5'-FLANKING SEQUENCES OF HUMAN THYROTROPIN BETA CHAIN-SIMIAN VIRUS 40 LARGE T ANTIGEN FUSION GENE PRODUCED CARCINOMA OF THE ANTERIOR PITUITARY IN TRANSGENIC MICE

Kazushige Maki
Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060, Japan

Thyrotropin (TSH) is a major regulator of thyroid gland function. This hormone, together with lutropin (LH) and follitropin (FSH), is one of three pituitary glycoprotein hormones. Each of these hormones consists of common α- and specific β-subunits. The β-subunits provide the biological specificity for each hormone. The regulation of TSH β-subunit gene expression has been studied in detail in vitro. However, the regulatory sequence concerning the tissue-specific expression still remains unknown in vivo. To analyze the control region of human TSH β-subunit gene expression in vivo, I have generated two types of transgenic mice that express SV40 large T antigen under the control of \sim1200 base pairs and of \sim5200 base pairs of human TSH β-subunit gene 5' flanking sequences, which are referred to as pTTP-1 and pTTP-5, respectively.

These recombinant genes were microinjected into fertilized mouse eggs (C57BL/6J), and one pTTP-1 transgenic mouse (βF13) and five pTTP-5 transgenic mice (No. 6, 7, 9, 16 and 26) were identified by Southern blot analysis. One pTTP-1 transgenic mouse (βF13) and two pTTP-5 transgenic mice (No. 6 and 16) carried complete transgenes, but some rearrangement of the transgenes such as recombination or deletion occurred in other transgenic mice. Both pTTP-1 and pTTP-5 transgenic mice (βF13, No. 6 and 16) developed pituitary tumors, but other organs were normal. Histochemical and immunohistochemical analyses showed that the pituitary tumors of pTTP-5 transgenic mice were composed of well differentiated cells and those of pTTP-1 transgenic mice of poorly differentiated cells, compared with the anterior pituitary of normal mice. To examine the tissue specificity of transgene expression, mRNA of SV40 large T antigen was monitored in various tissues (brain, pituitary, lung, heart, liver, spleen, kidney, testis, ovary and muscle) from pTTP-1 and pTTP-5 transgenic mice by RT-PCR analysis. In each transgenic mouse, mRNA of SV40 large T antigen was detected in pituitary. In pTTP-5 transgenic mice, however, transgene expression was unexpectedly observed in testis.

In this paper, I show that 1200 base pairs of the human TSH β-subunit gene 5'-flanking sequence are capable of directing pituitary expression. But the results of histochemical and immunohistochemical analyses using transgenic mice suggest that the cis-acting regulatory domain located from -5200bp to -1200bp of human thyrotropin β-subunit gene 5'-flanking sequences is required for the stringent expression of the human thyrotropin β-subunit gene in thyrotropic cells.