Instructions for use

Title
EXCHANGE REACTION BETWEEN ACETYLENE OR METHYLACETYLENE AND DEUTEROACETYLENE ON NICKEL

Author(s)
MIYAHARA, Koshiro

Citation

Issue Date
1957-09

Doc URL
http://hdl.handle.net/2115/24657

Type
bulletin

File Information

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
EXCHANGE REACTION BETWEEN ACETYLENE OR METHYLACETYLENE AND DEUTEROACETYLENE ON NICKEL

By

Koshiro MIYAHARA*]

(Received June 28, 1957)

§ 1. Introduction

The present author has previously explained the experimental result of the exchange reaction between ethane and deuterium on various metal films observed by ANDERSON and KEBBA on the basis of the reaction scheme

\[
\begin{align*}
I_H \\
H_2 & \rightarrow 2H
\end{align*}
\]

\[
\begin{align*}
& \text{III} \quad II_a \quad II_b \quad II_c \\
& \text{C}_2\text{H}_6 \rightarrow \{ \text{H}_2 \cdot \text{C} \cdot \text{C} \text{-CH}_3 \rightarrow \{ \text{H}_2 \cdot \text{C} \text{-C} \text{-CH}_2 \rightarrow \{ \text{HC} \text{-CH} \rightarrow \{ \text{HC} \text{-CH} \}
\end{align*}
\]

and that of the exchange and isomerization reaction of ethylene on nickel observed by FLANAGAN and RABINOVITCH similarly on the basis of the scheme

\[
\begin{align*}
& \text{II}_a \\
& \text{C}_2\text{H}_4 \rightarrow \{ \text{H}_2 \cdot \text{C} \text{-C} \text{-CH}_3 \rightarrow \{ \text{H}_2 \cdot \text{C} \text{-C} \text{-CH}_2 \rightarrow \{ \text{HC} \text{-CH} \rightarrow \{ \text{HC} \text{-CH} \}
\end{align*}
\]

where H stands for protium P and deuterium D, * signifies a bond with a chemisorption site and the parenthesized products, e.g. \(\{ \text{H}_2 \cdot \text{C} \text{-C} \text{-CH}_3 \rightarrow \{ \text{H}_2 \cdot \text{C} \text{-C} \text{-CH}_2 \rightarrow \{ \text{HC} \text{-CH} \rightarrow \{ \text{HC} \text{-CH} \}
\]

* Department of Chemistry, Faculty of Science, Hokkaido University.
are meant to be created from the products on their left, e.g. C₆H₆, to which the notation of the appropriate step, e.g. III is annexed. Experimental results have thus been quantitatively reproduced by adjusting the rate of each step of the schemes, assumed to be counterbalanced by its reversal, except that of Ile postulated instead quick enough to be practically in isotopic exchange equilibrium.

Step Ile may, on the other hand, give rise to such an exchange reaction as that between acetylene and deuteroacetylene observed by Bond, Sheridan and Whiffin, provided that H required for its occurrence were somehow secured, say, by the dissociation IId of acetylene, as in the scheme,

\[
\begin{align*}
C_2H_2 & \\
\longrightarrow & \text{III} & \downarrow & \text{I} & \longrightarrow & \\
& \longrightarrow H^* \equiv CH \longrightarrow \left\{ \begin{array}{l}
\text{H}^* \equiv CH \\
\text{H}
\end{array} \right. & \\
\end{align*}
\]

where Ib and other steps implied in (1) and (2), which leads to hydrogenation products or H₂, are ignored because of their absence in the reaction product. The similar scheme might be advanced for the exchange reaction between methylacetylene and deuteroacetylene observed by the same group of authors with steps I' etc. respectively corresponding to I etc. as

\[
\begin{align*}
\text{CH}_3C \equiv CH & \\
\longrightarrow & \text{III}' & \downarrow & \text{I'} & \longrightarrow & \\
& \longrightarrow CH_3^* \equiv CH \longrightarrow \left\{ \begin{array}{l}
\text{CH}_3^* \equiv CH \\
\text{H}
\end{array} \right. & \\
\end{align*}
\]

where steps leading to the hydrogen exchange of methyl group of methylacetylene are excluded because of the observed absence of the relevant exchange product, and the possible alternative product CH₃HC=CH from CH₃C=CH+H, too, which just gives out the very H atom preliminarily picked up by CH₃C=CH contributing nothing to the exchange.

It is shown in the present paper that the above Schemes account for the experimental results of Bond et al. quantitatively by adjusting
the ratio of the balanced rates \(V(j)'s \) \((j=I, II, III)\), and assuming that
\[
V(j') = \lambda V(j)
\]
where \(\lambda \) is a constant common to all \(j \)'s.

§ 2. Detailed Scheme and Rate Equations

Schemes (3. A) and (3. B) may be developed discriminating between \(P \) and \(D \) as

where the full structures of \(C_2P_2D(O), C_3P_3 \) etc. are shown underneath respectively in the parenthesis; the dotted or full line denotes the transfer of \(P \) or \(D \) respectively, the annexed number the fraction of the rate of the dissociation specified by the line, of the atom group on its left side over the total rate of the dissociation of the same, identifying the kinetic behavior of \(P \) with that of \(D \).

The rates \(V_{P'}, etc. \) of formation of \(C_2P_2 \) etc. may be expressed,
referring to the annexed number to the lines of (5. A) and (5. B) and denoting the fraction of C₃P₂ etc. over the sum of those of the kindred atom groups differing only by isotopic or methyl substitution by \(y_{C,P_i} \) etc.*, as

\[
\begin{align*}
V_{C,P_i}^a &= V(I)(y_{C,P_i}^{a} - y_{C,P_i}^{b}) \\
V_{C,PD}^a &= V(I)(y_{C,PD,a}^{a} - y_{C,PD}^{b}) \\
V_{C,P_i}^{a'} &= V(I)(y_{C,P_i}^{a'} - y_{C,P_i}^{b'}),
\end{align*}
\]

(6. A. 1)

for acetylenes C₂H₂'s in gas,

\[
\begin{align*}
V_{C,P}^{a} &= V(I)(y_{C,P}^{a} - y_{C,P}^{b}) + V(IIe)(y_{C,P}^{a} + \frac{1}{2} y_{C,P,D}^{a} - y_{C,P}^{b}) \\
&+ V(IIe)(y_{C,P}^{a} - y_{C,P}^{b}) \\
V_{C,P}^{PD} &= V(I)(y_{C,P}^{PD} - y_{C,P}^{b}) + V(IIe)(y_{C,P,D}^{a} + \frac{1}{2} y_{C,P,D}^{a} - y_{C,P,D}^{b}) + V(IIe)(y_{C,P}^{a} + y_{C,P}^{b} - y_{C,P,D}^{a}) \\
&+ V(IIe)(y_{C,P}^{a} - y_{C,P}^{b}) \\
V_{C,P}^{a'} &= V(I)(y_{C,P}^{a'} - y_{C,P}^{b'}) + V(IIe)(\frac{1}{2} y_{C,P,D}^{a'} + y_{C,P}^{a'} - y_{C,P,D}^{b'}) \\
&+ V(IIe)(y_{C,P}^{a'} - y_{C,P}^{b'})
\end{align*}
\]

(6. A. 2)

for chemisorbed acetylenes C₃H₃(a)'s,

\[
\begin{align*}
V_{C,P}^{a} &= V(IIe)(y_{C,P}^{a} - y_{C,P}^{b}) + \frac{1}{2} y_{C,P,D}^{a} - y_{C,P}^{b} \\
V_{C,P}^{PD} &= V(IIe)(\frac{1}{2} y_{C,P,D}^{a} + y_{C,P}^{a} - y_{C,P}^{b})
\end{align*}
\]

(6. A. 3)

for chemisorbed radicals HC≡C*’s,

\[
\begin{align*}
V_{C,P}^{a} &= V(IIe)(y_{C,P}^{a} y^{a} - y_{C,P}^{b}) \\
V_{C,P,D}^{a} &= V(IIe)(\frac{1}{2} y_{C,P,D}^{a} y^{a} - y_{C,P,D}^{b}) \\
V_{C,P,D}^{a'} &= V(IIe)(\frac{1}{2} y_{C,P,D}^{a'} y^{a'} + y_{C,P}^{a'} - y_{C,P,D}^{b'}) \\
V_{C,P,D}^{b'} &= V(IIe)(\frac{1}{2} y_{C,P,D}^{b'} y^{b'} - y_{C,P,D}^{a'})
\end{align*}
\]

(6. A. 4)

*) The \(y_{C,P_i} \), for instance, is given as

\[
y_{C,P_i} = \frac{[C_2P_2]}{[C_2P_2] + [C_2PD] + [C_2D_2] + [C_2P]$D]} + [C_2P_4]}
\]

where [C₂P₂] etc. denote the abundance of atom groups C₂P₂ etc. respectively.
Exchange Reaction Between Acetylene or Methylacetylene on Nickel

\[
V^{C,P,D,(a)} = V(I)\left(\frac{1}{2}y^{C,P,D(a)}y^{D} - y^{C,P,(a)}\right)
\]

\[
V^{C,D} = V(I)\left(y^{C,D,(a)}y^{D} - y^{C,D}\right)
\]

for chemisorbed radicals \(HC\equiv CH\)’s,

\[
V^{C,P} = V(I')(y^{C,P,(a)} - y^{C,P})
\]

\[
V^{C,P,D} = V(I')(y^{C,P,D,(a)} - y^{C,P,D})
\]

(6. B. 1)

for methylacetylenes \(CP_3C\equiv CH\)’s in gas,

\[
V^{C,P,(a)} = V(I')(y^{C,P} - y^{C,P,(a)}) + V(I)\left(y^{C,P} + \frac{1}{2}y^{C,P,D}\right)
\]

\[
- y^{C,P,(a)} + V(I)\left(y^{C,P} - y^{C,P,(a)}\right)
\]

\[
V^{C,P,D,(a)} = V(I')\left(y^{C,P,D} - y^{C,P,D,(a)}\right) + V(I)\left(\frac{1}{2}y^{C,P,D} + y^{C,P,D}\right)
\]

\[
- y^{C,P,D,(a)} + V(I)\left(y^{C,P,D} - y^{C,P,D,(a)}\right)
\]

(6. B. 2)

for chemisorbed methylacetylenes \(CP_3C\equiv CH\)’s,

\[
V^{C,P} = V(I)\left(y^{C,P,(a)} + y^{C,P,D,(a)} - y^{C,P}\right)
\]

(6. B. 3)

for chemisorbed radical \(CP_3C\equiv C\)’s,

\[
V^{C,P} = V(I)\left(y^{C,P,(a)}y^{P} - y^{C,P}\right)
\]

\[
V^{C,P,D} = V(I)\left(y^{C,P,D,(a)}y^{P} + y^{C,P,D,(a)}y^{P} - y^{C,P,D}\right)
\]

(6. B. 4)

\[
V^{C,P,D,(a)} = V(I)\left(y^{C,P,D,(a)}y^{P} - y^{C,P,D,(a)}\right)
\]

for chemisorbed radicals \(CP_3C\equiv CH\)’s, respectively. The \(y\)’s in above equations must satisfy, by definition, the relations

\[
y^{P} + y^{D} = y^{C,P} + y^{C,P,D} + y^{C,D} + y^{C,P} + y^{C,P,D}
\]

\[
= y^{C,P,(a)} + y^{C,P,D,(a)} + y^{C,D,(a)} + y^{C,P,(a)} + y^{C,P,D,(a)}
\]

\[
= y^{C,P} + y^{C,D} + y^{C,P,D}
\]

\[
= y^{C,P} + y^{C,P,D,(1)} + y^{C,P,D,(2)} + y^{C,P,D,(1)} + y^{C,P,D,(2)}
\]

\[
y^{C,P} + y^{C,P,D} + y^{C,P,D} = 1
\]

(6. y)

§ 3. Exchange Reaction Between Methylacetylene and Deuteroacetylene

Specializing (6.A.1), ···, (6.B.4) to the initial condition of the reaction
\[y_{C,P}^{\text{i,s}} = y_{C,P}^{\text{i,p}} = 1/2, \quad y_{C,P}^{\text{i,s}} = y_{C,P}^{\text{i,p}} = y_{C,P}^{\text{i,p}} = 0 \]
\[(7) \]
as well as to (4), and putting the rates \(V_{C,P}^{\text{i,s}} \) etc. of intermediates \(C_2P_3(a) \) etc. individually to zero for the steady state, \(y_{C,P}^{\text{i,p}}(a) \) etc. are solved as

\[
\begin{align*}
y_{C,P}^{\text{i,p}}(a) &= \frac{a (1-y^D)\, (1+ay^D)}{(1+a)(2+a)} , \\
y_{C,P}^{\text{i,p}}(a) &= \frac{a (1-y^D)\, (1+ay^D)}{(1+a)(2+a)} , \\
y_{C,P}^{\text{i,p}}(a) &= \frac{1+ay^D\, y_{C,P}^{\text{i,p}}(a)}{2\{1+a(1-y^D)\}} , \\
y_{C,P}^{\text{i,p}}(a) &= \frac{1+ay^D\, (1-y^D)}{2(1+a)} , \\
y_{C,P}^{\text{i,p}}(a) &= \frac{2y^D}{2\{1+a\}}
\end{align*}
\]
\[(8. y) \]

where

\[a = \frac{V(\text{II}_c) + V(\text{II}_d)}{2\, V(\text{I})}. \]
\[(8. a) \]

The \(y_{C,P}^{\text{i,p}}(a) \) etc. substituted from (8. y) into (6. A.1) or (6. B.1) give directly observable \(V_{C,P}^{\text{i,s}} \) etc. or \(V_{C,P}^{\text{i,p},s} \) and \(V_{C,P}^{\text{i,p},p,0} \) as the respective functions of \(y^D, a \) and \(\lambda \). Parameters \(y^D \) and \(a \) are first adjusted to the observed ratio \(V_{C,P}^{\text{i,s},s} : V_{C,P}^{\text{i,p},p,0} : V_{C,P}^{\text{i,s},0} \) and then \(\lambda \) to the ratio \(V_{C,P}^{\text{i,p},p,0} : V_{C,P}^{\text{i,p},p,0} \) according to (6. y), (4) and (7) as shown in the Table.

TABLE: Initial relative rates of formation. Initial composition of gas: 49.5\% \(C_2P_3\equiv C_2 + 1\% \ C_2PD + 49.5\% \ C_2D_2 \), Catalyst: nickel, 62°C.

<table>
<thead>
<tr>
<th>Parameters adjusted</th>
<th>Relative rates of formation in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>(y^D)</td>
</tr>
<tr>
<td>Adjusted values</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>calc.</td>
</tr>
</tbody>
</table>

The agreement of the observed and calculated values are quite satisfactory. It may be remarked that the values of \(a \) and \(y^D \) are determined irrespective of the assumption of (4), as is evident from the above.
§ 4. Exchange Reaction Between Acetylene and Deuteroacetylene

On the basis of α-value determined in the foregoing section, the experimental results of the subject will be accounted for in what follows.

We see from (8. a) and the α-value given in the Table that either Π_c or Π_d must be appreciably quick compared with I. Π_d may be taken slow enough because of the polymerization of acetylene, plausibly caused through Π_d, not being observed in association with the present exchange reaction and Π_o, too, because of the absence of the hydrogenation product as referred to in the introduction. The slowest steps of Scheme (3. A) are now Π_h and Π_o, while the exchange reaction between acetylene and deuteroacetylene is kept up by the two fast ones Π_c and I, if once the steady concentration of $H(a)$ is provided by Π_d. The rates of steps in the present reaction are consequently of the relative magnitude

$$ V(\Pi_d) \gg V(I) \gg V(\Pi_o) \text{ or } V(\Pi_o) . $$

Assuming now Π_c quick enough to attain the isotopic exchange equilibrium, $y^{C,PD(a)}$ of P is given as

$$ y^{C,PD(a)} = 2y^P y^D . $$

For 1:1 mixture of acetylene and deuteroacetylene we haven on the other hand

$$ y^P = y^D = 1/2 $$

on account of the assumed identity of the kinetic behavior of P with that of D, and hence according to (6. A.1), (10. y.1) and (10. y.2).

$$ V^{C,PD} = d(P y^{C,PD})/dt = V(I)(1-2y^{C,PD})/2 , $$

provided that $V(I)$ is measured by the corresponding increasing rate of the partial pressure, or by integration at constant total pressure P,

$$ 1-2y^{C,PD} = \exp [-V(I) t/P] $$

where t is the time.

Eq. (11. b) is in good agreement with the observation of Bond et al. for the exchange reaction of 1:1 mixture of C_2P_2 and C_2D_2 on nickel at 119°C as shown in Fig. 1, from which $V(I)/P$ is determined at 2.05×10^{-3} min⁻¹.
§ 5. Discussion

The present analysis has verified the mechanism of the exchange reaction between deuteroacetylene and acetylene or methyl-acetylene given by (3.A) and (3.B) respectively, i.e.

\[\text{C}_2\text{H}_2 \leftrightarrow \text{C}_2\text{H}_2(a) \quad (\text{CH}_3\text{C}=\text{CH} \leftrightarrow \text{C}_3\text{H}_4(a)) \quad (\text{I}) \]

\[\text{C}_2\text{H}_2(a) + \text{H}(a) \rightarrow \text{C}_2\text{H}_3(a) \quad (\text{C}_3\text{H}_4(a) + \text{H}(a) \rightarrow \text{C}_3\text{H}_5(a)) \quad (\Pi_e) \]

\[\text{C}_3\text{H}_5(a) \rightarrow \text{C}_3\text{H}_4(a) + \text{H}(a) \quad (\text{C}_3\text{H}_4(a) \rightarrow \text{C}_3\text{H}_5(a) + \text{H}(a)) \quad (\Pi_a) \]

H(a): chemisorbed hydrogen atom,

where \(\Pi_e \) is quick enough to attain the isotopic exchange equilibrium.

Bond et al.\(^5\) proposed a bimolecular mechanism for the reaction, with which hydrogen atoms are interchanged between a chemisorbed and a physically adsorbed acetylene molecule, on the ground of the experimental facts, i.e.

i) The observed formation rate of \(\text{C}_3\text{PD} \) from 1:1 mixture of acetylene and deuteroacetylene obeys approximately the rate equation

\[\frac{dP_{\text{C,PD}}}{dt} \approx 3.2 P_{\text{C,PD}} P_{\text{C,d}} - P_{\text{C,PD}}^2 \quad (12.\text{a}) \]

at constant total pressure \(P \), where \(P_{\text{C,PD}} \) etc. represent the partial
pressures of C$_2$PD etc. respectively, whereas the $dP_{C,PD}/dt$ at the initial stage of the exchange reaction varied with P as

$$dP_{C,PD}/dt \propto P^{0.65}. \quad (12. b)$$

ii) Hydrogenation of acetylene proceeds in the presence of nickel as

$$-dP/dt = k'P_{H_2}P_{C,PD}^p, \quad (13)$$

where k' is the rate constant.

iii) The conversion of para-hydrogen is strongly inhibited by acetylene.

iv) Hydrogenation or polymerization of acetylene was not observed in association with the present exchange reaction.

These facts are alternatively accounted for on the basis of the present mechanism as follows respectively under the same headings.

i) Eq. (12. a) may be written in the form

$$dy_{C,PD}/dt = k \left\{ 3.2y_{C,PD}^oP_{H_2}y_{C,PD} - (y_{C,PD}^o)^2 \right\}$$

remembering the relations $P_{C,PD} = P_{H_2}P_{C,PD}^o$ etc., where k is a constant at constant total pressure. There exists, however, for 1:1 mixture of acetylene and deuteroacetylene, a stoichiometric relation

$$y_{C,PD}^o = y_{O,PD}^o = (1-y_{C,PD}^o)/2.$$

We have now from the above two relations

$$dy_{C,PD}/dt = k \left(\frac{\sqrt{3.2}}{2} - \frac{\sqrt{3.2} y_{C,PD} + y_{C,PD}^o}{2} \right) \left(\frac{\sqrt{3.2}}{2} - \frac{\sqrt{3.2} y_{C,PD} - y_{C,PD}^o}{2} \right)$$

i.e.

$$dy_{C,PD}/dt = 0.8 k (1+0.117 y_{C,PD}^o)(1-2.12 y_{C,PD}^o)$$

which is almost identical with (11.a), the coefficient of $y_{C,PD}^o$ in the last factor $(1-2.12 y_{C,PD}^o)$ of the above equation being different from that of the varying factor of (11.a) only by 6%, whereas the other $(1+0.117 y_{C,PD}^o)$ increasing from 1 to less than 1.06, as $y_{C,PD}^o$ increases from 0 to less than 0.5.

The exact validity of (11.a) demonstrated in Fig. 1 accounts thus for the "bimolecular" kinetics of (12.a) at least approximtely.

The experimental fact of (12.b) is, on the other hand, qualitatively interpreted as below. At the initial stage of the reaction, when $y_{C,PD}^o=0$, $V_{C,PD}^o$ may be expressed, according to (11.a) as

$$-35$$
and hence we have

\[\frac{\partial \ln V_{\text{C},\text{PD}}}{\partial \ln P} = \frac{\partial \ln V(I)}{\partial \ln P} \]

i.e. the pressure dependence of the formation rate of \(\text{C}_2\text{PD} \) is equal to that of balanced forward or backward rate of the acetylene chemisorption.

It has been shown by Horiuti et al.\(^\text{(*)}\) that the rate of chemisorption \(V(IH) \) of hydrogen molecule, which requires two unoccupied adjacent sites of chemisorption similarly as acetylene molecule does, varies with the pressure \(P_H \), of hydrogen in equilibrium with chemisorbed hydrogen atoms, as

\[\frac{\partial \ln V(IH)}{\partial \ln P_H} = \frac{a}{2} \]

allowing both for the variation of the fraction of unoccupied sites available for the chemisorption and the repulsive interaction between the critical complex of chemisorption and chemisorbed hydrogen atoms, where \((a)\) decreases from 2 to 0 along with the increasing coverage of the catalyst's surface with hydrogen from 0 to 1.\(^\text{(c)}\)

Assuming similar variation of the available fraction of chemisorption sites and repulsive interactions, \(\frac{\partial \ln V_{\text{C},\text{PD}}}{\partial \ln P} \) of the present reaction may be positive and smaller than unity as in the case of (15) in accordance with the observed result of (12, b).

\(^\text{(*)}\) Horiuti et al. [Ref. 7] have explained the well-known TAFEL's law.

\[\ln i = - \frac{(a)FE}{RT} + \text{Const.} \quad (a) \equiv 0.5; \quad \text{TAFEL's constant, } F: \text{Faraday} \quad (i) \]

of hydrogen electrode process, with the allowance referred to in the text on basis of the catalytic mechanism, in which the recombination of \(H(a) \) determines the rate; \(i \) is the forward rate per unit area in terms of the electricity conveyed, i.e. the appropriate current density and \(E \) the electrode potential. At the NERNST's equilibrium we have

\[FE = \frac{RT}{2} \ln P_H + \text{Const.} \quad (ii) \]

and hence, eliminating \(FE \) from (i) and (ii) and replacing \(i \) by the forward rate \(V(IH) \) of the rate-determining step at equilibrium,

\[\ln V(IH) = \frac{a}{2} \ln P_H + \text{Const.} \]

Eq. (i) and hence (ii) follow from the picture of the catalytic mechanism as experimentally verified, quite irrespective of the presence of the solution, \(E \) just giving a measure of the chemical potential of \(H(a) \), which uniquely determines the rate of the controlling step. It follows then that the above equation and hence (15) in the text hold for the simple chemisorption of hydrogen irrespective of the absence of the solution.
ii) It has previously been concluded with regard to the Scheme (1) of the exchange reaction between ethane and deuterium that
\[V(II) > V(III) \cong V(II) \gg V(IH), \]
i.e. that all steps of H(a)-addition in the course of hydrogenation of acetylene to ethane are far quicker than the chemisorption IH of hydrogen molecule, i.e., the process of H(a)-formation.

The experimental condition of acetylene hydrogenation is now brought about by replacing ethane of the above exchange reaction with acetylene. All steps of H(a)-addition are quickened irreversibly at the moment of the replacement when H(a)-concentration is still that of the former steady state, whereas IH remains unchanged or is even retarded, if chemisorbed acetylene or hydrogenated acetylene repulses the critical complex of the chemisorption of hydrogen molecule similarly as in the case of i). The new steady state is now attained as H(a)-concentration is sufficiently reduced for the respective steps of H(a)-addition to match the fixed or even diminished rate of H(a)-formation of IH. IH remains thus as the rate-determining step at the steady state of the acetylene hydrogenation.

The experimental condition of the acetylene-deuteroacetylene exchange is now derived from the latter by reducing the hydrogen pressure. The forward rate of IH will thus be reduced in proportion to the hydrogen pressure, the state of chemisorption, on which the interaction between the critical complex of IH and adsorptives depends, having less to do with the hydrogen pressure because of the rate-determining step of IH.\(^*\) The rate of H(a)-additions will however

\(^*\) The rate \(\dot{v} \) of a thermal step, homogeneous or heterogeneous, is given [HORIUTI, this Journal 1, 8 (1948), § 20] as
\[\dot{v} = \epsilon \frac{kT}{h} \frac{p^*}{p^i}, \]
where \(\epsilon \) is the transmission coefficient, \(k \) or \(h \) the BOLTZMANN's or PLANCK's constant, \(T \) the absoluted temperature and \(p^* \) or \(p^i \) the BOLTZMANN factor of the chemical potential of the critical or initial complex respectively. The chemical potential of the critical complex or \(p^* \) of the heterogeneous step IH depends now on the state of chemisorption of the catalyst's surface; since the latter state is practically independent of \(P_H \), the same must be true with \(p^i \).

The \(\dot{v} \) of IH must now according to (i) be inversely proportional to \(p^i \) of IH. We have \(p^i = Q^H/N^H \) [HORIUTI, ibid., § 5] for the initial complex of IH, i.e., hydrogen molecule in gas, where \(Q^H \) is the partition function of a hydrogen molecule in unit volume and \(N^H \); its concentration in gas. The \(\dot{v} \) of IH and hence the overall rate of acetylene hydrogenation controled by IH must be proportional to \(N^H \), or to \(P_H \), \(Q^H \), being constant at constant temperature.
hardly be affected because of their partial equilibrium approximately attained at the steady state on account of the sufficiently slow rate-determining step of I_H. The rate-determining step of I_H is in consequence even the more assured by reducing hydrogen pressure. It follows that, when the condition of the acetylene exchange dealt with in the present paper, i.e. the state of balanced forward and backward rates of all steps is finally attained, I_H must be slowest. The relative magnitude $V(II_b) > V(II_a)$ of (16) holds now a fortiori in the present case, when acetylene is present alone without hydrogen, inasmuch as $V(II_b)/V(II_a)$ should decrease with decreasing $H(a)$-concentration. These conclusions arrived at are completely in conformity with the result (9) of the present analysis, where $V(I_n)$ is imperceptibly small as referred to in the introduction. The first order dependence of the rate of acetylene hydrogenation on P_H, as well as the zero order dependence on $P_{C_2H_2}$ follows immediately from the rate-determining step of I_H in accord with the above consideration.

iii) Acetylene is hydrogenated with a rate determined by I_H as detailed in ii), which means an appreciable reduction of $H(a)$-concentration and hence of the backward rate of I_H due to the presence of acetylene compared with in the case of hydrogen present alone in contact with the catalyst i.e. a strong inhibition of para-hydrogen conversion by acetylene.

iv) Relation (9), concluded in § 4 on the basis of the present analysis is thus consistent with the fact iv) besides with the other facts i), ii) and iii), as discussed above.

It might further be remarked in conclusion that the exchange reaction between C_3P_4 and C_2D_2 on nickel was observed by Flanagan and Rabinovitch in accordance with the present scheme but in deviation from the view of Bond et al., who refers plausibly to the absence of this exchange in accordance with their mechanism. It is now expected that the exchange reaction between C_3D_2 and C_2P_4 on nickel similarly proceeds according to the Schemes (2) and (3.A) and that the relative magnitudes of the rates given in (16) and (9) as well as the rate of ethylene chemisorption is more closely determined from the analysis of this sort of exchange reactions.

The author wishes to express his sincere thanks to Professor J. Horiuti for his kind interest and valuable discussions on the present work.
Exchange Reaction Between Acetylene or Methylacetylene on Nickel

References

1) MIYAHARA, this Journal 4, 143 (1956).
4) MIYAHARA, to be published.
6) HORIUITI and SUZUKI, Shokubai (Catalyst) No. 4, 1 (1948) (In Japanese).