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NOTE ON CHEMICAL KINETICS IN THE 

NEIGHBOURHOOD OF EQUILIBRIUM 

By 

Takashi NAKA~1URA *) 

(Received June 4, 1958) 

This paper examines the linear relation between the rate and the affinity of a complex 

reaction, i. e., an overall reaction composed of a set of elementary reactions. The linear 
relation is derived for P simultaneous overall reactions in the steady state. The expres· 

sion so obtained involves terms expressing the coupling (interference) of the overall 

reactions when P22, or is shown to reduce to the expressions by HORJUTI or HOLLINGS­

WORTH when P = 1. 

The linear relation between the rate and the affinity of a chemical 
reaction close to equilibrium has been discussed by a number of authors 
on the basis of a thermodynamical considera tion'" of classical chemical 
kinetics2

), or of the theory of absolute reaction rate3
)4); the relation is 

expressed as 

v = -),11(1 

with the positive constant coefficient, 

). = v(e)jRT, 

( 1 ) 

(U) 

where v, v and -11(1 are, respectively, the rate, the forward rate and 
the affinity, R is the gas constant, and the superscript (e) designates 
the value at equilibrium. 

However, as the derivations2
)-4) of the relation indicate, the expres­

sion (1) with (U) is appropriate only for an elementary reaction \ER), but 
not for a complex reaction4)-6), i. e., an overall reaction (OR) composed 

".) Research Institute for Cltalysis, Hokkaido University. 
1) (a) PRIGOGINE, OUTER and HEREO, J. Phys. Colloid Chern. 52, 321 (1948); (b) MANES, 

HOFER and WELLER, J. Chern. Phys. 18, 1355 (1950). 
2) Cf. PRIGOGINE, Ref. 9, p. 57, in which the GULDBERG-WAAGE law of mass action is 

used. 
3) GILKEI{SON, JONES and GALLUP, J. Chern. Phys. 20, 1182 (1952); ZWOLINSKI and MARCUS, 

J. Chern. Phys. 21, 2235 (1953); VAN RYSSELBERGHE, J. Chern. Phys. 22, 761 (1954). 
4) (a) HORlUTI, Proc. Japan Acad. 29, 160 (1953); (b) HORlUTI, this Journal 5, 1 (1957). 
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of a set of ER's. In this connection HORlUTI has pointed out4
) that the 

linear relation (1) with (1,1) can be extended to the case of the rate II 
and the affinity -flORi1 of an OR close to equilibrium. provided that 
the constituent ER's provide a single reaction raute4bl7

) and there exists 
a rate-determining step; his expression*l is 

(2 ) 

with 

(2,i) 

where Vr and V,. are the stoichiometric number4bl 7) and the forward 
rate. respectively. of the rate-determining step. and V =vr/vr may be 
interpreted as "the forward rate of the OR'l4b~6). In the present note 
we will examine a more general characteristic of an OR composed of 
ER's close to equilibrium. basing our discussion on the two recent 
papers by US7

)8). which will be referred to as HN7l and Nysl in what 
follows. 

In HN we have discussed the steady state of 8 concurrent ER's. 
and shown that in the steady state. P OR's will in general result from 
the ER's and the rate Vs of the s-th ER (s= 1.·' ·.8) will be expressed as 

p 

Vs = ~ llpv;P) • 
p~l 

( 3) 

where P is the number of the reaction rautes appropriate to the 8 ER's 
(P L8). IIp is the rate**l of the OR of the p-th reaction raute (or the p-th 
OR. for short). and v:P

) is the stoichiometric number of the s-th ER for 
the p-th reaction route (p= 1.·' ·.P). 

Now we will assume that the 8 ER's are close to equilibrium and 
hence the relation (1) holds for the rate Vs and the affinity -iJs/1 of 
each ER: 

Vs = -As!lsfl • s = 1. ···.8. (1' ) 

or 

s = 1.···.8. (1 *) 

with 

*) Cf. Section III of Ref. 4a, or Eq. (67) of Ref. 4b. 
*".) Cf. Appendix I. 
5) BAUER, J. Chern. Phys. 21, 1888 (1953). 
6) HOLLINGSWORTH, J. Chern. Phys. 27, 1346 (1957). 
7) HORlUTI and NAKAMURA. Z. f. phys. Chern. (Neue Folge) 11, 358 (1957). 
8) NAKAMURA. and YAMAZAKI this Journal 5, 98 (1957) . 
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where VB' VB and -d.(l are the rate, the forward rate and the affinity, 
respectively, of the 8-th ER. Substituting (3) into (1*) we have 

p 

~ rv. VqV;q) = - d.fl , 
11=1 

s 
and further, remembering that - L v;P) d.f1 equals*) the affinity - d(P)fl 

8=1 

of the p-th OR, we obtain 
8 P 
~ v;p) ~ rv. Vq!);") = -d(J))fl • 
8=1 q=l 

The rearrangement of the latter expression yields the linear relation 
between the rates Vp and the affinities - d(P)p of the P OR's, 

P = 1 ... P \ ' , , 

with the constant coefficients, 
\ S S i 

I 

~ = "'!" ,,(p), ,Cq) = RT '" . ,(P), ,(q)lv~(e) : 
I\l pq L... ·'-'8"'8 ;.<'8 L..J Y8 v8 8' I' 

8=1 8=1 

Inasmuch as rvB=RT/v;e»o (8=1,·· ,8) in (4rv) , it can 
shown**) that the determinant det (rvpq) of the matrix (rc pq) 
and hence we can invert the relation (4) as 

I Vp = - L ApqiJ(q)p , P = 1, "', P , I P I 
I q~l 

(4) 

(4 rv) 

readily be 
is non-zero, 

(4 *) 

where the matrix (A. pq) is the reciprocal of the matrix (!C 1)Q)' The linear 
relation (4*) is, in its form, closer to (1) or (2) than (4), but the relation 
between the coefficients Apq and the stoichiometric numbers is in general 
more complicated than (4rv). 

The relation (1/) or (1*) for the 8 ER's is, in the terminology of 
thermodynamics of irreversible processes')1O>, the phenomenological rela­
tion between 8 forces and S fluxes (-iJ.(, and VB> 8=1, .. ·,8). Now we 
see that in the steady state this relation can be reduced***> to the 

* ) Cf. Appendix I. 
**) Cf. Appendix III. 

**l') Extending the treatment of NY we can show an interesting connection between the 
expressions (1*) and (4), or (11) and (4*); cf. Appendix II. 

9) PRIGOGINE, Introduction /'0 Thermodynamics of Irreversible Processes, C. C. THOMAS, 
Illinois. (1955). 

10) DE GROOT, Thermodynamics of IrTeversible Processes, North-Holland Publishing Co., 
Amsterdam (1952). 
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expression (4) or (4*), which involves P pairs of fOrces and fluxes (-l1(P)/l 

and Vp , p = 1, ... , P). An analogous situation is found in the theory of 
electric network circuits. Consider a 2P-termina.l (P-terminal pair) network 
consisting of circuit elements which obey the linear relation between 
current i and EMF (electromotive force) e, i. e., for the s-th element, 

where As and IC 8 are the admittance (conductance) and the impedance 
(resistance) of the s-th element. Then, as is well-known, the current­
EMF relation for the network is quite similar to the expression (4) 
or (4*): 

E p _= qLJp~; '" I. ' 1 
' p=l, ... ,p 

Ip -- LJApqEq , 
q=l 

where IC pq and Apq are the impedance and admittanre matrices respectively, 
• and Ep and Ip are the EMF and the current, respectively, at the p-th 

terminal pair. 
In the relation (4) for the steady state, the coefficients rvpq with 

p=j:-q, satisfying the reciprocity relation')!O) !Cpq=ICqp, describe the coupling 
(orinterjerence) between the p-th and q-th OR's. As one can readily 
see from the expression (41';) for IC pq as well as the definition of the 
stoichiometric number. it is necessary for the non-vanishing coupling 
that the two OR's possess at least one ER in common. 

In the special case of a single reaction route, i. e., P=l *\ Eqs. (4) 
and (4rv) reduce to 

8 

-11(1) P = rv V! and :c = LJ:';8 (V;'»2 • 
8=1 

Furthermore, if the r-th ER is a very "slow" one compared with other 
S-l ER's, i. e., A,.<SAi or '''r':pIC i (i=l, .. ·,r-l, r-11, .. ·S,), then we may 
call the r-th ER the rate-determining step and simplify (5) and (5\:) into 

V, = -11(1)/l/\: (6 ) 

with 
rv = rvr(v~'»)' = ('v~'»)'RT/v~e) • (6rv) 

This is nothing but the linear relation for the single OR, (2) with (2,1) 
previously obtained by HORIUTJ in a different way') .. 

,X·) Recently HOLLINGSWORTH (Ref. 6) also trectt9d this C'lse and obtained the same 
result as oUt' (5) and (5/r) (cf. his Eq. (15)). (Cf. also PRIGOGINE et al .. Ref. a, Eq. 23.) 
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As an example we will now apply the linear relation (4) or (4*) to 
the following set of ER's*) put forward for the thermal decomposition 
reaction of ethane (the RICE-HERZFELD mechanism),,'; 

1. C2H, ---> 2CH, , 

2. CH3 +C2H 6 ---> CH4 +C2 Hs , 

3. C2HS --> C2H 4 + H , ( 7 ) 

4. H+C2H, -- H2+C2Hs , 
5. H+C2BS -) C2B" 

in which three independent intermediates'")7) , CH" C2HS and H are involved. 
For the above set with S=5 and P=2 we may choose the two reaction 
routes as follows*) : 

Route 
p 

I 

II 

Stoichiometric no. 
(

• (pl • (p) ... ,(P) 
~ 1 , ..... 2 J , ...- 5 

(0,0,1,1,0) 

(1, 2, 1, 0, 1) 

The p th OR 

C2H,= C2H, + H2 

2C2HG = 2CH4 + C,B, 

Then the relation (4) or (4*) becomes 

with 

or 

with 

where 

- J(I) P = ILl! Vr + {(;12 Vrr • 

_J(H)p = .', 21 Vr +I':22 Vn, 

Vr = --A ll .d r)(1-A 12Jur)p , 

Vrr = -}.21L1(f'p-A22.dml/l , 

(~1l~12)= D-' (,+4\;2+1C3+I<s 
A21 ;(22' -,1-3 

Rate and 
affinity of OR 

Vr , _,JI'/l 

Vrr , -_. Jor) fl 

( 8 ) 

(81C ) 

(8*) 

(8* A) 

D = det(:i:1)q) = (',,+4:i:2) (.'i: 3 +:,.)+r., (IL,+I<S)+",'GS . 

In (8) or (8*), the coefficients ((;'2= !C 2 , = !i:3=RTr;,;C) or A12 =A2!=-.'G3/D= 
------------------ --

-K') Quoted from p. 11 of Ref. 4b. 
11) RICE and HERZFELD, J. Am. Chern. Soc. 56, 284 (1934). 
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-RT/Dvie) express the coupling of the simultaneous reactions I and II 
which involve the third ER, CzHs--->CzH. + E of (7) in common. Thus, 
for instance, by varying the chemical potential (concentration) of the 
chemical species Hz involved in the reaction I but not in II, we can 
control the rate VII of the reaction II through the coupling. Moreover 
the rate and the affinity, VI and _L1(f)p (or VII and -L1(U)p) are not 
necessarily of the same sign*) contrary to the case of the relation (1) 
or (2), i.e., the case of ER or P=1. It has been pointed out*) that 
the coupling of chemical reactions is of great importance in biological 
processes, and one may find some useful applications of the relation 
(4) or (4*) also in such problems. 

Finally the author wishes to express his sincere thanks to Pro­
fessor J. HORIUTI and Mr. E. Y k~IA7.AKI for kind advices. 

Appendix I 

First we will show that the quantity Vp in (3), which has 
originally been introduced as the coefficients of the linear combination 
in EN [cf. Eqs. (10) and (12) of EN], is the rate of the p-tk OR. The 
rate of production Rm of the m-th molecule7

) by the S ER's is 

8=1 

where bms is the stoichiometric coefficient'2) of the m-th molecule in the 
s-th ER. Thus, by virtue of (3) and HN's Eq. (5'), we have 

where B~~) is the stoichiometric coefficient'2) of the m-th molecule in 
the p-th OR. The last expression, representing the rate R" as the 
sum of the contributions VpB~) from the respective OR's, indicates'Z) 
that Vp is nothing but the rate of the p-th OR**). 

-~) Cf .. e. g., Ref. 9, p. 25, and Ref. 12, p. 42 I 

-lH' ) The above argument: needs a few modifications in the case when all the P OR's are 
not independent (Ref. 12, p. 468), i. e., the rank of the matrix B;,;) is smaller than P. 
An example of this case is the set of ER's for the hydrogen electrode reaction, given 
in Ref. 8, Eq. (11). The set provides two reaction routes 1 and 2 (Ref. 8), which lead 
to the S1me OR, 2H+-j-2o=H2• We com easily see that the rate of this OR is the 
sum of V, (the rate through the catalytic mechanism) and Vz (the rate through the 
electrochemical mechanism) rather than either of them. 

12) PRIGOGINE and DEFAY (translated by EVERETT), Chemical Thermodynamics, Long­
m'lns Green Co., London (1950, 1954), p. 14. 
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s 
Similarly, the quantity - Lj lJ~P)iJ.fl is shown to be equal to the 

8=1 

affinity - iJ(P)fl of the p-th OR, since it follows from the definitions of 
the affinities and the stoichiometric number that 

iJ8fl = Lj flib;. + Lj flmbm• , 
i m 

iJ(P)fl = LjflmB~) , 
'" 

8=1 

where f'm and fli are respectively the chemical potentials of the moth 
molecule and the i-th independent intermediate, and b~. is the stoichio­
metric coefficient of the i-th independent intermediate in the 8-th ER. 

Appendix II 

Another derivation of (4), which is more closely related with the 
treatment of NY, will be given here. 

In NY the phenomenological relation (1') for the S ER's was trans­
formed into 

8=1, ···,S, (NY, Eq. 6) 
t=l 

which can be inverted as 

t=l, .. ·,S, (A) 
8=1 

where (R,.) is the reciprocal matrix of the matrix (L.,). The forces 
X t and the fluxes J, in the above expressions had the properties that*) 

J, = V, for t = 1, ... , P, 

Jt=O for t=P+1,···,S, 
in the steady state, 

and 

X t = -iJ(t)fl/T for t = 1, ... , P , 

where T is temperature. Thus the new phenomenological relation (A) 
will, in the steady state, reduce to 

p 

- iJ(')p = T Lj K" VB , for t=l, .. ·,P, (B) .-1 
which is the same as the relation (4) in the text, since 

*) See NY, Eqs. (5), (9) and (10), and remember that Jt's with t.=P+l, "',S, are the rates 
of increases of the independent intermediates, which vanish in the steady state. 

-26 
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~ s 
T K ts = L] ,'\;il!~t)l!~s) = !C ts 

i-I 

as shown below. 

for t, 8 = 1, .. , P, (C) 

Proof of (C). We quote the following relations from NY: 

for i=l,···S and t=1,···,P, (D) 

where f3 and f3~1 were the transformation matrix and its reciprocal 
respectively. Calculating the reciprocal of the matrix (Lst), we have 

s 
R ts = Lj (,'\;dT) (f3~I).it (f3~I)iS , 

i=l 

which, together with (D), leads to the expression (C). 

Appendix III 

It follows from the definitions of J t in NY and R ts in Appendix 
II that the transformation of the quadratic form 

s 
L] (,'\;s/T) v! , (E) 
8=1 

by the non-singular matrix f3 leads to the quadratic form with the S x S 
matrix R,s> 

(F) 
t=18=1 

Since ,'\;s>O , the quadratic form (E) and hence (F) are positive definite; 
this is in accord with the fact 8

)-10) that the expression (E) or (F) is the 
entropy production. Considering the case Jt=O for t=P+ 1", "S (steady 
state), we see that the quadratic form with the P x P matrix ,'\;'s [cf. 
the relation (C) of Appendix II], 

p p p P 

T~l I:: Lj ,'\;tsJ,Js = Lj 2J K,.J,Js 
t=18=1 t=18=1 

also is positive definite, and hence 13
) the matrix ,'\;ts is non-singular, 

i. e., det (,'\;,s) =1= O. 

13) E. g., HALMOS, Finite Dimensional Vector Spaces, Princeton University Press (1948), 
§ 56. 
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