<table>
<thead>
<tr>
<th>Title</th>
<th>Cadmium and Zinc Concentrations in the Hyperiid Amphipod, Parathemisto libellula from the Bering Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>HAMANAKA, Tsuneyasu; OGI, Haruo</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学水産学部研究彙報 = BULLETIN OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 35(3): 171-178</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/23859</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Information</th>
<th>35(3)_P171-178.pdf</th>
</tr>
</thead>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Cadmium and Zinc Concentrations in the Hyperiid Amphipod, *Parathemisto libellula* from the Bering Sea*

Tsuneyasu HAMANAKA** and Haruo OGI***

Abstract

Cadmium and zinc concentrations were analyzed in the pelagic amphipod, *Parathemisto libellula*, collected in the Bering Sea during the summers of 1974-1979. Concentrations were 3.35-33.3 mg Cd/g dry wt and 51-162 μg Zn/g dry wt, respectively. Cadmium accumulation was correlated with body length (r=0.497) and body weight (r=0.558), and was higher than in other zooplankton groups. Zinc concentrations in this species were within the same range as in other planktonic crustaceans. The elevated cadmium level in *P. libellula* was probably the result of biomagnification through the food web. The biological implication of cadmium accumulation in this species is discussed relative to what is known about crustaceans.

Introduction

The concentrations of heavy metals in zooplankton have been studied recently because of the importance of these organisms in marine food webs (Fowler *et al.*, 1971; Martin and Knauer, 1973). Cadmium and zinc levels in species of predominate zooplankton from the subarctic North Pacific have been reported by Hamanaka and Tsujita (1981) and Hamanaka and Mishima (1981). These authors observed that hyperiid amphipods had the highest cadmium concentrations among the several zooplankton groups studied.

Wright (1980) has shown that the amphipod, *Gammarus pulex*, can accumulate considerably higher levels of cadmium than many other freshwater crustaceans. Among marine amphipods, however, though the uptake, accumulation, and flux of cadmium or zinc have been extensively studied in decapod crustaceans (Bryan, 1966; Wright, 1977a, 1977b) and lobsters (Thurberg *et al.*, 1977; Ray *et al.*, 1981), there exists a decided lack of data. In addition, the mechanism involved in the accumulation of these metals and their physiological significance are poorly understood.

The pelagic amphipod, *Parathemisto libellula* (Mandt), widely distributes from Arctic seas to Alaskan coastal waters (Bowman, 1960; Wing, 1976) and is an important constituent of the food web. This organism is consumed by pelagic- and semipelagic-fishes (Yoshida, 1984), seabirds (Bédard, 1969; Hunt *et al.*, 1981; Ogi...
and Tsujita, 1973; Ogi et al., 1980; Ogi and Hamanaka, 1982), phocid seals and fur seals (Dunbar, 1941; Dunbar, 1946; Harry and Hartley, 1981), and whales (Frost and Lowry, 1981).

The bulk of Parathemisto libellula samples analyzed by Hamanaka (1981) were obtained from the northern Bering Sea and relatively higher cadmium concentrations were observed in the larger sized amphipods. The present study was undertaken to confirm these findings and to know natural level of heavy metals in the pelagic zooplankton.

Materials and Methods

Zooplankton sampling and preliminary procedures

Zooplankton samples were collected using a larval net aboard RV Habomai Maru No. 21 of the Japanese Fisheries Agency in 1974 and TS Oshoro Maru of Hokkaido University in 1975, 1978 and 1979. With the exception of one sample (Sample No. Hb74069), all samples were taken from the southeastern shallow shelf of the Bering Sea (Fig. 1). Details of sampling, preliminary procedures, and the problem of contamination were described in Hamanaka and Tsujita (1981) and Hamanaka (1981). Information on the ecology of Parathemisto libellula in relation to the feeding habits of seabirds is provided by Ogi et al. (1980) and Ogi and Hamanaka (1982).

After thawing in the laboratory, amphipods were grouped into several size classes using a large glass rod. One sample was classified after fixation in 3% formalin within 3 hrs to avoid zooplankton degradation (Hamanaka, 1981; see

Fig. 1. Map showing locations where amphipods, Parathemisto libellula, were collected during 1974–1979. Figures denote the station number (Os: TS Oshoro Maru, Hb: RV Habomai Maru No. 21).
Table 1). We defined body length as the approximate straight-line distance from the anterior end of the head to the tip of the telson when the amphipod is gently straightened using a glass rod. Body length is expressed here in mm and body weight in mg.

Analytical procedures

Each sample was digested in a mixture of nitric and sulfuric acids on a hot plate. Cadmium was chelated and extracted with DDTC-MIBK (Hamanaka and Tsujita, 1981). For zinc assay, the digested solution was brought to a specified volume using deionized water. Metal concentrations were then measured with a Hitachi flame absorption spectrophotometer. The accuracy of the analytical method was checked by simultaneous measurements of standard materials from the National Bureau of Standards (NBS SRM No. 1571; orchard leaved pepperbush). More detailed analytical procedures of these two heavy metals were described in two reports, Hamanaka and Tsujita (1981) and Hamanaka and Mishima (1981).

Results and Discussion

Metal concentrations

Cadmium and zinc levels ranged from 3.35 to 33.3 and from 51 to 162 µg/g dry wt, respectively (Table 1). The mean concentration of cadmium (mean: 9.07±7.71 µg/g, median: 7.14 µg/g) in \textit{P. libellula} was higher than in copepods, euphausiids, salps and chaetognaths, and comparable to or somewhat less than in other hyperiid amphipods (Hamanaka and Tsujita, 1981; Hamanaka and Mishima, 1981). In contrast to cadmium, the concentration of zinc (an essential metal) in \textit{P. libellula} fell within the range of copepods, euphausiids, chaetognaths and other hyperiid amphipods (Hamanaka and Tsujita, 1981; Hamanaka and Mishima, 1981).

According to a study by Wing (1976) on the feeding habits of \textit{P. libellula} in southeastern Alaska, this species is exclusively carnivorous. The most important food items were calanoid copepods (43.1%), euphausiids (7.8%), chaetognaths (6.7%) and others (42.4%). The last group consisted of small zooplankton species: copepod nauplii, cladocerans, hyperiid amphipods, cyclopoid copepods, polychaetes, tintinnids, fish larvae and phytoplankton. The higher cadmium concentration in \textit{P. libellula}, thus, appears to be a reflection of their carnivorous feeding habits and to biomagnification through the food web.

The previous study showed that other amphipod species (genus \textit{Parathemisto}) collected in the northern North Pacific and adjacent seas in 1977–79 had higher Cd (mean: 13.82 µg/g, range: 1.74–36.96 µg/g, N=35) than copepods (mean: 6.09, range: 0.97–18.13, N=40) and euphausiids (mean: 1.16, range: 0.36–2.17, N=11) (Hamanaka and Tsujita, 1981). Several workers reported higher cadmium contents in amphipods from various areas (Bender, 1975; Fowler \textit{et al.}, 1976; Bryan, 1976; Bohn and McElroy, 1976). Wright (1980) showed experimentally that the freshwater amphipod, \textit{Gammarus pulex} (25–40 mg wet wt), accumulated higher cadmium specifically in the hepatopancreas in comparison with other crustaceans. These suggest that some amphipods must have the ability to accumulate cadmium,
Table 1. Cadmium and zinc concentrations in the amphipod, *Parathemisto libellula*, collected in the Bering Sea

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Date yr.mth.d.</th>
<th>Station No.</th>
<th>Location</th>
<th>Body Weight (mg)</th>
<th>Body Length (mm)</th>
<th>Cd</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Wet Dry</td>
<td>Mean Range</td>
<td>(µg/g dry weight)</td>
</tr>
<tr>
<td>1</td>
<td>1975.6.20</td>
<td>Os75018</td>
<td>58-32N</td>
<td>170-08W</td>
<td>7.6 1.20</td>
<td>4.5 (3-6)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1974.7.3</td>
<td>Hb74069</td>
<td>59-18N</td>
<td>176-40E</td>
<td>— —</td>
<td>10 —</td>
<td>5.37 129</td>
</tr>
<tr>
<td>3</td>
<td>1975.7.3</td>
<td>Os75023</td>
<td>56-00N</td>
<td>165-00W</td>
<td>— —</td>
<td>10 —</td>
<td>7.98 74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.0 9.48</td>
<td>15 (14-16)</td>
<td>6.11 91</td>
</tr>
<tr>
<td>5a</td>
<td>1974.6.10</td>
<td>Os74032</td>
<td>57-06N</td>
<td>163-29W</td>
<td>84.5 13.35</td>
<td>ca.18 —</td>
<td>9.11 86</td>
</tr>
<tr>
<td>6</td>
<td>1975.6.20</td>
<td>Os75018</td>
<td>58-32N</td>
<td>170-08W</td>
<td>194.4 30.72</td>
<td>ca.25 —</td>
<td>24.5 97</td>
</tr>
<tr>
<td>7</td>
<td>1975.6.20</td>
<td>Os75018</td>
<td>58-32N</td>
<td>170-08W</td>
<td>344.2 54.4</td>
<td>ca.33 —</td>
<td>33.3 99</td>
</tr>
<tr>
<td>8</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 4.1</td>
<td>7.5 (5-10)</td>
<td>3.35 162</td>
</tr>
<tr>
<td>9</td>
<td>1979.7.16</td>
<td>Os79L42</td>
<td>59-24N</td>
<td>168-46W</td>
<td>— 4.6</td>
<td>11 (10-12)</td>
<td>10.5 60</td>
</tr>
<tr>
<td>10</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 5.0</td>
<td>12 (10-14)</td>
<td>6.47 119</td>
</tr>
<tr>
<td>11</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 13.2</td>
<td>17.5 (15-20)</td>
<td>5.53 64</td>
</tr>
<tr>
<td>12</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 13.2</td>
<td>17.5 (15-20)</td>
<td>3.88 80</td>
</tr>
<tr>
<td>13</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 13.2</td>
<td>17.5 (15-20)</td>
<td>4.66 96</td>
</tr>
<tr>
<td>14</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 15.7</td>
<td>23 (21-25)</td>
<td>3.62 54</td>
</tr>
<tr>
<td>15</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 15.7</td>
<td>23 (21-25)</td>
<td>5.11 80</td>
</tr>
<tr>
<td>16</td>
<td>1978.6.29</td>
<td>Os78054</td>
<td>57-45N</td>
<td>163-59W</td>
<td>— 15.7</td>
<td>23 (21-25)</td>
<td>(0.62)1c 99</td>
</tr>
<tr>
<td>17</td>
<td>1979.7.16</td>
<td>Os79L42</td>
<td>59-24N</td>
<td>168-46W</td>
<td>— 16.6</td>
<td>20.5 (18-23)</td>
<td>7.64 78</td>
</tr>
<tr>
<td>18</td>
<td>1979.7.15</td>
<td>Os79L41</td>
<td>59-00N</td>
<td>168-00W</td>
<td>(28.4)a</td>
<td>25 (20-30)</td>
<td>7.95 104</td>
</tr>
<tr>
<td>19</td>
<td>1979.7.16</td>
<td>Os79L41</td>
<td>59-24N</td>
<td>168-46W</td>
<td>— 30.5</td>
<td>24.5 (24-25)</td>
<td>9.91 115</td>
</tr>
<tr>
<td>20</td>
<td>1979.7.16</td>
<td>Os79L41</td>
<td>59-24N</td>
<td>168-46W</td>
<td>— 52.0</td>
<td>28 —</td>
<td>10.4 51</td>
</tr>
</tbody>
</table>

a) A formalin-preserved sample.

b) Value estimated from a relationship between body length and body weight (equation (1)).

c) Value not included in the calculation of means and the regression analyses.

probably as a result of genetic adaptation and/or physiological characteristics such as the ability of synthesize a metal binding protein (metallothionein).

Relation between metal concentration and body size

The logarithmic relationship between dry weight (BW: 13.2-54.4 mg) and body length (BL: 17.5-33.0 mm) of *Parathemisto libellula* is given by the following equation:

\[
\text{Log BW (dry wt in mg)} = -2.0862 + 2.5413 \times \text{Log BL (in mm)}
\]

\[r = 0.938, P < 0.001, \text{d.f.} = 6\]
This relation agrees well with the data of Wing (1976) who measured amphipods 17.0 to 29.5 mm long.

In spite of considerable scattering, a significant positive correlation existed between cadmium concentration and body size, mainly because a few larger size classes showed relatively elevated cadmium levels (Table 1, Figs. 2 and 3). The logarithmic relation between body length or body weight and cadmium concentration are given by the equations:

Log Cd (µg/g dry wt) = -0.0315 + 0.7285 Log BL (mm)
(r = 0.497, P < 0.025, d.f. = 16) .. (2)

Log Cd (µg/g dry wt) = 0.4100 + 0.4107 Log BW (mg)
(r = 0.558, P < 0.025, d.f. = 16) .. (3)

Present evidence suggests that *P. libellula* accumulates cadmium with age (i.e. the increase in body size). The relationship, however, is not quite conclusive because of insufficient sample size. Ray et al. (1981) reported that lobsters, *Homarus americanus*, from a polluted harbor manifested age-related increase of cadmium and extremely elevated cadmium concentration (up to 1600 µg/g dry wt) in the hepatopancreas. This and other studies indicated that cadmium concentrates in only a few organs such as the hepatopancreas, green gland, exoskeleton, and gill of certain crustaceans (Ray et al., 1981; Jennings and Rainbow, 1979; Miramand et al., 1981), including amphipods (Wright, 1980). The fact that zinc level was not significantly correlated with body size indicates that concentration of this metal in tissues is under homeostatic control.

Molting is a major event during the growth of amphipods, as for all crustaceans, and is strongly related to the flux of heavy metals in the animal's body (Hamanaka and Tsujita, 1981; Benayoun, 1974). Experimental studies show that different species lose cadmium through the exoskeleton. For example, the percentage of cadmium loss ranged from 15% in the shrimp, *Lysnata seticaudata* to over 90% in the crab, *Carcinus maenas* (Fowler and Benayoun, 1974). Unfortunately, information on molting is limited for *P. libellula*. Wing (1976) observed, however, that molting interval in captivity was about 3–7 weeks which is a relatively lower frequency than in other crustaceans (Miramand et al., 1981; Fowler et al., 1972; Renfro et al., 1975; Murray et al., 1978). This lower molting frequency of *P. libellula* may contribute towards a decreased rate of cadmium loss.
The present study suggests that with age *Parathemisto libellula* accumulates such non-essential metals as cadmium. In addition, the higher cadmium concentrations in amphipods compared with other planktonic crustaceans (Hamanaka and Tsujita, 1981; Hamanaka and Mishima, 1981) is consistent with results from experimental studies on cadmium uptake by amphipods during short-term exposure (Wright, 1980). In less- or non-polluted environments, such as the Bering Sea, the uptake of cadmium through ingestion of prey must be the most important pathway for *P. libellula*.

Acknowledgements

The authors would like to express our sincere thanks to Dr. M. Nishimura, Professor Emeritus of Hokkaido University, and Dr. S. Mishima, Professor of Hokkaido University, for their helpful discussion and reading on the manuscript. We are also grateful to Dr. D.G. Ainley of the Point Reyes Bird Observatory, California for his kind correcting the manuscript. Finally, we are indebted to the following persons for kind assistance in collection of materials: Drs. T. Fujii, T. Haryu, T. Kubodera, H. Yoshida; Messrs. M. Narita, H. Kato and I. Kuzasa.

References

Fowler, S.W., Oregioni, B. and LaRosa, J. (1976). Intercalibration measurements for non-nuclear
Hamana & Ogi: Cd and Zn in Pelagic Amphipod, *Parathemisto libellula*

