り出すのでなく、自動酸化の初期の段階で、すなわちハイドロバーオキサイドから二次生成物が生成していない段階で C\(_{22:6}\) 自動酸化物より、重合物、低級酸、水溶性のアルデヒド類を除去して C\(_{22:6}\) ROOH を調製することを試みた。

すなわち、C\(_{22:6}\) 区分 15g をベトリー皿に取り、冷蔵庫（4°C）で 1 ケ月～2 ケ月半自動酸化させ、POV 500～1000meq/kg の間で酸化を中止し、Fig. 1 に示す方法で C\(_{22:6}\) ROOH 含有区分を製造した。投与試験の性状を Table 1, 脂肪酸組成を Table 2 に示す。

飼育試験:

体重 170g 前後の Wistar 系成熟雄性ラット（7 週令）を対照群（C群）6匹、C\(_{22:6}\)群（D群）7匹、
Table 3. Composition of basal diet (weight %).

<table>
<thead>
<tr>
<th></th>
<th>Casein (Vitamin free) 20</th>
<th>McCallum salt (No. 185) 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corn starch 70</td>
<td>Vitamin mix.</td>
</tr>
<tr>
<td></td>
<td>Cellulose powder 2</td>
<td>Oil</td>
</tr>
</tbody>
</table>

* The same vitamin mix. as in the first report1)

Composition of administered oil (g)

<table>
<thead>
<tr>
<th>Group</th>
<th>Soy bean oil</th>
<th>C_{12:4}</th>
<th>C_{12:4} ROOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.70</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>0.14</td>
<td>0.56</td>
<td>—</td>
</tr>
<tr>
<td>DH</td>
<td>0.14</td>
<td>—</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 4. Analytical methods of chemical compositions and enzyme activities of blood serum.

<table>
<thead>
<tr>
<th>Item</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein</td>
<td>Refractometric analysis</td>
</tr>
<tr>
<td>Protein fraction</td>
<td>Cellulose acetate electrophoresis</td>
</tr>
<tr>
<td>Total lipid</td>
<td>De La Huerga's turbidimetry</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>Ernster (Lipid-P×25)</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>Zak-Henly</td>
</tr>
<tr>
<td>Glutamic oxalacetic transaminase (GOT)</td>
<td>Reitman-Frankel</td>
</tr>
<tr>
<td>Glutamic pyruvic transaminase (GPT)</td>
<td>Reitman-Frankel</td>
</tr>
<tr>
<td>Alkaline phosphatase (AIP)</td>
<td>Kind-King</td>
</tr>
<tr>
<td>Cholinesterase (ChE)</td>
<td>Takahashi-Shibata</td>
</tr>
</tbody>
</table>

C_{12:4} ROOH群（DH群）7匹に分け、C群は精製大豆油（飼料の5％）、D群は C_{12:4}(4％) と大豆油（1％）、DH群は C_{12:4} ROOH 含有区分（4％）と大豆油（1％）を毎日1回、胃ゾンデを用い経口投与し、その他の飼料成分は第1報と同様に調製し、乾燥重量で約13.3 g、油は0.7 g を与えた。飼料の組成を Table 3 に示す。なお、D群、DH群には必須脂肪酸の欠乏を防止するため、リノール酸が1日1匹当り約70 mg 程度投与される量の精製大豆油を投与した。また、DH群のハイドロペプチドオキサイド投与量は1日1匹当り、活性酸素量として平均7.6 mg に相当する。

臓器脂質の性状：
各種臓器の全脂質量、リン脂質量、TBA 価、脂肪酸組成は第1報と同様にして行なった。なお、肝臓については Zak-Henly 法により全コレステロール量を、Kjeldahl 法により粗蛋白-Nを測定した。

肝機能テスト：
飼育試験終了後、ラットをエーテル麻酔にかけ、心臓穿刺により採血を行ない血清を採取し、Table 4 に示す試験項目、測定法2) により肝機能検査を行なった。

分析法：
YO素価は Wijs 法、過酸化物価は八木・秋谷らの方法によった。

結果

成長観察：
体重増加は Fig. 2 に示すように DH 群は3週目より、D 群も5週目より C 群に比較して緩慢と
Fig. 2. Growth curve of rats.

Fig. 3. TBA value of the rat organs (O.D. 530/mg tissue).

なり、DH 群は 8 週目頃から減少した。なお、DH 群では油の投与直後に流瀬症状がみられたが、1ケ月以降はあまりみられなかった。また、DH 群の一部で食欲の低下がみられ、12～13 頃目にかけてエサを残すものもいたが、全期間を通して 3 群共殆どエサを残すことはなく、下痢症状も認められなかった。

外見的には、DH 群に粗毛、および頭角。肛門付近の毛が一部黄褐色に着色しているのがみられたが、脱毛症状はみられなかった。
Table 5. Contents of total lipid and phospholipid in the rat organs.

<table>
<thead>
<tr>
<th>Group</th>
<th>Organ weight (g)</th>
<th>Total lipid (mg/g)</th>
<th>Phospholipid (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>9.1±0.7</td>
<td>51.2±7.7</td>
<td>30.2±2.7</td>
</tr>
<tr>
<td>D</td>
<td>9.6±0.5</td>
<td>48.6±5.0</td>
<td>32.0±2.6</td>
</tr>
<tr>
<td>DH</td>
<td>11.1±0.7</td>
<td>44.3±4.6</td>
<td>32.3±2.1</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.0±0.1</td>
<td>43.2±6.5</td>
<td>25.3±2.6</td>
</tr>
<tr>
<td>D</td>
<td>2.1±0.1</td>
<td>45.7±3.5</td>
<td>30.0±1.7</td>
</tr>
<tr>
<td>DH</td>
<td>2.2±0.2</td>
<td>50.6±1.7</td>
<td>29.9±1.7</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.6±0.1</td>
<td>29.8±7.5</td>
<td>16.5±3.7</td>
</tr>
<tr>
<td>D</td>
<td>0.6±0.1</td>
<td>33.3±3.6</td>
<td>17.1±1.7</td>
</tr>
<tr>
<td>DH</td>
<td>0.6±0.1</td>
<td>30.8±3.0</td>
<td>18.6±3.3</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.6±0.2</td>
<td>38.2±5.7</td>
<td>11.0±1.4</td>
</tr>
<tr>
<td>D</td>
<td>1.5±0.1</td>
<td>38.2±8.6</td>
<td>10.9±1.5</td>
</tr>
<tr>
<td>DH</td>
<td>1.6±0.2</td>
<td>43.5±10.0</td>
<td>12.0±1.5</td>
</tr>
<tr>
<td>Intestine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.7±0.6</td>
<td>70.8±18.9</td>
<td>15.5±2.8</td>
</tr>
<tr>
<td>D</td>
<td>6.7±0.6</td>
<td>69.9±10.8</td>
<td>16.1±1.3</td>
</tr>
<tr>
<td>DH</td>
<td>7.0±0.5</td>
<td>58.3±13.7</td>
<td>15.4±3.2</td>
</tr>
<tr>
<td>Testes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.8±0.3</td>
<td>26.0±4.8</td>
<td>12.0±1.3</td>
</tr>
<tr>
<td>D</td>
<td>2.8±0.2</td>
<td>30.3±2.5</td>
<td>12.0±1.0</td>
</tr>
<tr>
<td>DH</td>
<td>2.7±0.2</td>
<td>27.7±4.3</td>
<td>11.0±1.0</td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.7±0.1</td>
<td>81.8±14.8</td>
<td>42.3±9.0</td>
</tr>
<tr>
<td>D</td>
<td>1.6±0.1</td>
<td>86.0±16.4</td>
<td>37.7±3.5</td>
</tr>
<tr>
<td>DH</td>
<td>1.5±0.1</td>
<td>75.3±7.2</td>
<td>38.6±4.1</td>
</tr>
</tbody>
</table>

Mean value±SD
Note: C group consists of six heads, D and DH groups does of seven heads.

解剖所見:
飼育試験終了後、ラットにエチル麻酔をかけ、心臓穿刺により脱血死させた。解剖すると肝がかなり肥大しており、腎にも同様の傾向が認められた。肝の色は3群共差異は認められず、肝の凍結切片をSudan Black染色により顕微鏡観察したところ脂肪肝は生じておらず、ヘマトキシリン-エオジン染色で肝細胞の形態を観察したが形態にあまり差は認められなかった。

臓器脂質の性状:
脂質TBA量はFig. 3に示すように肝、腎、肺、小腸ともDH群は他の2群に比べて増大しているが、D群も肝、肺、小腸ではC群に比較してやや高い値を示し、特に肺、小腸は他の臓器に比べて高い値を示した。

全脂質量についてみればDH群はC群に比べて肝では減少、腎、肺ではやや増加の傾向があらわれた。

リン脂質は肝でD、DH両群がC群に比較してやや増加しているほかは、有意な差はみられなかった。Table 5に各種臓器の重量、全脂質量、リン脂質量を示す。

各臓器の脂質組成(Fig.4)について検討したところ、肝、腎、肺でトリグリセライドの減少がみられたが、リン脂質区分ではあまり増減が認められなかった。

肝の全コレステロール量は、DH群はC、D両群に比べて増加の傾向がみられた。肝の粗蛋白-N量はC、D、DH各群に有意な差は認められなかったが、リン脂質/全脂質の比、およびリン脂質/蛋白-Nの比はD、DH群で増大していた。
Fig. 4. Lipid composition of the rat organs (weight %).
Table 6. The influence of \(C_{22:4} \) and \(C_{22:4} \) ROOH on the rat liver.

<table>
<thead>
<tr>
<th>Group</th>
<th>Control (C)</th>
<th>(C_{22:4}) (D)</th>
<th>(C_{22:4}) ROOH (DH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>173±11</td>
<td>171±13</td>
<td>173±11</td>
</tr>
<tr>
<td>Finaly body weight (g)</td>
<td>316±20</td>
<td>287±7</td>
<td>264±15</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>9.1±0.7</td>
<td>9.6±0.3</td>
<td>11.1±0.7</td>
</tr>
<tr>
<td>LW/FBW* (%)</td>
<td>2.90±0.37</td>
<td>3.36±0.14</td>
<td>4.38±0.27</td>
</tr>
<tr>
<td>Protein-N (mg/g)</td>
<td>37.7±2.1</td>
<td>39.0±1.0</td>
<td>37.2±2.7</td>
</tr>
<tr>
<td>Total lipid (mg/g)</td>
<td>51.2±7.7</td>
<td>48.6±5.0</td>
<td>44.3±4.6</td>
</tr>
<tr>
<td>Phospholipid (mg/g)</td>
<td>30.2±2.7</td>
<td>32.0±2.6</td>
<td>32.3±2.1</td>
</tr>
<tr>
<td>Total cholesterol (mg/g)</td>
<td>4.6±0.7</td>
<td>4.6±0.6</td>
<td>4.8±0.5</td>
</tr>
<tr>
<td>PL/TL (ratio)</td>
<td>0.60</td>
<td>0.66</td>
<td>0.73</td>
</tr>
<tr>
<td>PL/Pro.-N (ratio)</td>
<td>0.80</td>
<td>0.82</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Mean value±SD * LW: Liver weight, FBW: Final body weight

Table 6に肝の全脂質量、リン脂質量、全コレステロール量、リン脂質/全脂質の比、およびリン脂質/蛋白-Nの比を示す。

各臓器の中性脂質、リン脂質の脂肪酸組成をTable 7およびTable 8に示す。中性脂質区分ではD, DH群の肝、腎、肺、胃、小腸を除きリノール酸の減少がみられた。アラキドン酸はC群も少量であったが、D, DH群では殆ど検出されなかった。また、腎以外の臓器でDH群はオレイン酸の増加がみられた。ドコサヘキサエン酸は中性脂質区分では肝以外の臓器には殆ど存在しなかった。

一方、リン脂質区分ではTable 7に示すようにリノール酸含量はあまり変化なく、むしろ肝、腎，胃ではDH群の方がC, D群よりも多かった。ところが、アラキドン酸の減少がD, DH群の肝、腎、肺、小腸に顕著に見われており、ドコサヘキサエン酸の取りこぼしは肝、肺、腎で増加がみられ、特にDH群がD群より多く取りこぼれているのが観察された。

なお、血清全脂質の脂肪酸組成ではリノール酸、アラキドン酸の変動は肝のリン脂質区分に類似

Table 7. Fatty acid composition of neutral

-198-
小川・五十嵐：酸化脂質の生体への影響II

しているが、ドコサヘキサエン酸含量は少なく、肝より血液へのドコサヘキサエン酸の移行は少ないようにと思われる。

薄層クロマトグラフィーにより調製した肝フォスファチジルエタノールアミン（以下 PE）、フォスファチジルコレイン（以下 PC）の脂肪酸組成について検討したところ、Table 9 に示すように D, DH 群を比較すると DH 群の方が PE, PC ともにドコサヘキサエン酸の取り込み量が大であり、PE, PC の両者間では D, DH 群とともに PE の方が取り込み量が大であった。

肝機能テスト：
3 群のラット血清について行なった結果を Table 10 に示す。血清蛋白量、A/G 比（アルブミン/グロブリン）有意差はみられないが、全脂質量、リン脂質量、コレステロール量は D, DH 群でやや減少の傾向がみられ、また血清酵素では GOT (グルタミン酸オキサロ酸トランスアミナーゼ), GPT (グルタミン酸ピルビン酸トランスアミナーゼ) の活性の上昇が認められた。

考察および総括

1) 本調製法によって得られたヘドロバーオキサイド含有区分は C22:6 と酸化生成物としては主として C20:4ROOH が含有されていると考えられる。すなわち、自動酸化物よろ過物は n-ヘキサエンにより分画されており、低価の酸性の酸化生成物も水洗操作によって除去されているものと推定される。それ故、このヘドロバーオキサイド含有区分の構成によって現われる症状は C22:6 と C20:4ROOH に起因するものと考えられる。

2) 第 1 報においては投与時、POV 約 500meq/kg の油（活性酸素量にして 1 日 1 匹当り約 12.7mg）の 1 ケ月間投与では体重増加にあまり影響しないことを報告したが、本実験では投与時、POV 約 340meq/kg の油（活性酸素量 1 日 1 匹当り約 7.6 mg）の 3 ケ月間投与で DH 群は 2 ケ月以降に体重減少が認められた。

しかし、自動酸化されない C22:6 を投与した D 群も 1 ケ月以降、C 群に比較して体重増加が緩慢になった。（Fig. 2 参照）

3) 本実験においても第 1 報11 同様、飼育期中、3 群ともに下痢、脱毛のような症状はみられな

Table 9 K

Table 10 K

lipid of the rat organs (weight %).

<table>
<thead>
<tr>
<th></th>
<th>Stomach</th>
<th>Intestine</th>
<th>Testes</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>DH</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>tr.</td>
</tr>
<tr>
<td>1.9</td>
<td>2.2</td>
<td>2.0</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>27.8</td>
<td>30.0</td>
<td>34.1</td>
<td>33.4</td>
<td>27.9</td>
</tr>
<tr>
<td>5.9</td>
<td>9.0</td>
<td>7.1</td>
<td>10.5</td>
<td>11.5</td>
</tr>
<tr>
<td>6.4</td>
<td>6.2</td>
<td>5.9</td>
<td>6.3</td>
<td>5.3</td>
</tr>
<tr>
<td>42.5</td>
<td>41.3</td>
<td>34.4</td>
<td>39.5</td>
<td>36.9</td>
</tr>
<tr>
<td>10.8</td>
<td>11.2</td>
<td>18.3</td>
<td>6.5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td>0.3</td>
<td>2.0</td>
<td>0.1</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>0.2</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>tr.</td>
<td>—</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- 199 -
Table 8. Fatty acid composition of phosphatidyl ethanolamine of the rat liver (weight %).

<table>
<thead>
<tr>
<th>Cn.m</th>
<th>Liver</th>
<th>Kidney</th>
<th>Spleen</th>
<th>Stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>DH</td>
<td>C</td>
</tr>
<tr>
<td>13:0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>14:0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>15:0</td>
<td>0.5</td>
<td>0.8</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>16:0</td>
<td>18.5</td>
<td>19.4</td>
<td>22.5</td>
<td>16.4</td>
</tr>
<tr>
<td>16:1</td>
<td>1.7</td>
<td>2.8</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>16:2</td>
<td>0.8</td>
<td>1.1</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>17:0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>18:0</td>
<td>27.1</td>
<td>27.5</td>
<td>24.4</td>
<td>23.9</td>
</tr>
<tr>
<td>18:1</td>
<td>10.8</td>
<td>13.2</td>
<td>11.0</td>
<td>11.8</td>
</tr>
<tr>
<td>18:2</td>
<td>9.5</td>
<td>9.3</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>18:3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>19:1</td>
<td>0.1</td>
<td>—</td>
<td>tr.</td>
<td>0.1</td>
</tr>
<tr>
<td>20:2</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20:3</td>
<td></td>
<td>tr.</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>20:4</td>
<td>24.3</td>
<td>10.0</td>
<td>9.0</td>
<td>29.1</td>
</tr>
<tr>
<td>20:5</td>
<td>0.5</td>
<td>5.4</td>
<td>5.1</td>
<td>1.1</td>
</tr>
<tr>
<td>22:1</td>
<td>0.2</td>
<td>—</td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>22:5</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22:6</td>
<td>4.0</td>
<td>8.8</td>
<td>11.8</td>
<td>tr.</td>
</tr>
</tbody>
</table>

Table 9. Fatty acid composition of phosphatidyl ethanolamine and phosphatidyl choline of the rat liver (weight %).

<table>
<thead>
<tr>
<th>Cn.m</th>
<th>PE</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>14:0</td>
<td>0.2</td>
<td>tr.</td>
</tr>
<tr>
<td>15:0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>16:0</td>
<td>18.6</td>
<td>20.0</td>
</tr>
<tr>
<td>16:1</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>16:2</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>17:0</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>18:0</td>
<td>27.5</td>
<td>25.0</td>
</tr>
<tr>
<td>18:1</td>
<td>10.9</td>
<td>7.1</td>
</tr>
<tr>
<td>18:2</td>
<td>4.7</td>
<td>5.1</td>
</tr>
<tr>
<td>18:3</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>20:1</td>
<td>1.2</td>
<td>—</td>
</tr>
<tr>
<td>20:2</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>20:3</td>
<td>0.1</td>
<td>tr.</td>
</tr>
<tr>
<td>20:4</td>
<td>21.3</td>
<td>11.9</td>
</tr>
<tr>
<td>20:5</td>
<td>0.9</td>
<td>9.9</td>
</tr>
<tr>
<td>21:1</td>
<td>7.9</td>
<td>2.5</td>
</tr>
<tr>
<td>22:6</td>
<td>2.5</td>
<td>16.0</td>
</tr>
</tbody>
</table>

かった。金田らは、高油不飽和脂肪酸酸化物の凝縮により下痢を起こすと報告しているが、本実験ではそのような症状がみられないことから、下痢はハイドロペーオキサイドによるものではなく、二次的に生成した重合物、あるいは低級な水溶性の酸化生成物によって起るものであろうと考えられる。

第1報と同様本実験でも肝、腎、肥大が認められ、特に肝は著しくあった。
4) 各臓器における酸化物の蓄積は、C_{18:2}OH が小腸から吸収され、肝に取り入れられた後肝
phospholipid of the rat organs (weight 96).

<table>
<thead>
<tr>
<th>Intestine</th>
<th>Testes</th>
<th>Brain</th>
<th>Serum-TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>DH</td>
<td>C</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>0.4</td>
<td>0.9</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>17.9</td>
<td>23.8</td>
<td>33.8</td>
<td>33.8</td>
</tr>
<tr>
<td>3.5</td>
<td>5.5</td>
<td>2.1</td>
<td>5.5</td>
</tr>
<tr>
<td>1.1</td>
<td>1.2</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>21.9</td>
<td>17.9</td>
<td>21.7</td>
<td>11.6</td>
</tr>
<tr>
<td>16.4</td>
<td>22.8</td>
<td>19.5</td>
<td>13.0</td>
</tr>
<tr>
<td>1.5</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>0.8</td>
<td>1.3</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>tr.</td>
<td>—</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>tr.</td>
</tr>
<tr>
<td>17.9</td>
<td>7.5</td>
<td>10.0</td>
<td>14.8</td>
</tr>
<tr>
<td>0.9</td>
<td>3.4</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>1.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 10. Chemical compositions and enzyme activities of blood serum.

<table>
<thead>
<tr>
<th>Item</th>
<th>Control (C)</th>
<th>C22:4 (D)</th>
<th>C22:4 ROOH (DH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/dl)</td>
<td>6.7±0.3</td>
<td>6.3±0.2</td>
<td>6.3±0.3</td>
</tr>
<tr>
<td>Albumin/Globulin (ratio)</td>
<td>1.20±0.15</td>
<td>1.21±0.13</td>
<td>1.21±0.09</td>
</tr>
<tr>
<td>Total lipid (mg/ml)</td>
<td>3.83±1.68</td>
<td>3.56±1.98</td>
<td>3.06±0.85</td>
</tr>
<tr>
<td>Phospholipid (mg/ml)</td>
<td>1.22±0.68</td>
<td>0.62±0.23</td>
<td>0.74±0.14</td>
</tr>
<tr>
<td>Total cholesterol (mg/ml)</td>
<td>0.98±0.43</td>
<td>0.92±0.15</td>
<td>0.71±0.12</td>
</tr>
<tr>
<td>GOT (Karmen)</td>
<td>66.3±18.4</td>
<td>226.0±19.0</td>
<td>275.0±29.9</td>
</tr>
<tr>
<td>GPT (Karmen)</td>
<td>31.3±7.9</td>
<td>39.8±9.5</td>
<td>32.7±3.4</td>
</tr>
<tr>
<td>AIP (King-Armstrong)</td>
<td>21.4±3.9</td>
<td>18.6±3.2</td>
<td>18.5±6.6</td>
</tr>
<tr>
<td>ChE (j pH)</td>
<td>0.08±0.01</td>
<td>0.02±0.01</td>
<td>0.04±0.02</td>
</tr>
</tbody>
</table>

Mean value±SD

から選ばれたためにおいては、どうかについてであるが、C22:4 含量が DH 群の肝は中性脂肪区区分で 1.2%、リノール酸区分で 11.8% と多いが、豚のリン脂質で 4.3%、脳のリン脂質で 9.5% の存在が認められたのみで、腎、胃、小腸の中性脂肪には殆ど含まれず、リノール酸区分でも肝 0.8%、胃 1.5%、小腸の障害程度であることから、TBA 値の増大とドコサヘキサエン酸含量との間に相関性があるとは言えず、そのため各種臓器の TBA 値の増大がスレートに C22:4 ROOH を蓄積したためであるとすることは断言できない。それで、肝以外の臓器ではむしろ二次的な原因、たとえば、ヘドロバーキサトローサから生じた生成物によるか、あるいはピタミン E 等が欠乏することによって TBA 値を増大するものと推定される。すなわち、過酸化物の込んでピタミン E が欠乏し、臓器脂質の過酸化変性像が起こるという説がも提唱されているところからこの点については検討する必要がある。

5）本実験の結果、ヘドロバーキサトローサの吸収によって特に肝の栄養代謝障害が起こっていると推察される。すなわち、肝の肥大を考慮すると肝に蓄積されている蛋白質、脂質が増加していること

になり、肝から他の体組織への栄養素の供給にも支障をきたしているのではないかということがある。血清成分の変動を体重減少という症状を合わせ考えると推測できる。

特に、肝の脂質構成、脂肪酸組成の変動は肝の脂質代謝に異常をきたしていることをうかがわせる。ハイドロパーオキサイド投与による肝の脂質組成の変動に関しては、衣巻19がラットにリノール酸ハイドロパーオキサイドを投与することによりトリグリセライドが蓄積することを報告しているが、本実験ではこのような結果は得られなかった。一方、Kawashima20はリノール酸ハイドロパーオキサイドの2ケ月間の投与によりラットの全脂質量は減少するが、リン脂質量はあまり変化しないことを認めており、本実験で得られた結果と似ている。

6) D-DH群の肝、腎、胃等のリン脂質組成分にアラキドン酸の増加がみられたが、この傾向が肝のPE、PCにはっきり現われていることからドコサヘキサエン酸の取り込み増加により、おそらくはリノール酸からアラキドン酸への合成の抑制が起こっているように推察される。

この原因の一つに必須脂肪酸の欠乏があげられる。一般に必須脂肪酸欠乏食でラットを飼育すると、肝リン脂質組成分にイコサトリエン酸の著しい増加が認められることが報告されているが21。本実験ではそのような傾向はあまりみられないことから必須脂肪酸の欠乏による症状を断定することは難しい。

一方、Century27) はリノール酸系列の脂肪酸は直接組織中の必須脂肪酸と置きかわってリノール酸からアラキドン酸への合成を抑制することを報告しており、その点ドコサヘキサエン酸も同系列の高度不飽和脂肪酸であるところから、同様の抑制作用をもっているものと思われる。しかしD群よりもD-DH群にこの傾向が著しいという結果からは、ハイドロパーオキサイドがこの代謝抑制に何らかの形で働いていることが推察される。

7) 肝細胞の状態の構造、機能が障害を受けるのかということであるが、PEのようにミトコンドリア等の生体膜に多存するリン脂質にドコサヘキサエン酸の蓄積が見られたということは、肝の脂質TBA価の増大、血清GOT、GPTの活性の上昇と合わせて考えると、ドコサヘキサエン酸、ドコサヘキサエン酸ハイドロパーオキサイドが生体膜に蓄積し、膜の構造と機能が障害を受けるようにも推測される。

8) 自動酸化を受けないC22:6を投与したD群においてもTBA価が肝、腎、胃においてC群よりも增大していたが、これはC22:6の大 Consumersが生体内での脂質の過酸化反応に影響をおよぼしていることを示唆しているものと思われる。金田ら23は酸化されない高度不飽和脂肪酸は毒性をもたないと報告しているが、本実験の結果からはC22:6のような特に高度の不飽和脂肪酸を長期間、大量に摂取することは栄養的には好ましくないものと推定した（Fig.2参照）。

本実験によりC22:6 ROOHの13週間（亜急性中毒の飼育試験期間）の投与により、ラットの肝臓をはじめとして各種臓器の脂質代謝障害を助長することが明らかになったが、各臓器の脂質代謝異常のパターン（Fig.3, Table 5, 7, 8参照）は、ハイドロパーオキサイドの直接の影響ではなく、二次的な原因をも示唆しているように推測される。

本研究に対して指導に協力され、且効果的な助言を与えられた食品化学第一講座座間助教授、神田、高間、高助手に感謝すると共に、イタリアスエルを提供された日本化学薬用館診工場、精製大豆油を提供された旭油脂k k、血清検査に協力された市立薬科大学中央臨床検査科の松崎技師に感謝を表します。

文　献

1) 小川実・五十嵐久尚 (1972). 脂質酸化生成物の生体におよぼす影響 Ⅰ ドコサヘキサエン酸自動酸

—202—
化物のラット脳におよぼす影響 北大水産業報 23, 159-169.
2) 福田野六男 (1971) ナガズカ卵巣の毒性物質 VI. Lipostichaerin と毒性構造実験ラットにおける毒性の比較. 北大水産業報 21, 331-335.