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The Diffusive Instability in the Mathematical Model of the 
Lower Trophic Levels of the Marine Ecosystem* 

Masaaki BUZUKI** and Jiro FUKUOKA ** 

Abstract 

Plankton patchiness has been observed for a long time. In the former 
studies, the plankton patchiness formation has been explained to be owing to 
divergence and convergence of the velocity field, or owing to environmental 
heterogeneity. 

Recently, temporal and spatial variability of plankton and the enviromnent 
in the mesoscale have been observed in detail. Because of the results of these 
observations, it has been proved that plankton patchiness does not always 
depend upon the heterogeneity of the environment. 

We are concerned with the formative mechanism of plankton patchiness. 
In the Lotka-Volterra system, patchiness seems to be generated by diffusive 
instability. Firstly, we will carry out the numerical analysis to examine the 
possibility of diffusive instability in the ocean by using a simplified ecosystem 
model. 

Introduction 

Plankton patchiness in the ocean has been frequently observed. In former 
studies, the plankton patchiness formation has been explained to be generated by 
depending upon the divergence and convergence of the velocity field, or environ­
ment heterogeneity. 

Recently, PoweIP), Denman2), Platt3)' and Bteele4) observed temporal and 
spatial variability of physical variables (temperature, salinity, velocity etc.) and 
biological variables (chlorophyll, nutrient, etc.) in the mesoscale. According to 
the results of their observations, plankton patchiness is not generated only by the 
heterogeneity of the physical environment. Namely, plankton patchiness forma­
tion should be discussed with the relationship between biological dynamics and the 
physical environment. 

The theoretical studies dealing with temporal and spatial variability have been 
advanced in the various ways, that is, Begel5 ) and Okubo6) put the diffusion effect 
into the Lotka-Volterra system, and Jorne7) gave the advection effect to the system 
with the diffusion effect. Mimura8 ), moreover, expressed the growth rate, grazing 
rate, death rate in the forme of F.(u, v} in the Lotka-Volterra system. According 
to these studies, when a slight disturbance is given to the system, if predator diffuses 

* Contribution No. 107 from the Research of North Pacific Fisheries, Faculty of Fish­
eries, Hokkaido University 

** Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University 
(;f~wm*~7.kMl~'ifIl;f~7.kMlSf~OjIU;~:w~'ifIlF5) 

-205-



Bull. Fac. Fish. Hokkaido Univ. 30(3). 1979. 

more rapidly than prey, then the system becomes unstable, and is transformed to 
the largescale temporal and spatial structure. 

We will examine the possibility of diffusive instability in the lower trophic 
levels of the marine ecosystem. 

Mathematical model 

The considerable differences between the marine ecosystem and the Lotka­
Volterra system are as follows: 
(1) The Lotka-Volterra system indicates only the prey-predator relationship, and 

is a perfect open system. On the contrary, the marine ecosystem includes 
feed back loops (especially in the excretion of zooplankton). 

84,85 

Fig. 1. Model kinetics, Bl '" B5 represent 
as follows: 

Bl nutrient uptake by phytoplankton 
B2 collective losses from phytoplankton 
B3 zooplankton grazing 
B4 zooplankton excretion 
B5 zooplankton standard excretion 

(2) In the Lotka-Volterra system, 
the growth rate of the prey is 
constant, or, at least, depends 
only upon the biomass itself. 
In the marine ecosystem, the 
growth rate of phytoplankton 
always depends upon other 
variables especially nutrient. 
We would like to make the 

simplifed model of the lower trophic 
levels of the marine ecosystem by 
adding the feed back loop and the 
nutrient limitation effect In the 
Lotka-Volterra system (Fig. 1). 

The Model Structure 

We assume that the state variables are nutrient (N), phytoplankton (P), and 
zooplankton (Z). As in the biological process, we introduced nutrient uptake by 
phytoplankton (Bl), the collective losses from phytoplankton (B2), zooplankton 
grazing (B3), and zooplankton excretion (B4, B5). In addition, we omit detritus, 
because if we assume the linear function of bacterial decomposition, the action of 
detritus has only the time lag effect. 

Formulation 

In formulation, we neglect the exogenous variables (light, temperature, etc.) 
and attempt to apporoximate each biological process in the nearest accuracy. 
(1) Nurient uptake (Bl) 

Nutrient uptake rate is shown as the Michaelis-Menten equation 

where 

VmN 
Kl+N 
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V m: maximum uptake rate (hr-l) 
K I : phytoplankton Michaelis constant (p,g-at/l) 
N: nutrient concentration (p,g-at/l) 

(2) The collective loss from phytoplankton (B2) 
This process express the decrease of phytoplankton. It dose not include 

zooplankton grazing but includes the effects of excretion, autolysis, and natural 
death. This form is shown as follow. 

where 

Dp: collective loss rate (hr-1) 

P: phytoplankton biomass (p,g-at/l) 
(3) Zooplankton grazing (B3) 

(1-2) 

Zooplankton grazing depends upon phytoplankton biomass which IS 

apporoximated as: 

where 

R",: maximum grazing rate (hr-1) 

K 2 : zooplankton Michaelis constant (p,g-at/l) 
(4) Zooplankton excretion (B4, B5) 

(1-3) 

According to Steele9), zooplankton excretion consists of the process which is 
dependent on grazing (B4) and independent on grazing (B5). The B4 rate is in 
proporition to grazing, 

r R",.P Z 
K 2+P 

where r is constant. B5 is expressed as 

Dz·Z 
where 

D.: standard excretion rate (hr-1) 

Basic equation 

(1-4) 

(1-5) 

We attempt the fundamental assumptions to reduce the state equations to 
tractable form: 
(1) The velocity field is assumed to be nondivergent. 
(2) The coefficient of eddy diffusivity is assumed constant. 
(3) Both eddy diffusivities of nutrient and phytoplankton are assumed to be the . 

same. 
(4) All derivatives in the vertical and y directions are neglected. 
(5) Nutrient and phytoplankton are advected on the same velocity field 
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And then, we introduced the dimensionless variables to reduce the number of 
parameters. The scaling relationships are listed in Table 1. 

The nondimensional state equations are as follows: 

Table 1. Definition of symbols and scaling relationship. 

Dimensional 
quantity 

Definition Scaling I Nondimensional 
facter quantity 

x 
U 

limiting nutrient concentration 
phytoplankton biomass 
zooplankton biomass 
zooplankton maximum garzing rate 
phytoplankton Michaelis constant 
zooplankton Michaelis constant 
phytoplankton collective loss rate 
zooplankton standard excretion rate 
zooplankton excretion coefficient 
time 
tangent-plane Cartesian coodinate 
typical value of the horizontal 

velocity 
eddy diffusivity of nutrient and 

phytoplankton 
eddy diffuivity of zooplankton 
diffusion ratio of phytoplankton and 

zooplankton 
phytoplankton maximum uptake rate 
total amount of biological limiting 

nutrient in the system 

NWt 
PWt 
ZWt 
R",IV", 
KWt 
KWt 
Dp!Vm 
D.!Vm 
r.Nt 
t. Vm 

N* 
P* 
Z* 
P 

N*P* fJP*(Z*)2 
(XI+N* + zPIP* + y (X2+ P* + zP2Z* 

(2-1) 

fJP* fJP* fJ2p* N*P* 
- zPIp*- fJP*Z* 

----at* = - UI fJx* + fJ(X*)2 + (XI+N* (X2+ P* 
(2-2) 

fJZ* fJZ* fJ2Z* 
+ (l-yZ*) 

fJP*Z* 
~= -U2Tx*+ 8 fJ(X*)2 (X2+P* - zP2Z* (2-3) 

The asterisk is dropped in equation (2-1), (2-2), (2-3) for the sake of simplicity. 
For the parameter values, we use following the values according to Suzuki, et. 

aPO) 

(Xl = 0.02, 0.05, 0.10, 0.20, 0.50 

(X2 = 0.05, 0.10, 0.20, 0.50, 1.00 

fJ = 0.30, 0.50, 0.70, 1.00, 1.20 

Y = 1.00, 2.00, 3.00, 4.00, 5.00 
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tPl = 0.03, 0.05, 0.07, 0.10, 0.20 

tP2 = 0.03, 0.05, 0.07, 0.10, 0.20 

Assuming the existence of the uniform solution, the state equations are as 
follows: 

dN NP (3PZ2 
-F = f1(N, P, Z) = - 01.1 +N + tPIP + y 0I.

2
+P + tP~ (2-4) 

(2--5) 

(2-6) 

and 
N=l-P-Z (2-7) 

By the substitution of equation (2-7) into equations (2-5) and (2--6), the state 
equations are as follows: 

(2-8) 

(2--9) 

The values of the uniform solution are P=P ° and Z=Zo and these values can be 
obtained in the solution of the following equations. 

gl(PO' Zo) = 0 

g2(PO' Zo) = 0 

(2-10) 

(2--11) 

To examine the stability of the uniform solution to perturbations in concentra­
tion, we apply the following formula. 

P(x, t) = Po+JP(x, t) 

Z(x, t) = Zo+JZ(x, t) 

(2-12) 

(2-13) 

If the perturbations JP, JZ are sufficiently samll, we can linearize the equa­
tions (2-8), (2-9), that is, the linearized equations are as follows: 

iJ(JP) 
= -U1 

iJ(JP) iJ2(JP) 
(2-14) 

iJt iJx + iJx2 + an JP + a12JZ 

iJ(JZ) 
=-U2 

iJ(JZ) iJ2(JZ) 
+ a2l JP + a22JZ (2--15) 

iJt iJx + S iJx2 

where 
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(2-16) 

Equations (2-14), (2-15) are in general full matrix equations and can be 
solved by the Fouries analysis method. 

Following the standard method, we consider one set of Fourier components for 
the perturbations. 

dP = Pexp (ikx+at) 

dZ = t exp (ikx+at) 

(2-17) 

(2-18) 

where P, t are the time dependence and the Fourier component of wave 
number k. 

Substituting equations (2-17), (2-18) into (2-14), (2-15), the characteristic 
equation become as follows: 

1 

all-k2+ikUI-U a l2 1 

=0 
aZI a22-3k2+ikUz-U 

(2-19) 

Results 

A detailed analysis for the general diffusive instability is made by Segel5) and 
Jorne.7) Now, we are interesed in the possibility of the diffusive instability in the 
lower trophic levels of a marine ecosystem. 

We considered two models to understand the diffusion and advection effects, 
respectively. The models are: 
(1) In the absence of the advection effect, including the diffusion effect only 

(MODEL I). 
(2) Including both diffusion and advection effects (MODEL II). 

MODEL I 

Substituting U1=0, Uz=O into equation (2-19), the characteristic equation 
become: 

a
l2 

1=0 
a22(k)-u 

(3-1) 
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where 
an(k) = an -k2 

a22(k) = a22-3k2 

From equation (3-1), the necessary conditions for the diffusive instability are: 

at k=O 

at k=O 

(3-2) 

(3-3) 

all(k)a22(k)-a12a21 < 0 (3-4) 

Inequality (3-4) is equivalent to 

Q(k2) = 3k4-(3an +a22) k2+alla22-al#21 < 0 (3-5) 

For instability, it is sufficient that Q can be negative at its minimum. This 
minimum is assumed at k=km' when 

If diffusive instability is generated, the wave number km mostly dominates. 
Firstly, we performed the stability analysis of the critical points of the system 

in a steady state to understand the basical dynamic behavior. 
Under the process of computation, for 56 parameter combinations, we: 

(1) obtained the values of Po and Zo (equation (2-lO), (2-11) ) 
(2) understood the values of an -

a22 (equation (2-16) ) 
(3) carried out the stability check 

(inequality (3-2), (3-3) ) 
We offer the results of three cases 

as follows (Fig. 2): 
(1) When zooplankton biomass is 

considerably lager than phyto­
plankton biomass, the equivalent 
point is unstable. 

(2) When nutrients are deficient, 
phytoplankton biomass is large 
and zooplankton biomass is 
small, the critical points become 
node stable. 

(3) When nutrients are not deficient, 
and phytoplankton and zoo­
plankton are well balanced, 
the equivalent points become 
spirally stable. 
From the view of ecological 
efficiency, case (1) is impossible. 

o .... 

z 
o 
~ 
z 
<{ 
....J a.. 
8 
N 

PHYTOPLANKTON 

Fig. 2. Sorting of equivalent points, (I) ~ 
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Through other conditions (case (2) and (3)), it is natural that the system 
is considered mostly stable. 

Secondly, we examined the possibility of diffusive instability. Thus, we 
found the possibility that the equivalent points where zooplankton biomass is 
slightly larger than phytoplankton biomass, the diffusive instability occurs (Fig. 
3). 

cc 
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ci 

ru 
:Lo 
:::IN 
:z . o 

LLl 
>­
cr: 
."3: a 

o 
o 
a 

1. CtO 2.00 3.00 4.00 5.(10 6,00 7.00 
LOG (~)) 

Fig. 3. Relationship between critical diffusion ratio of phytoplankton and zooplankton IJ 

and dominant wave number km• 

From equation (3-5) and (3-6), we calculated the critical diffusion ratio 8 and 
the dominant wave number km at these equivalent points. 

We obtained the results understanding that the calculated wave length is 
the order of 10 2m which correspond with the observed patchiness scale. Neverthe­
less, if the ratio of diffusivity were not more than 102, the diffusive instability 
would not be generated. (Fig. 3). 

As 8=102 is a normally impossible value in the marine ecosystem, we there­
fore must perform futher investigation introducing the advection effect which 
destabilizes the system. 
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MODEL II 

We introduce the advection effect. From equation (2-19), the eigen values 
are 

where 
a = OI.±i{3 

1 1 [1 -- J1/2 OI.=Ta±T T(p+Yp2+q2) 

(3=~b± q 
2 2[2(p+ Y p2+q2)]1/2 

a = an +a22-(1+S) k2 

b = k(U1+ U2) 

p = {an +a22-(1 +S)k2}2 - k(U1- U2)2 

+ 4{(an-k2)(a22-Sk2)-a12a21} 

q = 2k(U1+ U2){all+a22-(1+S) k2} 

- 4k{U1(a22-Sk2)+ U2(a22-Sk2)} 

From equation (3-7), the diffusive instability occures when: 

at k=O 

at k=O 

(3-7) 

(3-8) 

(3-9) 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 

(3-16) 

At first, we considerd the condition that both phytoplankton and zooplankton 
are advected with the same velocity U. 

Putting U1=U2=U into equations (3-lO), (3-11), (3-12), (3-13). 

a = ~1 +a22-(1 +S) k2 

b=2kU 

p = {an +a22-(1 +S) k2J2 - 4{(all-k2)(aZ2-Sk2)-aI2a21} 

q=O 

(3-18) 

By substituting these parameter values into equations (3-8) and (3-9), real 
parts and imaginary parts of the eigen value are 

1 -1-
01. = R.(a) = T (a + v p) 

(3-19) 
b 

(3 = I .... g(a) = T = kU 
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Inspecting the equation (3-18) shows that necessary conditions for diffusive 
instability are: 

an +a22 < 0 

alla22-a12a21 > 0 

(all-k2)(a22-ok2)-a12a21 < 0 

(3-20) 

These conditions are as same as MODEL 1. In conclusion, if phytoplankton 
and zooplankton are advected with the same velocity, the advection effect does not 
increase the possibility of diffusive instability. But it increases oscillatory behavior 
with the frequency f f3/2n. 

Then, we observe the case where the zooplankton has some individual move­
ment and both phytoplankton and zooplankton are advected with different 
velocity. Here, the ratio of diffusivity is: 

1 < 0 <1.5 

and we assume these parameter values: 

U1 = 5, 10, 20, 30, 50 em/sec 

0.5 < I g~ I < 1.5 

Between these ranges from the above mentioned, we investigate the equivalent 
point which diffusive instability are generated, numerically. As we estimate the 
diffusion ratio from the above, there are a few equivalent points where the diffusive 
instability occures. 

Conclusion 

We examined the possibility of whether we can explain the plankton 
patchiness formation in the ocean from the study of diffusive instability by using a 
simplified mathematical model. And we obtained the following results: 

(1) Considering only the diffusion effect (U ()~ = 0), the calculated scale of 

plankton patchiness is lO2 m and it is the same as the order of the observed 
patchiness scale. Though the calculated spatial scale of patchiness corresponds 
with the observed scale, the diffusion ratio of phytoplankton and zooplankton 
is large, (more than 100) and under the small diffusion ratio, instability can 
not occur. 

(2) The model with the advection effect: When zooplankton and phytoplankton 
are advected on the same velocity field, the system becomes apt to oscillate, 
but the necessary condition for the diffusive instability are the same as case (1). 

(3) Even if we assume that zooplankton had some individual movement and 
phytoplankton was advected with the different velocity from zooplankton, 
diffusive instability would not be generated when the diffusion ratio was so 
slight. 
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According to these results, if diffusive instability occured in the marine 
ecosystem, zooplankton should be diffused more than a hundred times as fast as 
phytoplankton. It is, however, almost impossible. Since it is hard to explain the 
formation of plankton patchiness from diffusive instability in the marine ecosystem, 
we have to investigate other mechanisms which generate random movements of 
zooplankton. 
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