CHLORINE EXCHANGE REACTION BETWEEN
CHLOROFORM AND AQUEOUS
CHLORIDE SOLUTION

By

Juro Horiuti, Kozo Tanabe and Kazunori Tanaka
(Received March 10, 1955)

Introduction

It has been found by means of Cl36 as a tracer that chloroform exchanges chlorine at room temperature with alkaline chloride solution either thermally\textsuperscript{1,3) or photochemically\textsuperscript{4) but not perceptibly with acidic solution in either way; carbon tetrachloride exchanged thermally neither with alkaline nor with acidic solution, whereas photochemically it did with acidic solution but not with alkaline solution2,4).

The chlorine exchange has now been investigated in detail at 100°C with special reference to the effect of chloride ion concentration, of pH and of wall area on the rate. The experimental result has been discussed incorporated with that of decomposition\textsuperscript{5) and of hydrogen exchange\textsuperscript{6) of chloroform under the similar condition, and its mechanism deduced as described in what follows.

§ 1. Experimental Procedure

One and half cc or 2 cc chloroform was sealed air-free together with 1 or 2 cc aqueous radioactive chloride solution of known concentration and of known pH, in a quartz tube of 23—28 cc capacity similarly as in the previous works\textsuperscript{1,4) and shaken briskly at 100°C for a recorded time; the quartz tube was now opened, 1 cc chloroform carefully pipetted out, its radioactivity determined as in the previous work\textsuperscript{9) by putting 1 cc sample in a definite stainless steel tray fitted to a definite G-M counter\textsuperscript{9), then washed by distilled water and the washing measured for the radioactivity for control of the contamination of the radioactive solution at the pipetting; if found radioactive the

\textsuperscript{9) Model 16, Supplied by the Scientific Research Institute, Tokyo.
radioactivity measurement of chloroform and subsequent procedures were started anew.

The radioactivity of the solution before the contact, i.e., before the above treatment, was determined just similarly as that of chloroform after contact using the same definite apparatus. The specific radioactivity (radioactivity in the absence of self-absorption) of the solution as well as of chloroform was obtained by multiplying the apparent radioactivity of the excess count over the background count observed directly as above by the respective conversion factor, particular to the above procedure of measurement; the factor was determined as described below in § 2.

The radioactive chloride solution was (i) a simple dilution of the preparation of the US Atomic Energy Comission with the specification "1.46 N HCl of 0.23 mc/gm" or the latter admixed with H₂SO₄ aq. or NaOH aq. for approximately adjusting pH or, (ii), the same dilution saturated with one of solid hydroxides of magnesium, calcium, barium and silver for retarding the pH-decrease due to the decomposition product.

The pH of solution (i) was measured at room temperature before and after contact by means of Beckman pH-meter* or of pH test paper; extremely strong alkaline solution (run 8 of Table 3) was titrated with standard oxalic acid solution instead of being measured for pH as above. The pH at 100°C of solution (i), except that conducted in extremely high ionic strength (runs 8, 10, 18 and 19 of Table 3) was calculated from that measured at room temperature allowing for ionic interaction according to the limiting law as detailed in the subsequent paper in connection with the decomposition measurement.

The pH of solution of high ionic strength was dealt with as follows, because of expected unreliability of the limiting law. The low pH around 1 (runs 10, 18 and 19 of Table 3) observed at room temperature which has necessarily a high ionic strength was simply identified with that at 100°C on the ground of the experimental fact that low pH of aqueous strong acid has very small temperature coefficient. The pH of the extremely strong alkaline solution (run 8 of Table 3) was given conventionally as a mere transcription of the titrated concentration of hydroxide ion on the basis of known dissociation constant K_a of water either at room temperature or at 100°C taking activity coefficients

* Beckman Glass Electrode pH meter (Model G), Beckman Instruments Inc.
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

involved respectively unity.

The pH at 100°C of (ii) before contact was calculated as described in the subsequent paper\(^5\) allowing for the ionic interaction from known solubilities of solid hydroxides given below.

\[
\text{Solubilities}^*\text{ of Hydroxides} \\
gm/100\text{ cc. at } 100°C \\
\begin{align*}
\text{Mg (OH)}_2 & \quad 4.2 \times 10^{-4} \\
\text{Ca (OH)}_2 & \quad 6.9 \times 10^{-2} \\
\text{Ag OH} & \quad 3.1 \times 10^{-3} \text{ (extrapolated)}
\end{align*}
\]

The pH of solution (ii) after contact and the amount of chloride ion liberated were calculated from the above solubility data, contact time and the decomposition rate observed in the experiment of the subsequent paper\(^5\). **

The exchange rate of chlorine at known pH of the solution at 100°C was now calculated from the above determination of the specific activity allowing for the simultaneous decomposition as stated in § 3.

§ 2. Specific Radioactivity

It may readily be shown, neglecting the back-scattering, that the apparent radioactivity \(C\) or the directly observed count minus the background count of a sample in a definite tray\(^***\) fitted to a definite G-M counter\(^****\), varies with its volume \(v\) as,

\[^{**}\] The increment \(d[\text{Cl}^-]\) of chloride ion concentration in solution was calculated as function of pH from known solubility of solid hydroxide as detailed in the subsequent paper; the decomposition rate \([\text{Cl}^-]=d[\text{Cl}^-]/dt\) being determined as function of pH there, we have the relation between \(d[\text{Cl}^-]/dt\) and \(a[\text{Cl}^-]\), i.e., \(d[\text{Cl}^-]/dt=F(a[\text{Cl}^-])\)

or by integration,

\[
\int_0^t \frac{d[\text{Cl}^-]}{F(a[\text{Cl}^-])} = t
\]

Plotting now \(1/F(a[\text{Cl}^-])\) against \(a[\text{Cl}^-]\) and adjusting the area under the curve to the observed time of contact, we obtain \(a[\text{Cl}^-]\) and appropriate pH.

These values are however crude, inasmuch as in the above calculation of \(a[\text{Cl}^-]\) as function of pH, the activity coefficients involved were equated respectively to unity conventionally, because of the unreliability mentioned in the text of the method of exacting activity coefficients at high ionic strength due to the accumulation of the bivalent metallic ion of solid hydroxides along with the progress of decomposition as turned out by the calculation.

\[^{***}\] Circular tray of 2.5 cm diameter and 0.6 cm height.

\[^{****}\] Cf. foot-note on page 119.
\[\log \left(1 - a \frac{C}{C_i}\right) = -av^* \]

(2.1)

where,

\[a = -\frac{1}{I} \frac{dI}{dl} \]

is the rate of decrease of intensity \(I \) of radiation with increase of volume \(l \) of the horizontal layer of the liquid sample in the tray traversed by it and \(C_i \) the specific radioactivity, which would be observed under the specified condition in the absence of self-absorption.

Tables 1 and 2 show \(C \) observed at different \(v \), constants \(a \) and \(C_i \) fitted to the latter in accordance with (2.1), \(C \) calculated by (2.1) with these constants and the factor \(a \) which converts apparent specific activity \(C_i \), i.e., \(C \) at \(v=1 \) into \(C_i \).

Table 1 Self-Absorption of Chloroform

Sample:—Radioactive chloroform prepared by exchange reaction.

<table>
<thead>
<tr>
<th>(v) cc.</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.8</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{obs.}}) ct/min.</td>
<td>460</td>
<td>798</td>
<td>1080</td>
<td>1300</td>
<td>1370</td>
<td>1400</td>
</tr>
<tr>
<td>(C_{\text{calc.}}) ct/min.</td>
<td>502</td>
<td>829</td>
<td>1040</td>
<td>1268</td>
<td>1387</td>
<td>1420</td>
</tr>
</tbody>
</table>

\(a = 4.316 \quad C_i = 6187 \quad a = \frac{C_i}{C} = 4.39 \)

Table 2 Self-Absorption of Aqueous Chloride Solution

Sample:—Dilution of aqueous hydrogen chloride preparation supplied and specified as 1.46 N HCl of 0.23 mc/gm by the U.S. Atomic Energy Commission.

<table>
<thead>
<tr>
<th>(v) cc.</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.6</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{obs.}}) ct/min.</td>
<td>400</td>
<td>720</td>
<td>970</td>
<td>1306</td>
<td>1366</td>
<td>1372</td>
</tr>
<tr>
<td>(C_{\text{calc.}}) ct/min.</td>
<td>434</td>
<td>736</td>
<td>946</td>
<td>1267</td>
<td>1367</td>
<td>1392</td>
</tr>
</tbody>
</table>

\(a = 3.26 \quad C_i = 5180 \quad a = \frac{C_i}{C} = 3.72 \)

*) Integrating \(a = -\frac{1}{I} \frac{dI}{dl} \), we have \(\frac{I}{I_0} = e^{-at} \), where \(I_0 \) is the contribution \(I \) to the observed radioactivity at \(t=0 \). Eq. (2.1) in the text is obtained by substituting \(I_0 \) in the above expression by \(C_i dl \) and equating to \(C \) the integral of \(I \) thus expressed from 0 to \(v \).
\section*{§ 3. Exchange Rate Expression}

The chlorine exchange reaction proceeds, as reported previously, between chloroform and aqueous chloride solution in contact with each other accompanied by the decomposition of chloroform.

Chlorine should hence be transferred forwards from solution to chloroform and backwards, the balance of the respective rates being the net rate \(n^C \) of chlorine increase in chloroform, which is practically negative in accordance with the observed decomposition. Let the forward rate reckoned to unit volume of solution be \(r \): the total forward rate is \(r v^s \), the appropriate backward one \(r v^s - n^C \) and the rate of transfer of radioactive chlorine in particular from solution to chloroform \(r v^s x^s - (r v^s - n^C) x^C \), where \(x^s \) or \(x^C \) is the atomic fraction of radioactive chlorine in solution or in chloroform respectively. The forward rate \(r \) will be called the exchange rate in what follows.\(^s\)

The latter rate of isotopic transfer \(r v^s x^s - (r v^s - n^C) x^C \) being alternatively expressed by \(d(n^C x^C)/dt \) where \(n^C \) is the amount of chlorine in chloroform and \(t \) the time elapsed during the contact, we have,

\[\frac{d(n^C x^C)}{dt} = r v^s x^s - (r v^s - n^C) x^C \] \hspace{1cm} (3.1)

or

\[n^C x^C = r v^s (x^s - x^C) \] \hspace{1cm} (3.2)

Defining the total amount \(n \) of chlorine present in the reaction vessel and that \(n^* \) of radioactive chlorine respectively as,

\[n \equiv n^C + n^s \] \hspace{1cm} (3.3. a)

\[n^* \equiv n^C x^C + n^s x^s \] \hspace{1cm} (3.3. b)

where \(n^s \) is the quantity of chloride ion in the solution, we have from (3.2) and (3.3),\,**\)

\[n^C n^s \frac{dx^C}{dt} = r v^s (n^* - n x^s) \] \hspace{1cm} (3.4)

\(^s\) The exchange rate thus defined is of course identical particularly with the forward and backward rates balanced with each other in the case of simple exchange reaction when each participant is neither consumed nor created.

\(**\) Eq. (3.3) stands for (3.3 a) and (3.3 b). This manner of reference will be followed below throughout.
Along with the progress of decomposition, n^c decreases, whereas n^s increases, both at the same rate $-\dot{n}^c$. If the chlorine exchange be controlled for instance by the step,

$$\text{CCl}_4 + \text{Cl}^- \longrightarrow \text{CCl}_3^-$$ \hfill (3.5. D)

followed by another,

$$\text{CCl}_3^- + \text{H}^+ \longrightarrow \text{CHCl}_3$$ \hfill (3.5. H)

both in equilibrium, r or the rate of (3.5. D) is constant independent of the activity of chloride ion at constant pH, inasmuch as the same is true with the activity of CCl$_3^-$ and hence with the rate of the reversal of (3.5. D), which equals r because of the equilibrium.

If on the other hand the exchange be controlled by the step,

$$\text{Cl}^- + \text{CCl}_4 \longrightarrow \text{ClCCl}_3^+ + \text{Cl}^-$$ \hfill (3.5. S)

instead of by (3.5. D) but with (3.5. H) still in equilibrium, r must be proportional to the activity of chloride ion or, identifying the latter with concentration $[\text{Cl}^-] = n^s/v^s$, $r/[\text{Cl}^-]$ must be constant. Assuming $u_p \equiv r$ or $u_s \equiv r/[\text{Cl}^-]$ \hfill (3.6. D), (3.6. S)

alternatively constant independent of $[\text{Cl}^-]$ or of n^s, (3.4) may be integrated as,

$$u_p = - \log \left(1 - \frac{x^c}{x_\infty} \right) \frac{v^s}{n^s} \int_0^t \frac{dt}{n^c}$$ \hfill const.

$$u_s = - \log \left(1 - \frac{x^c}{x_\infty} \right) \frac{v^s}{n^c} \int_0^t \frac{dt}{n^c}$$ \hfill const.

where $x_\infty = n^s/n$ is x^c at $\dot{x}^c = 0$ according to (3.4) or x^c-value attained when radioactive chlorine atoms were distributed evenly between chloroform and solution.

Carrying out the integral in the denominator expressing n^c and n^s as,

$$n^c = n_0^c + \dot{n}^c t, \quad n^s = n_0^s - \dot{n}^s t$$

assuming \dot{n}^c constant, we have,

$$u_p = - \frac{n_0^c n_0^s}{k} v^s n t \log \left(1 - \frac{x^c}{x_\infty} \right)$$ \hfill (3.7. D, r)

where,
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

\[\kappa_D = \log \frac{1 + \dot{n}_C t/n_0^C}{1 - \dot{n}_C t/n_0^C} / \dot{n}_C \left(\frac{1}{n_0^C} + \frac{1}{n_0^S} \right) t \]
(3.7. D. \(\kappa \))

or

\[u_s = - \frac{n_0^C}{\kappa_s n t} \log \left(1 - x^C/x_{\infty} \right) \]
(3.7. S. \(u \))

where,

\[\kappa_s = n_0^C \log \left(1 + \dot{n}_C t/n_0^C \right) / \dot{n}_C t \]
(3.7. S. \(\kappa \))

Both \(\kappa_D \) and \(\kappa_S \) reduce to unity, as readily be seen, as \(\dot{n}_C \) approaches zero. The \(x^C/x_{\infty} \) in (3.7. D. \(r \)) or in (3.7. S. \(r \)) may be expressed as,

\[x^C/x_{\infty} = \frac{\dot{a}C t}{aC_{1,0}^C \dot{n} C} \]
(3.8)

where \(C_{1,0}^C \) or \(C_{1,0}^S \) is \(C_t \) of chloroform at \(t \) or of solution at \(t = 0 \) respectively, and \(a^C \) or \(a^S \) the appropriate conversion factor \(a \) given in Tables 1 and 2, hence \(\dot{a}C_{1,0}^C \dot{n}C \) or \(\dot{a}S_{1,0}^S \) respectively is proportional to the number of radioactive chlorine atoms present in chloroform at time \(t \) or the total number present in the reaction vessel.

Eqs. (3.7) allows us to work out \(u_D \) or \(u_S \) from the observation of \(C_{1,0}^C \), \(C_{1,0}^S \) etc.

For small \(|\dot{n}_C t/n_0^C| \) or \(|\dot{n}_C t/n_0^S| \) compared with unity, \(\kappa_D \) or \(\kappa_S \) may be expanded as,

\[\kappa_D = 1 + \frac{1}{2} \left(\frac{\dot{n}_C t}{n_0^S} - \frac{\dot{n}_C t}{n_0^C} \right) + R_D \]
(3.9. D)

\[\kappa_S = 1 - \frac{\dot{n}_C t}{2n_0^C} + R_S \]
(3.9. S)

where \(R_D \) or \(R_S \) is the remainder, i.e.

\[R_D = \left(\frac{\dot{n}_C t/n_0^C}{1 + \theta_D \dot{n}_C t/n_0^C} \right)^3 + \left(\frac{\dot{n}_C t/n_0^S}{1 + \theta_D \dot{n}_C t/n_0^S} \right)^3 \]
(3.10. D)

and

\[R_S = \frac{\left(\frac{\dot{n}_C t/n_0^C}{3(1 + \theta_S \dot{n}_C t/n_0^C)} \right)^3}{3(1 + \theta_S \dot{n}_C t/n_0^C)} \]
(3.10. S)

with positive proper fraction \(\theta_D \) or \(\theta_S \). It may readily be shown, noting that \(\dot{n}_C \) is the only negative quantity involved in the above two expressions, that,

\[0 < R_D < \frac{(\dot{n}_C t)^2}{8} \left(\frac{1}{(n_0^C)^3} + \frac{1}{(n_0^S)^3} \right) \left(\frac{1}{n_0^C} + \frac{1}{n_0^S} \right) \]
(3.10. D)

\[0 < R_S < \frac{(\dot{n}_C t)^2}{8} \frac{n_0^C}{(n_0^C)^3} \]
(3.10. S)

which discriminate whether the first two terms respectively of (3.9. D) or (3.9. S) sufficiently reproduce \(\kappa_D \) or \(\kappa_S \); (3.9) was used for numerical calculation for small \(|\dot{n}_S t/n_0^C| \) or \(|\dot{n}_C t/n_0^S| \) compared with unity.
Table 3: Exchange of Chlorine Labelled by Cl³⁶

<table>
<thead>
<tr>
<th>No. of Runs</th>
<th>Date</th>
<th>Time of Contact min.</th>
<th>pH (100°C)</th>
<th>Radioactivity before Contact ct/min.</th>
<th>Aqueous HCl<sup>*</sup></th>
<th>Qt. Cl<sup>-</sup> ion m mol</th>
<th>Qt. Cl<sup>-</sup> ion m mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dec. 1, 1962</td>
<td>6825</td>
<td>30800</td>
<td>34</td>
<td>1.35</td>
<td>1.27</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.27</td>
<td></td>
<td>(1.31)</td>
<td>(1.23)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>20</td>
<td>30800</td>
<td>34</td>
<td>10.97</td>
<td>6.01</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.01</td>
<td></td>
<td>(12.80)</td>
<td>(6.35)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>20</td>
<td>12320</td>
<td>34</td>
<td>7.29</td>
<td>5.57</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.57</td>
<td></td>
<td>(9.30)</td>
<td>(5.57)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>1970</td>
<td>18540</td>
<td>34</td>
<td>6.00</td>
<td>2.68</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.68</td>
<td></td>
<td>(6.35)</td>
<td>(2.68)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dec. 16, 1962</td>
<td>54</td>
<td>13920</td>
<td>34</td>
<td>10.49</td>
<td>9.62</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.62</td>
<td></td>
<td>(12.80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>536</td>
<td>13920</td>
<td>34</td>
<td>--</td>
<td>(6.7)</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
<td>(6.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>2120</td>
<td>15400</td>
<td>34</td>
<td>8.43</td>
<td>2.2</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
<td>(1.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Jan. 28, 1963</td>
<td>1</td>
<td>17410</td>
<td>34</td>
<td>12.74</td>
<td>12.15</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.15</td>
<td></td>
<td>(14.54)</td>
<td>(13.96)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Feb. 21, 1963</td>
<td>6220</td>
<td>20960</td>
<td>34</td>
<td>3.6</td>
<td>1.2~1.8</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2~1.8</td>
<td></td>
<td>(3.6)</td>
<td>(1.2~1.8)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mar. 5, 1963</td>
<td>6130</td>
<td>24000</td>
<td>33</td>
<td>0.1</td>
<td>0.1</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>6130</td>
<td>27200</td>
<td>33</td>
<td>1.5</td>
<td>1.4</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td>(1.8)</td>
<td>(1.2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Feb. 16, 1964</td>
<td>1.33</td>
<td>11410</td>
<td>35</td>
<td>10.49</td>
<td>10.15</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.15</td>
<td></td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>10</td>
<td>11410</td>
<td>35</td>
<td>10.49</td>
<td>9.84</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.84</td>
<td></td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>2010</td>
<td>11410</td>
<td>35</td>
<td>8.47</td>
<td>6.97</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.97</td>
<td></td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>2010</td>
<td>11410</td>
<td>35</td>
<td>1.6</td>
<td>1.4</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td>(1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Feb. 19, 1954</td>
<td>1.0</td>
<td>8800</td>
<td>34</td>
<td>11.07</td>
<td>10.58</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.58</td>
<td></td>
<td>(12.88)</td>
<td>(12.40)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>1.0</td>
<td>8800</td>
<td>34</td>
<td>11.07</td>
<td>10.58</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.58</td>
<td></td>
<td>(12.88)</td>
<td>(12.40)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Feb. 20, 1955</td>
<td>3050</td>
<td>21840</td>
<td>36</td>
<td>(1.3)</td>
<td>(1.2)</td>
<td>8.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.2)</td>
<td></td>
<td></td>
<td></td>
<td>8.114</td>
</tr>
<tr>
<td>19</td>
<td>Feb. 16, 1955</td>
<td>2000</td>
<td>21840</td>
<td>36</td>
<td>(1.3)</td>
<td>(1.2)</td>
<td>8.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.2)</td>
<td></td>
<td></td>
<td></td>
<td>8.111</td>
</tr>
</tbody>
</table>
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

between Chloroform and Aqueous Chloride at 100°C.

<table>
<thead>
<tr>
<th>Volume v^8 cc</th>
<th>Additions</th>
<th>Radioactivity after Contact</th>
<th>Chloroform Volume v^8 cc</th>
<th>Qt. Cl-Atom before n_v^C mol</th>
<th>Rate of Decrease $\frac{x^C/n_v^8}{mol/1-min.}$</th>
<th>Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>None</td>
<td>213</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>8.765 7.874</td>
</tr>
<tr>
<td>2</td>
<td>NaOH</td>
<td>1440</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>— —</td>
</tr>
<tr>
<td>2</td>
<td>NaOH</td>
<td>35</td>
<td>1.5</td>
<td>56.1</td>
<td>—</td>
<td>— —</td>
</tr>
<tr>
<td>2</td>
<td>NaOH</td>
<td>52</td>
<td>1.5</td>
<td>56.1</td>
<td>1.06 x 10^-6</td>
<td>8.296 7.770</td>
</tr>
<tr>
<td>2</td>
<td>Sat. Ca(OH)$_2$</td>
<td>4688</td>
<td>1.5</td>
<td>56.1</td>
<td>3.15 x 10^-2</td>
<td>3.257 3.390</td>
</tr>
<tr>
<td>2</td>
<td>Sat. Ba(OH)$_2$</td>
<td>1908</td>
<td>1.5</td>
<td>56.1</td>
<td>—</td>
<td>— —</td>
</tr>
<tr>
<td>2</td>
<td>Sat. AgOH</td>
<td>299</td>
<td>1.5</td>
<td>56.1</td>
<td>—</td>
<td>— —</td>
</tr>
<tr>
<td>1.2</td>
<td>NaOH</td>
<td>3760</td>
<td>1.8</td>
<td>67.3</td>
<td>15.0</td>
<td>0.186 1.809</td>
</tr>
<tr>
<td>2</td>
<td>H$_2$SO$_4$</td>
<td>147</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>8.600 7.876</td>
</tr>
<tr>
<td>2</td>
<td>H$_2$SO$_4$</td>
<td>118</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>8.473 7.695</td>
</tr>
<tr>
<td>2</td>
<td>NaCl</td>
<td>125</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>7.419 7.685</td>
</tr>
<tr>
<td>2</td>
<td>Sat. Ca(OH)$_2$</td>
<td>432</td>
<td>2.0</td>
<td>74.8</td>
<td>1.13 x 10^-1</td>
<td>3.254 3.503</td>
</tr>
<tr>
<td>2</td>
<td>Sat. Ca(OH)$_2$</td>
<td>1904</td>
<td>2.0</td>
<td>74.8</td>
<td>5.8 x 10^-2</td>
<td>3.412 2.342</td>
</tr>
<tr>
<td>2</td>
<td>Sat. Mg(OH)$_2$</td>
<td>1440</td>
<td>1.5</td>
<td>56.1</td>
<td>0.746 x 10^-4</td>
<td>6.516 5.765</td>
</tr>
<tr>
<td>2</td>
<td>NaCl</td>
<td>50</td>
<td>1.5</td>
<td>56.1</td>
<td>1.686 x 10^-6</td>
<td>7.696 7.765</td>
</tr>
<tr>
<td>1.1</td>
<td>NaOH</td>
<td>268</td>
<td>1.5</td>
<td>56.1</td>
<td>3.78 x 10^-1</td>
<td>3.725 3.644</td>
</tr>
<tr>
<td>1.1</td>
<td>NaOH + Quartz Powder (0.5g)</td>
<td>261</td>
<td>1.5</td>
<td>56.1</td>
<td>3.78 x 10^-1</td>
<td>3.712 3.630</td>
</tr>
<tr>
<td>2</td>
<td>NaCl</td>
<td>73</td>
<td>1.5</td>
<td>56.1</td>
<td>1.7 x 10^-6</td>
<td>6.298 7.693</td>
</tr>
<tr>
<td>2</td>
<td>NaCl</td>
<td>61</td>
<td>1.5</td>
<td>56.1</td>
<td>1.7 x 10^-6</td>
<td>6.312 7.705</td>
</tr>
</tbody>
</table>
§ 4. Result of Experiment

Table 3 shows the result of the experiment. The third column gives the time of contact of aqueous radioactive solution with chloroform in the sealed quartz tube. The subsequent column "Aqueous HCl*" gives the radioactivity of 1 cc sample before contact directly measured as described in § 1 inclusive of background count, the associated background count, pH before or after the contact at 100°C calculated from that measured directly at room temperature shown in parentheses for solution (i), § 1 or from known solubility of solid hydroxide, contact time, and the decomposition rate for solution (ii), § 1, the total quantity of chloride ion before or after contact, its volume \(v^B \) at room temperature and various additions; "Sat. Ca(OH)$_2$" etc. mean the saturation of solution with solid Ca (OH)$_2$ etc. Quantity \(n^B \) of chloride ion before contact was that calculated from specified concentration and known dilution of the US AEC radioactive hydrogen chloride sample mentioned in § 1 and from the known amount of added chloride, if any. That \(n^B \) after contact was the sum of \(n^B \) and the increment \(\Delta n \) of chloride ion during the contact. The increment in (i) was the rate [Cl\(^-\)] of increase of [Cl\(^-\)], given in a subsequent column, multiplied by \(v^B \) and the time of contact \(t \), except in the case of run 8, when \(\Delta n \) was the decrease of hydroxide ion titrated directly. The increment in (ii) was that calculated just as described above in § 1.

The next column "Chloroform" shows the directly observed radioactivity of chloroform after contact inclusive of the background count, the associated background count, its volume \(v^C \) before contact at room temperature and \(-\dot{\nu} v^B/\nu^B\) at the mean of pH's before and after contact quoted from result in subsequent paper.

The last column "Rates" shows \(\log_{10} u_\rho \) and \(\log_{10} u_s \) calculated according to (3.7) from data given in the foregoing columns.

We will now proceed in commenting upon the runs in succession. Run 1 was conducted with the diluted acidic solution of the original sample without any addition: the result is, as shown in the Table, a definite exchange accompanied by a slight shift of pH. Run 2 resulted in exchange as well as in an appreciable pH-shift at higher pH. Run 3 resulted in a practically imperceptible exchange during the same period of contact with nearly neutral solution, in spite of a definitely perceptible pH-shift. Considerable length of contact time of run 4 caused, however, a perceptible exchange accompanied by an appreciable pH-shift.
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

from neutral to acidic region.

A pronounced exchange resulted in run 5 by upholding pH at higher value from 10.5 to 9.6 by saturating the solution with solid Ca(OH)₂. It was not successful in run 6 or 7 similarly to keep up high pH by means of solid Ba(OH)₂ or AgOH respectively, perhaps, because the added amount of them fell short of coping with the decomposition, although qualitatively it was indicated that the exchange was appreciably accelerated at higher pH.

On the basis of the above qualitative survey, the exchange rate was now quantitatively investigated in runs from 8 to 19 with special reference to the effect of pH, the chloride ion concentration and the wall area, confining the associated pH-shift possibly to a narrow range, either by shortening the contact time or by adding solid hydroxides; chloride ion was increased by addition of sodium chloride in runs 11, 15, 18 and 19 or the wall area multiplied in run 17 by addition of quartz powder.

Some of above results are associated with a certain inaccuracy owing to the classical calculation of pH ignoring the deviation of activity coefficients from unity. The activity coefficient of hydrogen ion remains however of the order of magnitude of unity according to the observation of KISS and URMANCY7 even at the highest concentration of neutral salt (4.0N NaCl) in the present experiment. Attributing now the deviation to the same extent from unity to other activity coefficients, it might be taken that the error in pH thus introduced is not so much as to be of the magnitude of unity.

The calculation of the present results in the alkaline region is also associated with the inaccuracy of contact time measurement and of $d[Cl^-]$-determination, $d[Cl^-]$ entering the exchange rate expression (3.7) as the correction for the accompanying decomposition.

The contact time of approximately 1 minute in the extreme case of strong alkaline solution is not at all accurate, nevertheless the error introduced in u_D or u_S from this cause could never be that of the order of magnitude.

The $d[Cl^-]$-determination in run 8 of Table 3 is accurate according to the result of subsequent paper8, that the titrated decrease of hydroxide ion is equivalent to $d[Cl^-]$, as it should be, if chloroform does not practically yield formate by decomposition.

The $d[Cl^-]$ was determined classically in conjunction with the associated pH-change in the case of solution (ii) after contact.9 Correctness of the calculation might be examined below with reference to the decomposition experiment in the subsequent paper, run 3 and 4 of Table 3 there, in which chloroform was kept in contact with solution saturated with Ca(OH)₂ or Mg(OH)₂ at 100°C and the associated $d[Cl^-]$ followed by titration. Table below shows $d[Cl^-]$ calculated classically just similarly as above ($d[Cl^-]_{calc}$) side by side with $d[Cl^-]$ directly observed by titration ($d[Cl^-]_{obs}$).

It might be expected from the contrast between $d[Cl^-]_{calc}$ and $d[Cl^-]_{obs}$ in the Table, that $d[Cl^-]_{calc}$ thus worked out is correct at least in order of magnitude. It is seen from

*) Cf. foot-note **) on page 121.
(3.7) on the other hand that \(u_p \) does not practically shift with \(-\pi^c t\) or with \(\Delta[\text{Cl}^-] \), whereas \(u_p \) increases less than proportional to the latter, inasmuch as \(-\pi^c t\) is practically negligible compared with \(n_0^c \) but considerably larger than \(n_0^s \) in runs 5, 8, 12, 13, 14, 16 and 17, where the effect of \(\Delta[\text{Cl}^-] \) is in question. It is hence expected that \(u_s \) or \(u_p \) in this case is correct at least in order of magnitude and may be incorporated with other more exact measurements, with due regard to the associated inaccuracy, in determining the dependence of \(u_p \) or \(u_s \) on pH or \(\Delta[\text{Cl}^-] \).

<table>
<thead>
<tr>
<th>Runs in Table 3 in Subsequent Paper</th>
<th>Additions</th>
<th>(\Delta[\text{Cl}^-]),calc. mol/l</th>
<th>(\Delta[\text{Cl}^-]),obs. mol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sat. Ca(OH)(_2)</td>
<td>0.12</td>
<td>0.068</td>
</tr>
<tr>
<td>4</td>
<td>Sat. Mg(OH)(_2)</td>
<td>0.0045</td>
<td>0.0055</td>
</tr>
</tbody>
</table>

Fig. 1 Rate \(u_D = r \) mol Cl/lit.min. of Chlorine Transfer From Solution to Chloroform in One Direction, 100° C.

The \(\log_{10} u_D \) and \(\log_{10} u_s \) are now plotted respectively in Figs. 1 and 2 against pH at the middle of its range of variation, if any, during the contact, shown each by a horizontal dotted line. It is seen from Fig. 1 that \(u_D \) varies not only with pH but with \([\text{Cl}^-]\) by a factor more than 10\(^2\), whereas from Fig. 2 that \(u_s \) varies virtually as a sole function.
of pH independent of [Cl\(^-\)] as well as of wall area. A straight line with a break is drawn through observed points as in Fig. 2 in compliance with the different precisions of data considered above. Dotted line "H-Exchange" in Fig. 2 shows, for comparison, the recent result of Kaneko and Satd\(^0\) on hydrogen exchange between chloroform and solution at the same condition.

It is now concluded from the above results that the exchange rate \(r \) is proportional to [Cl\(^-\)], the appropriate proportionality factor \(u_s \) being sole function of pH independent of [Cl\(^-\)], of wall area and even of pH up to pH 6.0, whence it increases inversely proportional to the activity of hydrogen ion.

On the basis of these results it might be admitted that the reaction proceeds homogeneously in the interior of the solution and that the dissolution of chloroform into the solution and its reversal are not controlling. Incidentally we see from the result that the neglect of temperature variation in § 1 of low value of pH, hardly affects the conclusion, even if it caused more or less error in estimation of pH at 100°C at all, because of \(\log_{10} u_s \) being virtually constant at lower pH.
§ 5. Chlorine Exchange and Decomposition

The mechanism of chlorine exchange will be discussed on the basis of the results in the foregoing section assuming the existence of its controlling step (abbreviated to CSCE in what follows). It is implied in the statement that CSCE does exist that no exchange* whatever takes place without its occurrence and that if it once occurred, the exchange*) proceeds practically to completion.

For the latter "sufficient" condition to be fulfilled, however, other steps than the CSCE responsible for the exchange should be occurring back and forth much more frequently than the CSCE is, so that the steps are practically in exchange equilibrium**).

If for instance the exchange between chloride ion in solution and chloroform proceeds through steps,

\[
\begin{align*}
\text{CHCl}_3 & \rightarrow \text{CHCl}_3\text{aq.} \quad (a) \\
\text{CHCl}_3\text{aq.} & \rightarrow \text{CCl}_5 + H^+ \quad (b) \\
\text{Cl}^- + \text{CCl}_5 & \rightarrow \text{CICCl}_5 + \text{Cl}^- \quad (c)
\end{align*}
\]

and if (b) is the CSCE, then steps (a) and (c) must practically be in exchange equilibrium, where Cl denotes chlorine atom of chloride ion in solution in distinction from that in chloroform, \(\text{CHCl}_3\text{aq.}\) chloroform dissolved in solution and \(\text{CHCl}_3\) that in its practically pure phase in the reaction vessel.

We will first consider the case when chlorine exchange takes place through the rate-determining step of decomposition in either direction. The CSCE must then be either the rate-determining step itself or its reversal according to the definition of CSCE**, since no other step in exchange equilibrium by definition could ever be the rate-determining step of the decomposition. In the case when CSCE is the rate-determining step of decomposition, \(r\) must equal the forward rate***) of the rate-determining step and therefore be either practically equal to or greater than the overall decomposition rate***) \(-[\text{Cl}^-]\), i.e., the excess

*) Transfer of chlorine atom from solution to chloroform. Cf. foot-note on page 123.
**) The "exchange equilibrium" is defined as that in which forward and backward rates of transfer are balanced with each other with respect to individual isotopes involved in distinction from the simple equilibrium, in which the rates are balanced as a whole but not necessarily individually.
***) Every rate in this paper is expressed in terms of associated transfer of chlorine atom but not of chloroform molecule as in the subsequent paper. The former rate is three times the latter.

---132---
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

of the forward rate over the backward one of the rate-determining step.

The $[\text{Cl}^-]$ or u_s has been found respectively constant in the subsequent\(^5\) or in the present paper at lower pH throughout the whole observed $[\text{Cl}^-]$-range. Table 4 summarizes observed $[\text{Cl}^-]$ with or without addition of neutral salt, the appropriate range of pH-variation, that of $[\text{Cl}^-]$, and $u_s[\text{Cl}^-]$, the product of average $u_s=5.8\times10^{-7}$ mol/lit.min over the pH-region where u_s is practically constant independent of pH and the mean of initial and final $[\text{Cl}^-]$ given in the fourth column of the Table.

Table 4 shows that $u_s[\text{Cl}^-]$ or r at lower $[\text{Cl}^-]$ than 0.356 N is appreciably less than $[\text{Cl}^-]$, which excludes the possibility of CSCE being the rate-determining step itself.

Neither is the alternative case of CSCE being the reversal of the rate-determining step valid, as shown below.

Table 4 Decomposition and Exchange Rate

<table>
<thead>
<tr>
<th>No.</th>
<th>pH</th>
<th>$[\text{Cl}^-]$ mol Cl/lit.min $\times 10^6$</th>
<th>$[\text{Cl}^-]$ mol/lit.</th>
<th>$u_s[\text{Cl}^-]$ mol Cl/lit.min $\times 10^6$</th>
<th>Addition</th>
<th>Reference to Subsequent Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1**(a)</td>
<td>0.1~3.2</td>
<td>1.65</td>
<td>0 \sim0.0032</td>
<td>0.009</td>
<td>None</td>
<td>Tab. 1, 3</td>
</tr>
<tr>
<td>2</td>
<td>2.90~4.15</td>
<td>1.8</td>
<td>0.305~0.350</td>
<td>0.21</td>
<td>0.35 N NaCl</td>
<td>Ser. 1, Tab. 2</td>
</tr>
<tr>
<td>3</td>
<td>3.25~4.12</td>
<td>2.2</td>
<td>0.010~0.011</td>
<td>0.060</td>
<td>0.01 N NaCl</td>
<td>Ser. 4, Tab. 2</td>
</tr>
<tr>
<td>4</td>
<td>3.25</td>
<td>1.6</td>
<td>0 \sim0.0062</td>
<td>0.003</td>
<td>0.01 N NaSO₄</td>
<td>Ser. 5, Tab. 2</td>
</tr>
<tr>
<td>5</td>
<td>1.89~1.78</td>
<td>1.7</td>
<td>4.00 \sim4.01</td>
<td>2.3</td>
<td>4.0 N NaCl</td>
<td>Run 11, Tab. 3</td>
</tr>
<tr>
<td>6</td>
<td>2.00~1.96</td>
<td>1.8</td>
<td>0.0038</td>
<td>0.011</td>
<td>5.2 N NaSO₄</td>
<td>Run 12, Tab. 3</td>
</tr>
</tbody>
</table>

\(^5\) Average of u_s-values of runs 1, 4, 9, 10, 11, 15, 18 and 19 in Table 3.

\(^{}\) This number indicates the average data of decomposition measurements of the subsequent paper [Ref.5] without addition of neutral salt at pH below 3.2, where $[\text{Cl}^-]$ is found practically constant independent of pH. The $[\text{Cl}^-]$ of this number is the average of $[\text{Cl}^-]$-values each of series 3, 5, 7 and 8 of Table 1 and of runs 5, 6, 7, 8 and 10 of Table 3 of the subsequent paper each with equal weight; $[\text{Cl}^-]$ was determined for each series in the former group of measurements by analysis of pH-variation with time and in latter by titration of liberated chlorine; $[\text{Cl}^-]$-value here of each series is the mean over those determined for each pH below 3.2 given in Table 5 there in the subsequent paper.
Let j be the rate-determining step of the decomposition. The steady rate $[\text{Cl}^-]$ of decomposition is the forward rate \bar{v}_j of j minus the backwared one now equated to the exchange rate according to the premise. Expressing the exchange rate by $u_s[\text{Cl}^-]$ according to the conclusion in §4, we have,

$$[\text{Cl}^-] = \bar{v}_j - u_s[\text{Cl}^-] \tag{5.1}$$

The $u_s[\text{Cl}^-]$ of experiments No. 1, 3, 4 and 6 in Table 4 is negligibly small compared with $[\text{Cl}^-]$, while the latter is constant irrespective of different additions of neutral salts. It follows according to (5.1) that \bar{v}_j must also be constant at least under the conditions of these experiments.

The forward rate \bar{v} of a step in homogeneous fluid is expressed in general as,

$$\bar{v} = k\nabla^L f^{(S)} \tag{5.2}$$

where $\nabla^L f^{(S)}$ is the absolute activity or the reciprocal BOLTZMANN factor of the chemical potential of the initial complex; k is the “rate constant” common to the forward and backward rates and actually constant at infinite dilution of components of variable concentrations.

The $k_j\nabla^L f^{(S)}$ written particularly for i of the rate-determining step j is now constant irrespective of different addition of neutral salts at least in above numbers of experiments. As shown in the subsequent paper* the particular value $\nabla^L f^{(S)}$ assumed by $\nabla^L f^{e,j}$ at the steady state equals practically its upper limit $\nabla^L f^{e,j}$ as j determines the rate and every one of series S of steps of decomposition which brings a set δ_j' of stable molecules and ions** down to δ_j' is in equilibrium,*** so that, if n_c pieces of chloride ion are liberated algebraically by the resultant of S in bringing about δ_j' from δ_j', $\nabla^L f^{e,j}$ and hence $\nabla^L f^{e,j}$ varies proportionally to $(\text{Cl}^-)^{-n_c}$.

It is seen from Table 4 that $u_s[\text{Cl}^-]$ is more than six folded or reduced to one third from No. 1 to 3 or to 4 respectively, while $[\text{Cl}^-]$ or $k_j\nabla^L f^{e,j}$ remains tolerably constant with regard to the error involved in $[\text{Cl}^-]$-determination of No. 2.**** This effect cannot be due to some compensation of the variation of $\nabla^L f^{e,j}$ proportional to $(\text{Cl}^-)^{-n_c}$ by that of k_j due to the neutral salt, admitting that the latter's effect, if any, is first of all that of ionic interaction and that the addition of 0.01 N NaCl or of 0.01 N NaSO₄ shifts k_j, if at all, in the same direction. It follows that k_j and $\nabla^L f^{e,j}$ must individually be constant irrespective of neutral salt addition. This conclusion is supported by No. 6 of $[\text{Cl}^-]$ remaining unaffected by an extremely high concentration 5.2 N of NaSO₄.

The forward rate \bar{v}_j must hence be around 1.7×10^{-6} even in the case of No. 5 of

*) Cf. §5 of the subsequent paper [Ref. 5].
**) Set of particles involved in the step at the state before its occurrence.
***) Cf. §6, Ref. 5).
****) Those ones other than intermediates of decomposition.
***** The $[\text{Cl}^-]$ is determined in this case by differentiating $[\text{Cl}^-]$ determined from observed pH with respect to time. The value of $[\text{Cl}^-]$ thus obtained is less accurate than that of titration as judged from its fluctuation.
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

4 N NaCl addition in Table 4: This conclusion contradicts, with regard to (5.1), the fact that \([\text{Cl}^-]\) then remains constant at \(1.7 \times 10^{-6}\), while \(u_x[\text{Cl}^-]\) amounts to even more than the latter, invalidating the underlying premise that CSCE is the reversal of the rate-determining step.

It is however possible besides, that some step subsequent to the rate-determining one in the series of steps responsible for the decomposition may be irreversible just as a dam keeping up a pool beyond may make a rapid stream behind and that one of such steps make the CSCE. If at all, however, the exchange must go through the rate-determining step as well for the chlorine atom picked up from the solution by the reversal of the irreversible step to get into chloroform in discordance with the present premise of unique CSCE, unless the intermediate involved in the irreversible step transmits the chlorine atom somehow to chloroform the other way round. Latter case will be excluded without further discussion in accordance with the conclusion in the subsequent paper*) that such an intermediate has an extremely low activity at the establishment of the rate-determining step.

§ 6. CSCE in equilibrium

It follows from the conclusion arrived at in the foregoing section that CSCE is practically in equilibrium or that its rates in both the directions are balanced with each other, inasmuch as the decomposition of chloroform is only the process proceeding irreversibly in our assembly.

We may now call either of the complexes converted from each other by the balanced steps of CSCE the initial complex and the other the final one at our disposal, inasmuch as either behaves in kinetically identical manner because of the equilibrium relation, although it might be legitimate in accordance with our definition of exchange rate**) to attribute the final complex to the one which converts into a set \(\beta'\) of stable molecules and ions including chloroform through a series of steps in exchange equilibrium***) ; in the particular case when both the complexes are of identical configuration as in (3.5. S), any particularity of either vanishes of course. Such step will be called a symmetric one. At any rate either or both of the two complexes must convert into \(\beta'\) through steps in exchange equilibrium, since otherwise the exchange reaction in accordance with our premise in § 5 would not proceed at all.

*) Cf. § 6. Ref. 5).
**) Cf. § 3.
***) Steps involved in exchange reaction other than the CSCE are assumed in exchange equilibrium Cf. § 5.
We will call the complex, which converts into δ' through steps in exchange equilibrium, the initial complex δ' of CSCE and denote the appropriate δ' by δ''.

We have now, according to the definition of absolute activity in the foregoing section,

$$\Pi^{\delta''} = \Pi^{\delta'}$$

or according to (5.2),

$$r \propto \Pi^{\delta''}$$

(6.1)

We shall investigate the constituents of δ'' and hence of δ' in the subsequent section on the basis of the kinetic relation (6.1).

§ 7. Dependence of r on pH

It follows immediately from the observed proportionality of r to $[\text{Cl}^-]$ identified with the relevant activity, that δ'' includes only one chloride ion. The δ'' may be taken, on the other hand, not to include carbon monoxide or formic acid, since there is no sign of drift of exchange rate as seen from Table 3 along with the accumulation, indicated by pH-shift, of these decomposition products.

The δ'' may include one or more chloroform molecules. It will be assumed to be only one included in δ'', no experimental material being available at present for deciding this point.

The transition from δ'' to δ' should not imply any step either of discharging original chlorine atom of the chloroform molecule involved, in the form of chloride ion into solution or of uptaking to afford it an equal position to that of the original chlorine atoms, since otherwise the specified CSCE would no more be "necessary" in contradiction to its premise. The original proton of chloroform may, however, be given off or that in solution uptaken in this regard.

The δ' must then include, besides possibly other molecules and ions, $\text{Cl}^- + \text{CHCl}_3$ or $\text{Cl}^- + \text{CCl}_3$ or $\text{Cl}^- + \text{CHCl}_3(H^+)_m$, which is represented by SH in what follows, where $\text{CHCl}_3(H^+)_m$ is chloroform molecule to which m protons are attached. If δ' consists of SH alone, the corresponding δ'' is (a) $\text{Cl}^- + \text{CHCl}_3$ or (b) $\text{Cl}^- + \text{CHCl}_3H^+$ or (c) $\text{Cl}^- + \text{CHCl}_3mH^+$ respectively. The rate of the CSCE and hence r must then be, according to (6.1), (a) independent of a^{H^+} or (b) inversely proportional to a^{H^+} or (c) proportional to m-th power of a^{H^+}. So that in

*) The minus sign of H^+ means that the proton is discharged from a constituent of δ', i.e., CHCl_3 in its course of forming δ'.

—136—
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

none of these cases is the pH-dependence of Fig. 2 accounted for.

Including now acid or base or both in δ' and assuming that acids are H_2O and H_2O^+, and bases OH^- and H_2O respectively exclusively in the aqueous solution just as in the previous work, the pH-dependence of r is given as being one of three types,

$$\frac{r}{\alpha_{\text{SH}}} = k^W_A + k^B_A \alpha_{\text{H}^+}$$ \hspace{1cm} (7.1. I)

$$\frac{r}{\alpha_{\text{SH}}} = k^W_B + k^B_{\text{OH}^-}/\alpha_{\text{H}^+}$$ \hspace{1cm} (7.1. II)

$$\frac{r}{\alpha_{\text{SH}}} = k_{AB} + k^B_{\text{H}^+} \alpha_{\text{H}^+} + k^B_{\text{OH}^-}/\alpha_{\text{H}^+}$$ \hspace{1cm} (7.1. III)

where α_{SH} or α_{H^+} is the activity of SH or H_2O^+ respectively of usual scale identified with the respective concentration at infinite dilution and k^W_A etc. are respectively constants independent of α_{H^+}.

We see immediately that none of above three types fits in with the observed pH-dependence, if α_{SH} were proportional to $(\alpha_{\text{H}^+})^m$ or SH consisted in $\text{Cl}^- + \text{CHCl}_3 (\text{H}^+)_m$, so that this case, extraordinarily improbable even otherwise, falls formally out. Similar consideration excludes further the case of $\text{SH} = \text{CHCl}_3 + \text{Cl}^-$ in (7.1. I), when α_{SH} is independent of α_{H^+} and that of $\text{SH} = \text{CCl}_4^- + \text{Cl}^-$ in (7.1. II), when α_{SH} is inversely proportional to α_{H^+} according to (6.1), so that we are left with four possible δ''s shown in Table 5, where K_c is the dissociation constant of chloroform, i.e.,

$$K_c = \frac{a^{\text{CCl}_3} a^{\text{H}^+}}{a^{\text{OH}^+}}$$ \hspace{1cm} (7.2)

Table 5 Possible δ' and Appropriate pH-Dependence of Rate

<table>
<thead>
<tr>
<th>Notation of Type of Steps</th>
<th>δ'</th>
<th>Constituent Acid or Base</th>
<th>pH-dependence of $r/\alpha^{\text{CHCl}_3}_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\text{CCl}_3^- + \text{Cl}^-$</td>
<td>AH</td>
<td>$(k^W_A/\alpha_{\text{H}^+} + k^B_A) K_c$</td>
</tr>
<tr>
<td>II</td>
<td>$\text{CHCl}_3 + \text{Cl}^-$</td>
<td>B</td>
<td>$k^W_B + k^B_{\text{OH}^-}/\alpha_{\text{H}^+}$</td>
</tr>
<tr>
<td>IIIa</td>
<td>$\text{CHCl}_3 + \text{Cl}^-$</td>
<td>AH + B</td>
<td>$k_{AB} + k^B_{\text{H}^+} \alpha_{\text{H}^+} + k^B_{\text{OH}^-}/\alpha_{\text{H}^+}$</td>
</tr>
<tr>
<td>IIIb</td>
<td>$\text{CCl}_4^- + \text{Cl}^-$</td>
<td>AH + B</td>
<td>$(k_{AB}/\alpha_{\text{H}^+} + k^B_{\text{H}^+} + k^B_{\text{OH}^-}/(\alpha_{\text{H}^+})^2) K_c$</td>
</tr>
</tbody>
</table>

*) The k^W_A or k^B_A is the rate constant of the proton acceptance of SH from acid H_2O or H_2O^+ respectively and k^B_B or $k^B_{\text{OH}^-}/K_h$ that of proton donation to base H_2O or OH^- respectively; k_{AB} is the sum of rate constants of prototropy for the acid-base pair of H_2O and H_2O^+ or of OH^- and H_2O^+ respectively, and $k^B_{\text{H}^+}$ or $k^B_{\text{OH}^-}/K_h$ for that of H_2O^+ and H_2O or of H_2O and OH^- respectively.
IIIa or IIIb may be one of the possible cases only when the term $k_{H^+}a_{H^+}$ or $k_{OH^-}/(a_{H^+})^2$ is respectively negligibly small throughout the pH-range of present observation. In the next section will be investigated the ratio of constants k_{H^+} and k_{OH^-} for determining valid δ'.

§ 8. Ratio of Constants k_{H^+} and k_{OH^-}

The constant k_{H^+} is the rate of the step,

$$H_2O + SH + H_2O^+ \rightarrow H_3O^+ + S'H + H_2O \quad (8.1. H^+)$$

at unit activity of hydrogen ion and of substrate SH, i.e., that of the simultaneous attack of base H_2O and acid H_3O^+ to give rise to the "prototropy" of Lowry transforming SH in general to its isomeric or dissociated state $S'H$.

The k_{OH^-}/K_a is similarly the rate of the step,

$$OH^- + SH + H_2O \rightarrow H_2O + S'H + OH^- \quad (8.1. OH^-)$$

at unit activity of hydroxide ion and of substrate SH, where K_a is the dissociation constant of water.

We see that the acid and base involved in the initial complex of $(8.1. H^+)$ or of $(8.1. OH^-)$ are conjugated with each other in either case, so that they are commonly expressed by the scheme.

$$B + SH + H^+B \rightarrow BH^+ + S'H + B$$

The k_{H^+} or k_{OH^-}/K_a may on the other hand be expressed as,

$$k_{H^+} = C \exp \left(- \frac{\Delta F^*(H_2O)}{RT} \right) \quad (8.2. H_2O)$$

$$k_{OH^-}/K_a = C \exp \left(- \frac{\Delta F^*(OH^-)}{RT} \right) \quad (8.2. OH^-)$$

where C is the common factor, ** $\Delta F^*(H_2O)$ or $\Delta F^*(OH^-)$ respectively the appropriate activation free energy or the free energy increment of the whole assembly associated with the formation of a critical complex δ^* from the respective initial complex δ' reckoned to 1 mol or the reversible work required for the process.

* Cf. foot-note on page 137.

** Cf. foot-note * on page 139.
The difference \(\Delta F = \Delta F^\circ (H_2O) - \Delta F^\circ (OH^-) \) may be taken particular to the set of B's, i.e., that of \(H_2O \) and \(OH^- \) respectively in (8.2. \(H_2O \)) and (8.2. \(OH^- \)) but independent of the sort of substrate \(SH \), if one takes only the contribution to \(\Delta F \) of the direct action of \(B \) and \(S \) upon \(H^+ \) or \(H \), perhaps intervening between \(B \) and \(S \), only into account but neglects the difference of the contribution of interaction between, perhaps remoter, \(B \) and \(S \) due to the difference of \(S \) of \(SH \). It then follows from (8.2) that,

\[
\frac{k^H}{k^{OH^-}} = \frac{1}{K_h} \exp \left(-\frac{\Delta F}{RT} \right)
\]

or the ratio of catalytic coefficients, \(k^H \) and \(k^{OH^-}/K_h^{**} \) respectively of hydrogen and hydroxide ion, should remain approximately constant at a definite temperature independent of the sort of substrate.

Table 6 shows \(\Delta F \) derived from reliable data of catalytic coefficients according to (8.3) attributing to all of these cases the prototropic mechanism (8.1); \(\Delta F \) is approximately constant as shown in the Table and lies within the limits 5±3 Kcal throughout different substrates as expected and even throughout different temperatures except in the case of the depolymerization of dimeric dihydroxyacetone and the racemization of \(l \) trans-\(\alpha \)-dimethyl glutaric acid.

It might be questioned whether the simple prototropic mechanism is adequate especially to the latter two reactions of complicated molecules. In this connection we might quote the conclusion arrived at in the subsequent paper\(^3\) that the step,

\[
B + HCl\%CCl_2\% + HA \longrightarrow BH^+ + CCl_2 + CIH + A^- \]

\(^*)\ Rate \(\bar{v} \) of a step, heterogeneous or homogeneous, is expressed in general [Cf. Horiuti; Jour. Res. Inst. Catalysis, Hokkaido Univ. I, 8 (1948), §24] as,

\[
\bar{v} = \kappa \frac{k_F}{h} \frac{p^{\bar{x}}}{p^{\bar{y}}}
\]

where \(p^{\bar{x}} \) or \(p^{\bar{y}} \) is the Boltzmann factor of the chemical potential [ibid., §2] of the critical complex \(\bar{x} \) [Cf. §23 ibid.] or \(\bar{y} \) respectively, i.e., the reciprocal absolute activity. The ratio \(p^{\bar{x}}/p^{\bar{y}} \) being \(\exp \left(-\frac{\Delta F^\circ}{RT} \right) \) by definition, the factor \(\kappa \frac{k_F}{h} \) corresponds to \(C \), which is common to all steps provided that the transmission coefficient \(\kappa \) is universal, as assumed here.

\(^{**}\) This gives the catalytic coefficient of hydroxide ion usually denoted simply by \(k^{OH^-} \) or the coefficient of the activity of hydroxide ion in the expression of \(\tau/\alpha^{OH^-} \), as seen from (7.1, III) remembering \(K_h = a^{H^+}\alpha^{OH^-} \).

\(^{***}\) Hydrogen chloride combined with carbon dichloride by coordinate bond or an isomer of chloroform. Cf. §12 of Ref. 5.)
duly of the prototropic type has log_{10}k_{\text{H}^+}/k_{\text{OH}^-}-value, i.e.,
\begin{equation}
\log_{10}k_{\text{H}^+}/k_{\text{OH}^-} = 10.4^*)
\end{equation}
at 100°C, which lies just between the limits,
\begin{equation}
\log_{10}k_{\text{H}^+}/k_{\text{OH}^-} = 11.1-7.6
\end{equation}
corresponding to those 5±3 Kcal of ΔF at the temperature.

§ 9. δ' of CSCE

With regard to IIIa of Table 5 attributed to the observed pH-dependence of Fig. 2, either k_{AB} or k_{OH^-}/a^{H^+} must be predominant according as pH is below or above 6, at which the straight line through observed points in Fig. 2 breaks, while $k_{\text{H}^+}a^{H^+}$ must remain negligible throughout the observed pH-range from 0.1 to 12.7. The terms k_{AB} and k_{OH^-}/a^{H^+} hence equal each other at the break, so that,
\begin{equation}
k_{AB} = 10^6 k_{\text{OH}^-}
\end{equation}
But since,
\begin{equation}
k_{\text{H}^+}/k_{\text{OH}^-} = 10^{11.1-10^{7.6}}
\end{equation}
at 100°C as deduced in the foregoing section, we have,
\begin{equation}
k_{AB}/k_{\text{H}^+} = 10^{-8.1-10^{-1.6}}
\end{equation}
which shows that $k_{\text{H}^+}a^{H^+}$ is by no means negligible compared with k_{AB} at pH below 1.6 in contradiction to the above requirement.

It is similarly required with regard to IIIb of Table 5, that $k_{\text{OH}^-}/(a^{H^+})^2$ is negligible compared with $k_{AB}^{H^+}$, i.e.,
\begin{equation}
k_{\text{OH}^-}/(a^{H^+})^2 \ll k_{AB}^{H^+}
\end{equation}
or by (9.1),
\begin{equation}(a^{H^+})^2 \gg 10^{-7.6}
\end{equation}
which is not fulfilled altogether at pH below 3.8.

Both IIIa and IIIb of Table 5 being thus ruled out, there remain two possible δ's of CSCE, viz.,
\begin{equation}
\delta' = \text{Cl}^- + \text{CCl}_4^- + \text{HA} \quad (9.2.1)
\end{equation}
and
\begin{equation}
\delta' = \text{Cl}^- + \text{CHCl}_3 + \text{B} \quad (9.2.2)
\end{equation}

*) This value corresponds to the idealized pH-dependence derived from the directly observed one with correction for the neutral salt effect.
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution

Table 6 Ratio $k^H^+/k^O^-_{\text{OH}}$ for Various Reactions

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Temperature C</th>
<th>$\log k^H^+/k^O^-_{\text{OH}}$</th>
<th>ΔF Kcal</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodination of acetone</td>
<td>25</td>
<td>9.7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Iodination of mesityl oxide</td>
<td>25</td>
<td>11.4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Hydrolysis of methyl dl-glycerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" ethyl</td>
<td>70.2</td>
<td>8.3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>" n-propyl</td>
<td></td>
<td>8.7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>" iso-propyl</td>
<td></td>
<td>9.0</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" n-butyl</td>
<td></td>
<td>8.7</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" iso-butyl</td>
<td></td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" n-amyl</td>
<td></td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" iso-amyl</td>
<td></td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Hydrolysis of dihydroxypropyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetate</td>
<td>55</td>
<td>9.8</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>" propionate</td>
<td></td>
<td>9.9</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" n-butyrate</td>
<td></td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" iso-butyrate</td>
<td></td>
<td>10.0</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" n-valerate</td>
<td></td>
<td>9.9</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>" iso-valerate</td>
<td></td>
<td>10.0</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Depolymerization of dimeric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dihydroxyacetone</td>
<td>25</td>
<td>6.4</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Depolymerization of dimeric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycollaldehyde</td>
<td>25</td>
<td>8.0</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Hydrolysis of ethyl acetate</td>
<td>25</td>
<td>11.0</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Mutarotation of glucose</td>
<td>25</td>
<td>9.6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Racemization of l-trans-α-7-dimethyl glutaric acid</td>
<td>100</td>
<td>1.5</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Hydrolysis of isopropyl acetate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" ethyl levulinate</td>
<td>25</td>
<td>11.3</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>" benzamide</td>
<td>80</td>
<td>11.6</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>" acetaldehyde</td>
<td>40</td>
<td>12.4</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

§ 10. Possible CSCE

It has been concluded in §7 that δ^i of CSCE must preserve the original CCl_3-skeleton of chloroform unimpaired, in so far as CSCE is
indispensable for chlorine exchange as defined, but the latter condition does not necessarily require the same of δ'', inasmuch as the CSCE remains duly indispensable if the skeleton were disrupted in δ'', provided that the disruption product be restored to chloroform solely through the reversal of CSCE*, thus giving rise to the chlorine exchange. In such a case, the resultant of forward and backward step of CSCE is, in accordance with two possible δ’s of (9.2),

\[\text{Cl}^- + \text{CCl}_2^- + \text{HA} \xrightarrow{\text{I}} \text{Cl}^- + \text{CCl}_2^- + \text{HA} \quad (10.1.\ I) \]

or

\[\text{Cl}^- + \text{CHCl}_3 + \text{B} \xrightarrow{\text{II}} \text{Cl}^- + \text{CHCl}_2^- + \text{B} \quad (10.1.\ II) \]

where Cl denotes the chlorine atom originating from chloride ion possibly replacing that CI from chloroform through the step.

Let the alternative case now be considered when CCIs-skeleton is not disrupted in δ''. This state of δ'' is brought down from δ' through steps in exchange equilibrium just as that of δ' is and subject to the same condition as that kinetically imposed upon δ', inasmuch as the CSCE is in equilibrium or forward and backward rates of CSCE are balanced with each other, so that they must vary just identically with each other with varying factors, pH, $[\text{Cl}^-]$ etc. The conclusion is that all the possible cases of δ'' of CSCE are those of δ' as given by (9.2) and hence all the possible CSCE in this case are the transitions, I, I', II and II' expressed as,

\[\begin{align*}
\text{Cl}^- + \text{CCl}_2^- + \text{H}^+ \text{B} & \xrightarrow{\text{I}} \text{ClCCl}_2^- + \text{Cl}^- + \text{H}^+ \text{B} \\
\text{Cl}^- + \text{CHCl}_3 + \text{B} & \xrightarrow{\text{II}} \text{ClCHCl}_2^- + \text{Cl}^- + \text{B}
\end{align*} \quad (10.2) \]

where HA of (9.2) is rewritten into its identity H$^+$.B.

Transitions (10.1. I) and (10.1. II) are included respectively in I and II of (10.2) with an implication that each of the latter symmetric steps may occur as the resultant of the relevant forward and backward acts as well.

All possible CSCE’s expressed by (10.2) with this implication will be discussed further in the next section.

*) If not, but the disruption product were conveyed back to chloroform through other channel, the CSCE is no more indispensable, the channel accompanying necessarily chlorine exchange.

142
§ 11. Mechanism of Chlorine Exchange

It is required in cases I, I' and II' of CSCE that the step which provides CCl₅⁻ from chloroform must occur back and forth much more quickly than the respective CSCE does. But since such step accompanies necessarily the hydrogen exchange of chloroform, it is required if these steps are the CSCE, that the hydrogen exchange must be much more rapid than the chlorine exchange is. This condition is fulfilled as shown by the recent result of Kaneko and Sato as illustrated by “H-Exchange” in Fig. 2.

It is concluded moreover in the subsequent paper that the step,

\[\text{CHCl}_3 + B \rightarrow \text{CCl}_5^- + H^+ B \]

(11.1)

is responsible for the observed hydrogen exchange on the basis of the experimental results of the latter, of chloroform decomposition and of chlorine exchange as reported in the present paper. It follows now that two kinds of \(\delta' \) as well as those of \(\delta'' \) of (10.2) are respectively in exchange equilibrium with each other or rapidly converting into each other before entering any step of (10.2).

The critical complex of II or II' must have, however, many common features in electronic configuration with \(\delta' \) of I or I', inasmuch as B in the former must have done its part of accepting proton in giving rise to the pH-dependence of exchange rate as indicated in Fig 2. The critical complex must hence be scarcely different, whichever \(\delta' \) the CSCE may start from.

The state of (9.2. I) exists inasmuch as CCl₅⁻ does, as concluded in the subsequent paper in conjunction with the equilibrium of step (11.1). Now let (9.2. II) be taken the valid CSCE. We see now no reason why a set of particles of the state (9.2. I) should get through the state of (9.2. II), to neutralize CCl₅⁻ once in the form of chloroform, for arriving at the critical complex of the similar electronic configuration; the state of (9.2. I) might be taken intermediate between those of (9.2. II) and the critical complex.

It is hence reasonable to attribute the state of (9.2. I) to \(\delta' \) of CSCE and for a similar reason the same state to its \(\delta'' \). This conclusion is not altered, if either or both of (10.2) were the resultant of the relevant forward and backward acts as in the case of (10.1).

Summing up, the conclusion is that the chlorine exchange proceeds through steps,
which are both in equilibrium, the first of which is occurring rapidly back and forth, i.e., in exchange equilibrium giving rise to the much quicker hydrogen exchange.

§12. Remarks on the Concluded Mechanism

1. The horizontal part in Fig. 2 is now attributed in accordance with (7.1.1) and (7.2) to \(k_{H^+}^w \) and that of \(-1\) inclination to \(k_{H^+}^w/a^{H^+} \). It follows that \(k_{H^+}^w \) and \(k_{H^+}^w/a^{H^+} \) approximate each other at the break at pH 6 and hence \(k_{H^+}^w \) is \(10^6 \) times as large as \(k_{H^+}^w \). This prominence of \(k_{H^+}^w \) over \(k_{H^+}^w \) might be attributed to the reduction of the potential of the critical complex due to the electrostatic interaction between Cl\(^-\) and CCl\(_3\) by the positive charge of H\(_2\)O\(^+\) or by the formation of HCl molecule as suggested in a previous paper.\(^6\) Incorporating these, the pronounced "catalytic" activity of H\(_2\)O\(^+\) might be referred to the electronic configuration of the critical complex resonating among,

\[
\begin{align*}
\text{Cl} & \quad \text{Cl}\^- & \quad \text{Cl} & \quad \text{Cl} \\
\text{CCl}_3 & \quad \text{H}^+\text{OH} & \quad \text{CCl}_3 & \quad \text{H}^+\text{OH} & \quad \text{CCl}_3 & \quad \text{HOH}_2 & \quad \text{CCl}_3 & \quad \text{HOH}_2 \\
\text{Cl}\^- & \quad \text{Cl} & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

where Cl and Cl\(^-\) are symmetrically interchanging their states with each other.

2. It follows from the mechanism as inferred previously\(^6\), that ultraviolet irradiation increases both the hydrogen and chlorine exchange by the same factor, which is yet to be verified.

3. So far it has been assumed that \(\delta \) of CSCE includes only one chloroform molecule; two or more may be involved so far as the present kinetic data are concerned. If two, a similar argument leads to the CSCE,

\[
\text{Cl}\^-+\text{CCl}_3\cdot\text{CHCl}_3+\text{HA} \rightarrow \text{CICl}_3\cdot\text{CHCl}_3+\text{Cl}^-+\text{HA}
\]

associated with the step,

\[
2\text{CHCl}_3+B \rightarrow \text{CICl}_3\cdot\text{CHCl}_3+\text{H}^+\text{B}
\]

in exchange equilibrium, which supplies CCl\(_3\)·CHCl\(_3\) similarly as (11.1).
Chlorine Exchange Reaction Between Chloroform and Aqueous Chloride Solution
does CCl$_3$.
The question of the number of chloroform molecules included in δ'' might rather be left open, until sufficient kinetic data are available.

Summary
1. Chloroform and aqueous chloride solution of different pH with or without addition of NaCl were sealed air-free together in a quartz vessel, shaken briskly at 100°C and the chlorine exchange between them was followed by measuring the radioactivity of the solution and of chloroform respectively before and after the experiment. The pH of the solution was adjusted by addition of sodium hydroxide or of sulfuric acid or of solid hydroxide of magnesium, calcium, barium or silver for retarding, in the latter case, pH-variation caused by decomposition product of chloroform.
2. The exchange rate or the forward rate of transfer of chlorine from solution to chloroform was calculated from the results of the above experiment allowing for simultaneous decomposition; the rate was found proportional to the concentration [Cl$^-$] of chloride ion present and the appropriate proportionality factor u_s constant at 5.8×10^{-7} min$^{-1}$ independent of pH from 0.1 to 6 and of [Cl$^-$] from 0.07 to 4.0 N; over pH above 6, u_s increased almost in proportion to the reciprocal activity of hydrogen ion, inclination attaining to the order of magnitude of unity around pH=12 (100°C).

The chlorine exchange at [Cl$^-$] below 1 N was much slower than the chloroform decomposition and still more slow than the hydrogen exchange. Its rate was not affected by addition of quartz powder.
3. It was deduced from results of the present and other experiments that exchange takes place through steps in equilibrium and its controlling step (CSCE) involves acid or base or both of them. The ratio of so-called catalytic coefficients of hydrogen ion and hydroxide ion of reaction, which the prototropic mechanism was taken to underlie, was theoretically deduced as lying within narrow limits for different substrates, and the conclusion was demonstrated by numerous examples inclusive of results in the subsequent paper. From these experimental and theoretical results, two possible cases of the initial complex δ' of CSCE were deduced.
4. A complete set of possible CSCE was developed on the basis of the above conclusion. By the consideration of the electronic configura-
tion of critical complex and of \(\beta' \), the most probable one among them was concluded to be,

\[
\text{Cl}^- + \text{CCl}_3 + \text{HA} \rightleftharpoons \text{CICCl}_3^- + \text{Cl}^- + \text{HA}
\]

associated with a step in exchange equilibrium,

\[
\text{CHCl}_3 + \text{B} \rightleftharpoons \text{CCl}_3 + \text{H}^+ + \text{B}
\]

which gave rise to rapid hydrogen exchange, where HA or B was the Brönsted acid or base respectively.

References

2) HORIUTI and TANABE, ibid., 28, 127 (1952).
3) HORIUTI and TANABE, ibid., 28, 130 (1952).
4) HORIUTI and TANABE, ibid., 29, 254 (1953).
5) HORIUTI, TANABE and TANAKA, This Volume p. 147.
6) KANEKO and SATO, to be published.
10) DAWSON and KEY, ibid., 2154 (1929).
11) GROOCOCK et al., ibid., 1039 (1930).
12) INGOLD et al., ibid., 2035 (1931).
13) BELL and BAUGHAN, ibid., 1947 (1937).
14) BELL and HIRST, ibid., 1777 (1929).
15) DAWSON and LOWSON, ibid., 2444 (1927).
16) BRÖNSTED and GUGGENHEIM, J. A. C. S. 49, 2554 (1927).
19) SKRABAL et al., ibid., 45, 141 (1924).