<table>
<thead>
<tr>
<th>Title</th>
<th>VELOCITY OF HYDROGEN EVOLUTION: COMMENTS ON A CALCULATION DUE TO KEII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>BOCKRIS, J. O'M.</td>
</tr>
<tr>
<td>Citation</td>
<td>JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 2(2), 105-106</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1953-02</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/24612</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>2(2)_P105-106.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
VELOCITY OF HYDROGEN EVOLUTION: COMMENTS ON A CALCULATION DUE TO KEII

By

J. O'M. BOCKRIS

In a paper by J. Horiuti and A. MITUYA the statement occurs: "J. O'M. BOCKRIS has recently questioned the present result for the contamination of mercury surface by the anode material, i.e. platinum." A calculation due to KEII to refute the statement follows. It is presumed here that it refers to the criticism made by the present author of the results of MITUYA, which appear to be the same as those now republished.

I. KEII's calculation is wrong in detail because:
 (a) Expression (6) in the paper should be

 \[C_{Pt^{4+}} = \frac{C_{H^{+}} e^{-\frac{\Delta F_E H}{RT}}}{(P_{H_2})^e} \]
 instead of that given (using the same assumptions and terminology as did KEII).

 (b) KEII assumed the dissolution reaction would be
 \[Pt \rightarrow Pt^{4+} + 4e^- \]. Consideration of the standard potentials show this reaction and for \[Pt \rightarrow Pt^{4+} + 2e^- \] shows the latter to be more favourable for dissolution. The \(E_H \) value for the latter reaction is +1.2 \(\text{V} \) and \(z \) is 2. Recalculation shows that KEII's result for the concentration of dissolved platinum ions too small by a factor of about 10\(^3\).

II. KEII's calculation is wrong in concept. The platinum contamination is due to migration of small (possibly colloidal) particles of platinum which occur due to mechanical disintegration of the anode and of the reference electrode.

A criticism of MITUYA's work on similar grounds was made by

1) J. Horiuti and A. MITUYA, J. Research Inst. for Catalysis Hokkaido University, 2, (1951), 85.
4) W. Latimer, Oxidation Potentials, New York, 1925.
A. N. FRUMKIN\textsuperscript{5).

III. MITUYA'S results are compared with those of more recent authors in Table I.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Worker & Conditions & \(a\)a) & \(i_0\) (exchange current) \\
\hline
MITUYA3) & 0.1N HCl, 0°C. & 0.21 & 2.10-10 \\
JOFA6) & 0.1N HCl, 25°C. & 0.48 & 9.10-13 \\
BOKRIS and PARSONS7) & 0.1N HCl, 25°C. & 0.51 & 5.10-13 \\
POST and HISKEY8) & 0.1N HCl, 25°C. & 0.50 & 6.10-13 \\
\hline
\end{tabular}
\caption{Worker Conditions}
\end{table}

The suggestion that the marked difference between MITUYA and other authors is due to platinum contamination is supported by:

(a) One hundredth coverage of mercury with platinum lowers the hydrogen overpotential on Hg by 0.25 \textdegree. MITUYA'S values are 0.1 lower than those of BOWDEN and GREW10), who worked over the same current density range (and about 0.2 \textdegree. lower than those of the authors given in Table I).

(b) WATSON11) observed that the presence of platinum conductivity electrodes in the cell vitiated results of hydrogen evolution rates at low current densities, although the solution was in contact only during its preparation.

Department of Inorganic and Physical Chemistry,
Imperial College of Science and Technology,

5) A. N. FRUMKIN, Acta Physicochim., 18, (1943), 34.
6) Z. JOFA, quoted by FRUMKIN, ref. 5.
10) F. P. Bowden and K. E. W. Grew, Discuss. Farad. Soc, (1947), 86.

a) By \(a\) is meant the term in the equation \(b = RT/a F\ln b/e\), calculated for regions where this equation applies.