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APPLICATION OF STOICHIOMETRIC NUMBER 

TO THEOREM OF 

MINIMUM ENTROPY PRODUCTION 

By 

Takashi NAKA~fURA and Hideo YA~IAl':AKI*) 

(Received October 12, 1957) 

The concept of the stoichiometric number [HOl{lUTI and NAKAMURA, Z. phys. Chern. 

(Neue Folge) 11, 358 (1957)] is applied to the derivation of PRIGOGINE's theorem on the 

relation between the minimum entropy production and the steady (stationary) state of an 

overall reaction consisting of elementary reactions. It is shown that the number ()f 

reaction routes P (loc. cit.) is equal to DE GROOT'S order of this steady state. 

As demonstrated by HOIlIUTI et aZ.o-") the concept of the stoichio­
metric number is useful for treating the steady (stationary) state of an 
overall reaction (OR) consisting of elementary reactions (ER's). In this 
note it will be shown that the concept is applicable to the generali­
zation of the proof of P!lI(;oU!;\!';'S theorem" on the relation between 
the minimum entropy production and the steady state of the OR. 

The theorem states that as long as the linear relations are valid, 
the steady state of an OR resulting from a set of ER's corresponds to 
the minimum of the entropy production t1=(dS'dtL,. fo], given constant 
values of the chemical potentials of the moZecuZes*n and hence for con­
stant values of the affinitIes (isoaffine"') of the OR's synthesized from 
the above set.') The proof goes as follows. When use is made of 
the linear relation 

-::-1 T. N.; Research Institute for Catalysis, Hokkaido University. 
H. Y.; Laboratory of Physical Chemistry, Tokyo Institute of Technology. 

**) Molecllles in the sense of Ref. 1, i. e. chemical species other than intermediates. 
Terminologies and notations of Refs. 1 and 3 will be used in what follows. 

11 J. HORlTlT! and T. NAKAMlJR.-\, Z. phys. Chern. ~Neue Folge l 11, 358 (1957). 
2) J. HOImJ'rI, Z. phys. Chern. '.Neue Fol,gel 12. 321 (1957). 
31 J. HORmT!. this Journal 5. 1 (19571. 
4) 1. Pl{IGOGINE. I ntrodnctioll to Thc/,1II0dlll1anl!·r.~ of !n'cU('l's-ible P'I'OCI'SRCS. p. 74 ct 

.• eq., C. C. THOMAS, Illinois (1955. 
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Application of Stoichiometric Number to Theorem of Minimum Entropy Production 

v. = L •• (-J.p/T) , (1 ) 

the entropy production by the ER's is given by~) 

s s 
a = (d8/dt)irr = ~v.( -J.p/T) = ~ L.8 ( -Jsp/T)2, (2) 

8=1 8=1 

where ER's are numbered by s=I,···,8, and v" -J,p and L8, are the 
rate, the affinity and the phenomenological coefficient*l, respectively, 
of the s-th ER. Now suppose that these ER's allow P 'reaction routeso 

(P<8) specified by sets' of stoichiometric numbers ());Pl,. ", ))~)), p= 1" ··,P. 
Some routes may result in real OR's and other in null OR's**); anyway 
we have the relations, 

s 
~ ( - J,p) ));P) = const., p=I,"',P, (3) 
8=1 

since the left hand side is the affinity of the resultant OR, which is 
kept constant for a real OR (vide supra) or equal to zero for a null OR. 
The minimum of (2) under the auxiliary conditions (3) can be deter­
mined as the extremum of the function 

S P S 
(/J = ~ L.,( -J,p/T)"- 1J 2 VCp) 1j( -J.p/T) ));Pl, 

8=1 p=l 8~1 

where -2VCP)/T is the Lagrange multiplier. From 

ar}) = 2L,.(-J
8
pIT)- f, 2VCP))I~P) = 0 

a( -J,p/T) p~1 

as well as the linear relation (1), we have 
p 

v, = ~ VCP)))~p), 
P~I 

s= 1,···,8 (4) 

for the rates of the ER's at a=minimum. As shown by HORlUT! et al.1) 
(4) is the necessary and sufficient condition for the steady state, i. e., 
that the abundances of intermediates do not vary with time, and the 
constant V(p) may now be interpreted as the rate of the OR through 
the p-th reaction route. Hence we see that (4) is a generalization of 

*) As shown in Refs. 3 and 4, kinetical consideration gives the content of the constant 
L.s as 

L" = v:lIR, 
where v;e) is the forward rate of the s-th ER at equilibrium and R the gas constant. 

**) A null or real OR is Nullreaktion or Realreaktion, respectively, of Ref. 3 (cf. § 1 of 
Ref. 3); the former is an OR expressed by the trivial chemical reaction equation 
o = 0, and the latter an OR expressed by a usual chemical reaction equation. 
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the results obtained by PmGOm:-iE for some special examples*\ for 
which the number of the reaction routes P was one. 

It may be interesting to view the above derivation of (4) from 
another angle. We will consider the transformation of the force-flux 
pairs') by a non-singular matrix /1 and its reciprocal (3-t, 

s s 
Jp = ~ {1P5 V., Xp = ~(-iJ5fl/T)~1-1)sp. (5 ) 

8-0 } 8-1 

In terms of the new forces Xp and fluxes J p (p=l, ···,S), the linear 
relation (1) and the entropy production (2) become 

s 
J" = ~ J",qXq ( 6 ) 

'1=1 

and 
s s s _ 

(1 = ~ JpXp = ~ ~ LpqXpXq, (7) 
1)=1 p=lq=l 

where 

satisfies ONSA(mn'S reciprocity relations. Now we will require 

(3P+i,S = bi5 for s=l,···,S and i=l,· .. ,I, (8) 

({1-I)sp = !)~p) for s = 1, .. ·,S and p= 1,,, .,p, (9) 

where I =S-P is the number of independent intermedia1esll , and bi8 the 
number**) of the i-th independent intermediate formed by every act of 
the s-th ER; the requirements (8) and (9) imposed upon the matrices {1 and 
Ig-I are compatible with the relation /9i1-I=unit matrix (cf. Appendix). 
Then the auxiliary condition (3) is equivalent to fixing the values of 
P forces 

* ) One of PRIGOGINE's examples is the set of ER's fEq. (6.21) of Ref. 4], 
Br~ ---> 2Br. 

Br+H~ .......... HBr+H, 
Br~ + H -----+ HBr + Br , 

for which P= 1 and the stoichiometric numbers (vi!), vi ' ) , vj!)) are (0, 1, 1). Hence (4) 
becomes 

VI = 0, V1 = V3 = V(l). 

;.*) This number bi,s is called the stoichiometric coefficient of the i-th independent inter­
mediate in the s-th ER in Ref. 4. 

5) S. R. DE GROOT, Thermodynamics of Irreversible Processes, Chapters I, X and XI, 
North-Holland Publishing Co., Amsterdam (1952). 
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8 

XI' = Lj( -Js[ljT) }/;p\ p = 1,···,P, 
8=1 

and it is readily shown4)r» that the minimum of the entropy production 
(7) under the condition (3) leads to the I5laticmary state of the P-th order 
of DE GIWOT'), in which I fluxes 

J . = S b. v = (:ate of incre~se of th~ i-th) 
p+. 8~" 8 mdependent mtermedlate ' i = 1", ·,I, 

vanish. It follows from (5) and (8) that 

N I' " 
- "l (0-1') J -" '" (~-I) J - '" J U» V,s - L.....; t1 81) 1) - L:. ,J S]) 1'1 ~ £.....J P V8 , 

1)--1 1)=1 p=t 
s=1,···,8, 

and we have again (4) with the identities 

p=I,···,P, (10) 

i. e., that V(p) in (4) is the flux conjugate to the fixed force Xp (p = 

1,···,P). 
The above transformation*) may be illustrated by the set of ER's 

for the hydrogen electrode reaction quoted in Ref. 1 as an example: 

For the set (11), 8=3, P=2, I = 1, the stoichiometric numbers (}/\P), }/~p\ 

}/~P) for p=1 and p=2 are (2, 1, 0) and (1, 0, 1) (i. e., the catalytic and 
electrochemical mechanism routes* *) respectively, and the numbers (bll , 

bI~' bn) for the sole independent intermediate HCa) (a hydrogen atom 
chemisorbed on the electrode) are (1, -2, -1). Hence we see that 

~=(O 1 0) 
1 -2 ° 
1 --2 -1 , 

1 0) 
° ° 
1 -1 , 

and the linear relation (6) is 

(12) 

--------------------
*) This transformation can be considered as the generalization of the simple example 

described in p. 41 of Ref. 4. 
**) Cf. Eqs. (13), (14C) and (14E) of Ref. 1; see also J. O'M. BO:KRIS, Chern. Rev. 43, 

525 (1948). 
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In the steady state, the fluxes J] and J~ are the OR rates through the 
catalytic and electrochemical mechanism routes respectively, and the 
rate of increase J:\ of the intermediate H(a) vanishes. 

The authors are very grateful to Professors J. HOHlU'l'J and S. 
MATSUSIIITA for kind advices. 

Appendix 

Construction of Matrices p and p-l Subject to Requirements (8) 
and (9). 

One can find out a (8 x 8) non-singular matrix (1' subject to the 
requirement, 

(1~+i.8 = bis for i= 1"",1 and s= 1, .. ·,8, (A. 1) 

since the 1 vectors (bil , .. ·,bis), i=l, ... ,1 are linearly independent accord­
ing to the definition of independent intermediatesll• Let the matrix 
a' be the reciprocal of [3', then 

s 
~ {j~sa~q = Opq 
3=1 

(Opq = KlwNEcKlm's delta) 

for p, q = 1, ···,8. 

From (A.l) and (A.2) we have 
s 
~ bisa~(1 = 0 for i=I, .. ·,1 and q=I, .. ·,P, 
8=1 

(A. 2) 

which implies*) that the P linearly independent vectors (a;q, ... ,a.~q), 
q=1, ... ,p are connected with the stoichiometric numbers by linear 
transformations: 

P 

a:q = ~ ,,~p)fpq , q = 1, ""p, 
p=1 

P 

}.i~P) = ~ a~q(f-I)qp, p=I,· .. ,P, 
'1=1 

where land l-I are a (P x P) non-singular matrix and its reciprocal 
respectively. 

Then the matrix {j with the elements 
P 

{jps = ~fpqfi~s , 
q=1 

{jPH,8 = B~+i,. = bis , 

*) Cf. Ref. 1, Eqs. (6) and (10). 

P=1,""P) 

i=I, .. ·,1, 
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and the matrix a with the elements 

a,~,l"+i == a.~,f'-li' 

q=l,···,P 1 
i=l, .. ·,I f s= 1,,,,,8, 

are the required matrices (1 and ~-1 respectively, since they satisfies 
(8) and (9) as well as the relation a/1 :-c=unit matrix: 

N P I 

2J as,J1"t = 2J aSq [3'lt + ~ as.I"'i~P+i,t 
~=1 q=l i=l 

I' l' P [ 

= ~ ~LJ a~v(f-l)l"J.,,·i1;,t+ 2Ja~'['+i~~H.t 
v=tq=lr=l i=l 

l' 1 S 

= ~ a~l)j1;11 -1- LJa';'['1i19~'+i,t = LJ a:p~~t 
])=1 i=--I p=l 
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