<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>分析のための自熱反応器の研究 (Analysis of Autothermic Reactors)</td>
</tr>
<tr>
<td>著者</td>
<td>KASHIKI, Isamu; MIKI, Masayuki; SUZUKI, Akira; SAKAI, Makoto</td>
</tr>
<tr>
<td>引用</td>
<td>北海道大学農学部研究報告 (Hokkaido University Agricultural Reports)</td>
</tr>
<tr>
<td>発行日</td>
<td>1979-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/23702</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>30(4)_P323-332.pdf</td>
</tr>
<tr>
<td>報告機関</td>
<td>北海道大学農学部 (Hokkaido University Agricultural College)</td>
</tr>
</tbody>
</table>
Analysis of Autothermic Reactors

Isamu KASHIKI*, Masayuki MIKI*, Akira SUZUKI* and Makoto SAKAI*

Abstract

Autothermic reactors equipped with external heat exchangers—two 2-pass reactors (counter-flow and parallel-flow) and two 3-pass reactors (double-pipe and mixed-flow)—are simulated and discussed from viewpoints of stability and optimization.

The 3-pass double-pipe reactor gives maximum conversion when the heat transfer between the inner and the outer pipes vanishes, so it had better be classified as a 2-pass parallel-flow reactor.

With the presence of an external heat exchanger, the stability criterion thus far presented for the autothermic reactor becomes insufficient, and another criterion bases on the relation between the autothermic part and the external heat exchanger which embraces the above criterion should be used.

The 3-pass mixed-flow reactor includes the the two 2-pass reactors as its extreme cases, and can give maximum conversion of the three.

The temperature profile spreads narrowest for the parallel-flow reactor, wider for the counter-flow reactor and the 3-pass reactor, whereas that for the 3-pass reactor is variable.

Introduction

By an autothermic reactor, that type of catalytic reactors used for exothermic reactions which has heat exchanger(s) within its catalyst bed through which the reactant flows to preheat itself and, at the same time, to level off the temperature profile of the bed, is meant. It is commonly used along with an external heat exchanger which functions to raise the input reactant to a high enough temperature to start the reaction (Figs. 1).

There have been many reports and discussions on autothermic reactors1,2), but none have ever referred to the relationship between the autothermic part and the external heat exchanger notwithstanding they build up a so-called “recycle set” whose mathematical model must be solved simultaneously.

We establish a unique stability criterion for the recycle set, and discuss the behavioral characteristics of the two 2-pass and two 3-pass autothermic reactors from standpoints of conversion and temperature distribution.

Problem Definition and Method of Mathematical Treatment

Four types of the most important autothermic reactors shown in Fig. 1 are dealt with, however, as will be seen later, the 3-pass double-pipe reactor can be coordinated into the 2-pass parallel-flow reactor with respect to optimum performance, and the two 2-pass reactors can be expressed as special cases in the 3-pass reactor.
Fig. 1. The schematic classification of the typical autothermic reactors.
(a) The 2-pass counter-flow reactor.
(b) The 2-pass parallel-flow reactor.
(c) The 3-pass mixed-flow reactor.
(d) The 3-pass double-pipe reactor.

mixed-flow reactor, the last 3-pass reactor is treated first. For ease of problem solving, several assumptions are made without much loss of generality, as follows:

1. Steady state.
2. Plug flow with no axial heat transfer.
3. No radial heat resistance except at the tube wall and the adjacent films.
4. No heat gain from or loss to the surroundings.
5. Constant specific heat of reacting mass as a whole, irrespective of the composition and/or temperature.
6. Unimolecular exothermic reaction \(A \rightarrow B \), whose reaction velocity is \(V = k_0 \exp\left(-\varepsilon/(\theta + \theta_0)\right)C_0[1-X/X_0 / (K_0 \exp(\delta/(\theta + \theta_0))] \)

7. Overall heat transfer coefficients proportional to the 0.75th power of the mass velocities.

(No significant difference results from the assumption of bimolecular reaction as will be described in the following paper.)

Under these assumptions, a following nine simultaneous equations should hold for the 3-pass mixed-flow reactor:

\[
\begin{align*}
\theta_2 &= \left[\frac{\gamma}{(b + \frac{\gamma}{2} (1-b))}\right] \theta_7 \\
\theta_6 &= \theta_7 + b \theta_8 (= \Delta X + \theta_0 + b \theta_2) \\
\theta_5 &= a b \theta_4 + (1-a) b \theta_2 + \theta_0 \\
X - X_i &= ab (\theta_z - \theta_y) + \theta_x - b \theta_2 - \theta_0 \\
\Delta X &= X_i - X_i = \theta_4 - \theta_0 \\
\frac{d \theta_x}{d \lambda} &= V' - \beta_a (\theta_x - \theta_y) - \beta_d (\theta_x - \theta_z)
\end{align*}
\]
\[
\frac{d\theta_Y}{d\lambda} = -\frac{\beta_1}{ab} (\theta_X - \theta_Y) \tag{7}
\]
\[
\frac{d\theta_Z}{d\lambda} = -\frac{\beta_2}{ab} (\theta_X - \theta_Z) \tag{8}
\]
\[
V' = \exp\left(-\varepsilon/(\theta_0 + \theta_X)\right) (1 - X - X/[K_0 \exp (\delta/(\theta_0 + \theta_X))] \right) \tag{9}
\]

where \(V' = V/k_0C_0 \)

the boundary conditions for (6), (7) and (8) are
\[
\lambda = 0; \quad \theta_X = \theta_3, \quad \theta_Y = \theta_4, \quad \theta_Z = \theta_2
\]
\[
\lambda = \lambda_0; \quad \theta_X = \theta_6, \quad \theta_Y = \theta_Z = \theta_8
\]

Notice that somewhat unusual dimensionless variables and parameters are used so that the effect of the catalyst bed length can be demonstrated.

Their solution proceeds as follows:

First assume \(\theta_6 \). Assume \(\theta_4 \) and find \(\theta_3 \) in virtue of Eq. (4). Calculate \(\theta_X, \theta_Y, \theta_Z \) along \(\lambda \) by the use of some suitable numerical method (Runge-Kutta-Gill method is used here). Apply any shooting method until \(\theta_Y \) equals \(\theta_Z \) through varying \(\theta_2 \) (the interval halving method is used here.). Use another \(\theta_6 \) and repeat the whole procedure. Prepare sets of \(\theta_2, \theta_3, \theta_4, \theta_6, \theta_X, \theta_Y, \theta_Z \) and \(\Delta X \). Calculate \(\theta_7 \) from Eqs. (1) and (2). The set of variables which gives the same value of \(\theta_7 \)'s within tolerable error is the solution required.

Operational Stability

As is well known not all the solutions of the above simultaneous equations are operationally stable. By assuming that the catalyst bed maintains invariably the temperature distribution specified by the steady state along the flow, van Heerden\(^3\) presented a graphical method testing the stability shown diagrammatically in Fig. 2, where the curved line I shows the locus of the solutions of Eqs. (6), (7) and (8) on the \(\theta_4-(\theta_4-\theta_2) \) plane and implies the heat generation by the reaction, whereas the straight line II denotes the relation among \(\theta_2, \theta_4 \) and \((\theta_4-\theta_2) \), and expresses the heat removal by the reactant in the internal heat exchanger. Among their possible intersection(s) designating the solution of the above equations, the steady state consideration determines that points A and C are stable but point B is unstable because the angle between the tangent at the intersection to line I and the absissa is less for A and C, and greater for B, than the one between line II and the axis.

Another criterion thus far not well known concerns with the relationship between the autothermic part and the external heat exchanger. Thus, in the same figure, the intersection(s) between the curvilinear line I' which denotes the relation between \(\theta_2 \) and \((\theta_6-\theta_2) \) from the solutions of Eqs. (6), (7) and (8), hence the heat generation by the reaction, and the straight line II' which designates the relation among \(\theta_1, \theta_3 \) and \((\theta_6-\theta_3) \) and hence the heat removal by the reactant in the external heat exchanger, and the sign of the angle between the tangent to the line I' at the intersection(s) and the line II', dictate another solution(s) and the stability in such a way as \(A' \) and \(C' \) are stable but \(B' \) is unstable. However, as
Fig. 2. Two criteria of the autothermic reactor and their relationship. The line I and I' expressed the solution of Eqs. (6), (7) and (8) on the θ_x-$(\theta_y-\theta_1)$ plane and the θ_x-$(\theta_y-\theta_2)$ plane, respectively. The line II has a slope of 45° and is drawn through θ_x on the abscissa, and the line II' represents the solution of Eqs. (1) and (2) on the θ_x-$(\theta_y-\theta_3)$ plane.

Illustrated in the figure by broken lines, careful examination indicates that the first criterion corresponds to a vertical line in the second criterion which is understandable because no external heat exchanger is present. This clearly shows that the second criterion is more inclusive but nonetheless more restrictive, and hence should be used in commercial reactors which exclusively have external heat exchangers.

Effect of Heat Transfer in Double Concentric Pipes in the Three-pass Double-pipe Reactor

Before proceeding further some comment must be made on the performance of the 3-pass double-pipe reactor.

The mathematical model is obtained by substituting Eqs. (6)', (7)' and (8)' written below for Eqs. (6), (7) and (8):

\[\frac{d\theta_x}{d\lambda} = V' - \beta_4(\theta_x - \theta_Y) \] \hspace{1cm} (6)'

\[\frac{d\theta_Y}{d\lambda} = \beta_4(\theta_x - \theta_Y) - \beta_1'(\theta_Y - \theta_Z) \] \hspace{1cm} (7)'

\[\frac{d\theta_Z}{d\lambda} = - \beta_1'(\theta_Y - \theta_Z) \] \hspace{1cm} (8)'

subject to the boundary conditions:

\[\lambda = 0; \ \theta_X = \theta_5, \ \theta_Y = \theta_\gamma = \theta_\delta \]

Bull. Fac. Fish. Hokkaido Univ. 30(4). 1979.
As a matter of course, the stability criterion described above applies to this type of reactor. Kodama et al. stated that a certain amount of β_1' is favorable based on their mathematical analysis which, for mathematical ease, is limited to cases where the chemical reaction rate does not depend upon temperature, or the activation energy is null. Unfortunately no unstable zone exists under their assumption, and the conclusion under practical conditions where the activation energy is considerable and the unstable zone does exist, has been left to scrutiny.

The results of the solution of Eqs. (6)', (7)' and (8)' with their boundary conditions disclose that the conversion is at its maximum when β_1' vanishes, at the boundary of the upper stable zone (Fig. 3 and Table 1), in which case the reactor
of this type reduces to a 2-pass parallel-flow reactor. This can be explained at least qualitatively by accepting that the counter-flow heat transfer between the inside and the outside of the inner tube tends to raise \(\theta_3 \), which, in turn, raise \(\theta_s \) and the nearby downstream catalyst temperature, and eventually causes a lower conversion.

Table 1. Maximum conversion (at point P) at various \(\beta_2 \) and \(\beta_1' \) values for the 3-pass double-pipe reactor.

<table>
<thead>
<tr>
<th>(U_{1,\theta'})</th>
<th>(T_s)</th>
<th>(\Delta X)</th>
<th>(U_{2,\theta})</th>
<th>(T_s)</th>
<th>(\Delta X)</th>
<th>(U_{2,\theta})</th>
<th>(T_s)</th>
<th>(\Delta X)</th>
<th>(U_{2,\theta})</th>
<th>(T_s)</th>
<th>(\Delta X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>760</td>
<td>760</td>
<td>770</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.59</td>
<td>25.40</td>
<td>25.40</td>
<td>25.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>760</td>
<td>760</td>
<td>770</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.46</td>
<td>25.51</td>
<td>25.36</td>
<td>25.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>760</td>
<td>760</td>
<td>760</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.30</td>
<td>25.51</td>
<td>25.22</td>
<td>25.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>750</td>
<td>750</td>
<td>760</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.25</td>
<td>25.45</td>
<td>25.36</td>
<td>25.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>750</td>
<td>760</td>
<td>760</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.33</td>
<td>25.32</td>
<td>25.39</td>
<td>24.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>750</td>
<td>760</td>
<td>760</td>
<td>760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.30</td>
<td>25.11</td>
<td>25.30</td>
<td>25.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>750</td>
<td>750</td>
<td>760</td>
<td>760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.16</td>
<td>25.28</td>
<td>25.10</td>
<td>25.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>740</td>
<td>740</td>
<td>750</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta X)</td>
<td>25.00</td>
<td>25.00</td>
<td>25.12</td>
<td>25.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{1,0}$</td>
<td>(T_5)</td>
<td>(\Delta X)</td>
<td>(T_5)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>800</td>
<td>710</td>
<td>710</td>
<td>710</td>
<td>710</td>
<td>720</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
</tr>
<tr>
<td>2</td>
<td>370</td>
<td>710</td>
<td>710</td>
<td>710</td>
<td>710</td>
<td>730</td>
<td>730</td>
<td>740</td>
<td>740</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>4</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>730</td>
<td>740</td>
<td>740</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>6</td>
<td>730</td>
<td>730</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>750</td>
<td>750</td>
<td>770</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>8</td>
<td>730</td>
<td>740</td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>760</td>
<td>760</td>
<td>780</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>10</td>
<td>740</td>
<td>740</td>
<td>760</td>
<td>760</td>
<td>770</td>
<td>770</td>
<td>780</td>
<td>780</td>
<td>780</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>12</td>
<td>750</td>
<td>750</td>
<td>770</td>
<td>770</td>
<td>780</td>
<td>780</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
</tr>
</tbody>
</table>

Table 2. Maximum conversion (at point P) at various β_1 and β_2 values for the 3-pass mixed-flow reactor. Condition: $C_0=4.44$, $X_0=0.054$, $F=920$, $C_p=10.6344$, $E=40,000$, $K_s=0.4735 \times 10^{-3}$, $l=5$, $Q=0$, $a=b=0$, $S_1=8.6$, $S_2=8.6$, ΔX in %

Notice that $U_{1}=U_{1,0}F_{9,0}$, $U_{2}=U_{2,0}F_{9,0}$, and $\beta_U=U_{1,0}/(k_sC_p)$
the temperature gradient at the exit becomes positive (Figs. 4, 5, 6). Thus \(Q \) is thought to be the minimum permissible condition at which the autothermic part tends to raise its own temperature without resorting to an external heat exchanger, which necessarily functions to give negative temperature gradient at its exit, and with whose presence, \(Q \) shifts to still lower \(Q' \) (Fig. 2).

The above discussion is applicable to the 3-pass double-pipe reactor, although no data are presented.

Optimization

The 3-pass mixed-flow reactor which embraces the two 2-pass reactors as its extreme cases of \(\beta_1=0 \) and \(\beta_2=0 \), is investigated from a viewpoint of maximization of conversion. The results at various \(\beta_1 \) and \(\beta_2 \) values are summarized in Table 2. All the three reactors exhibit that their maximum conversions are attained at some appropriate values of \(\beta_1 \) and \(\beta_2 \), whereas the conversion of the 3-pass reactor is the highest of the three. The reaction trajectories at their maximum conversion on the \(\theta-X \) plane (Fig. 7), disclose that the temperature spreads narrowest along the \(\theta \)

![Fig. 7. Reaction trajectories on the O-X plane optimized with regard to \(\beta_1, \beta_2 \) and \(\theta_0 \).](image)

- Equilibrium
- Maximum velocity
- 2-pass parallel-flow
- 3-pass mixed-flow
- 2-pass counter-flow

Fig. 7. Reaction trajectories on the O-X plane optimized with regard to \(\beta_1, \beta_2 \) and \(\theta_0 \). \(U_{1,0}=15.0 \) for the 2-pass parallel-flow reactor, \(U_{1,0}=10.0 \) for the 2-pass counter-flow reactor, and \(U_{1,0}=11.5 \) and \(U_{1,0}=12.5 \) for the 3-pass mixed-flow reactor.

direction for the 2-pass parallel-flow reactor, wider for the 2-pass counter-flow reactor and the 3-pass mixed-flow reactor, while the temperature distribution of the 3-pass reactor is variable by changing \(\beta_1 \) and \(\beta_2 \) values with no significant loss of conversion.

The effect of various design and operation variables will be discussed in a following paper.
Nomenclature

A: Reactant
a: Fraction of the reactant which enters the internal heat exchanger to that which leaves the external heat exchanger

B: Product
b: Fraction of the reactant which passes through the external heat exchanger to the input reactant

C:

C:

C:

E: Energy of activation in kcal/kg-mol

F: Flow rate per unit catalyst cross-sectional area perpendicular to the flow direction in m³/m², h

ΔH: Heat of reaction assumed positive for an endothermic reaction in kcal/kg-mol

K:

k:

l: Distance measured from the inlet of the catalyst bed along the flow in m

Q: Heat input from the surroundings per unit catalyst cross-sectional area per unit time at the inlet of the catalyst bed in kcal/m², h

R: Gas constant

S: Heat transfer area per unit cross-sectional area and per unit length of the catalyst bed in m²/m³

S: Heat transfer area per unit cross-sectional area and per unit length of the catalyst bed in m²/m³

S: S between the catalyst bed and the cooling pipe in the parallel-flow internal heat exchanger in m²/m³

S: S between the inner and the outer paths of the double-pipe heat exchanger in m²/m³

S: Heat transfer area of the external heat exchanger per unit cross-sectional area of the catalyst bed in m²/m³

T: Temperature at point i in °K (see Figs. 1, 2, 3, 4)

U: Overall heat transfer coefficient between the catalyst bed and the counter-flow cooling pipe in the internal heat exchanger in kcal/m², h, °K

U: Overall heat transfer coefficient between the catalyst bed and the parallel-flow cooling pipe in the internal heat exchanger in kcal/m², h, °K

U: Overall heat transfer coefficient between the inner and the outer paths of the double-pipe heat exchanger in kcal/m², h, °K

V: Unimolecular reaction rate in kg-mol/m³, h

V: Dimensionless unimolecular reaction rate

X: Initial mole fraction of the product, C/C

X: Final mole fraction of the product, C/C

ΔX: Conversion, Xᵢ₋Xᵢ

β: Dimensionless heat transfer coefficient, Uₛᵢ/(kₒCₒCₚ)

β: Dimensionless heat transfer coefficient, Uₛᵢ′/(kₒCₒCₚ)

γ: Dimensionless heat transfer coefficient, Uₓₛᵢ/(FCₒCₚ)

δ: Constant, C₀/R
ε: Constant, $C_pE/R (-\Delta H)$

λ: Dimensionless catalyst bed length, k_d/F

θ_1: Dimensionless temperature assuming $T_1=0$, $C_p(T-T_1)/(-\Delta H)$

θ_0: Absolute dimensionless temperature corresponding to T_1, $C_pT_1/(-\Delta H)$

θ_φ: Dimensionless temperature rise due to the added heat from outside, $C_pQ/(-\Delta H)$

References