<table>
<thead>
<tr>
<th>Title</th>
<th>CONFIRMED NUCLEOTIDE SEQUENCE OF fanF OF ESCHERICHIA COLI K99 FIMBRIAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ABE, Norio; MORIISHI, Kohji; SAITO, Masayuki; NAIKI, Masaharu</td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 41(2-4): 97-99</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-11-30</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/jjvr.41.2-4.97</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/2455</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00002377674.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
CONFIRMED NUCLEOTIDE SEQUENCE OF \textit{fanF} OF \textit{ESCHERICHIA COLI} K99 FIMBRIAE

Norio Abe1, Kohji Moriishi1, Masayuki Saito2 and Masaharu Naiki1

(Accepted for publication: Sept. 31, 1993)

Key words: Enterotoxigenic \textit{Escherichia coli}, K99 fimbriae, \textit{fanF} DNA sequence

Enterotoxigenic \textit{Escherichia coli} possessing K99 fimbriae cause diarrhea in newborn calves, piglets and lambs9). These fimbriae have been found to bind specifically to N-glycolylneuraminic acid-containing GM\textsubscript{3} ganglioside13 and to consist of eight different subunits named FanA to FanH3). The nucleotide sequences and functions of these subunits were reported as follows; FanC is a major subunit called fimbrillin which forms the fimbrial structure4), FanA and FanB are regulatory proteins which control expression of fimbriae\textsuperscript{5,8), FanD is platform protein\textsuperscript{7), and FanG and FanH are minor subunits\textsuperscript{6). However, there is no available information about adhesin, which recognizes the host receptor ganglioside.

Recently, the nucleotide sequences of \textit{fanF}, the gene encoding FanF, were reported by two different laboratories2,10), but a great difference was observed between nucleotides 769 and the 3' end of the sequences of \textit{fanF} described by the two laboratories. Thus the resultant size of the open reading frame representing FanF was reported to be 999 bp by Simons \textit{et al.}\textsuperscript{10) and 813 bp by Ono \textit{et al.}2). Therefore, we confirmed the nucleotide sequence of this region.

pFK99 (pBR322), which contains the entire K99 fimbrial gene cluster (\textit{fanA to fanH})11) was kindly supplied by Dr. F. K. de Graaf, Vrije University, Amsterdam, the Netherlands. The BamHI-BamHI fragment of pFK99 (pBR322), which contains the entire gene cluster, was cloned into pCU19 vector (pFK99 (pUC19)). Then the \textit{NheI}-Nsp\textsubscript{75241 fragment of pFK99 (pUC19), which contains the disputed region, was isolated by agarose gel electrophoresis and inserted into pUC18 cleaved with \textit{XbaI} and \textit{SphI). DNA sequences were determined using a SEQUENASE Ver. 2.0 kit (TOYOBO Co. Ltd., Osaka, Japan).

The nucleotide sequence of \textit{fanF} and the corresponding amino acid sequence are shown in Fig. 1. The upstream region from the \textit{NheI} restriction site refers to that reported by Ono \textit{et al.}2), \textit{fanF} encoded 333 amino acids. This confirmed nucleotide
Fig. 1 Primary sequence of the *fanF* gene. The upstream region from the NheI restriction site refers to that reported by Ono et al. (1991). −35 and −10 indicate promoter sequences. S. D. means a ribosome-binding site. The stopping codon is indicated by ***. The disputed region starts from nucleotide 769 (indicated by arrows).
sequence was the same as that reported by Simons et al.10.

\textbf{REFERENCES}

