Title	THE STOICHIOMETRIC NUMBER OF ZINC AMALGAM ELECTRODE REACTION
Author(s)	HORIUTI, Juro; MATSUDA, Akiya
Citation	JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 7(1), 19-23
Issue Date	1959-09
Doc URL	http://hdl.handle.net/2115/24690
Туре	bulletin (article)
File Information	7(1)_P19-23.pdf

THE STOICHIOMETRIC NUMBER OF ZINC AMALGAM ELECTRODE REACTION

By

Juro Horiuti and Akiya Matsuda*)

(Received July 23, 1959)

V. V. Losev¹⁾ has recently observed by means of radioactive zinc the unidirectional anodic or cathodic current density \vec{i} or \vec{i} and the directly measurable overall current density i simultaneously inclusive of the exchange current i_0 at zero polarization of a zinc amalgam electrode in contact with 0.1 N ZnSO₄ solution mixed with a small amount of tetrabutyl ammonium sulphate (5.10 M) which remarkably reduces the current i and in consequence the concentration polarization²⁾.

These experimental results enable us to determine the stoichiometric number $\nu(r)$ of the rate-determining step of the electrode process

$$Zn,am = Zn^{2+} + 2e , \qquad (1)$$

as shown below. Simultaneous values of i and i are determined at

Fig. 1. Current-potential curves of zinc amalgam. $\varphi_{n,h,e}$: potential of the electrode referred to the normal hydrogen electrode. i: unidirectional anodic current density. i: overall current density.

and i are determined at different overvoltages from concurrent measurements of i and \overline{i} or \overline{i} according to the relation

$$i = \vec{i} - \vec{i} . \tag{2}$$

where i is positive or negative at the anodic or cathodic polarization respectively. Fig. 1 and 2 reproduce the results of Losev and Table I and II show the concurrent values of i, η , \vec{i} and \vec{i} derived from Fig. 1 and 2 respectively, where $\varphi_{n,h,e}^{**}$

^{*)} J. H. and A. M.: Research Institute for Catalysis, Hokkaido University.

^{**)} The $\varphi_{n,h,e}$ used by LOSEV was presumed so, not being explicity signified in the original work (Ref. 1).

is the potential of the test electrode referred to the normal hydrogen electrode and $\eta = \varphi_{n,h,e} - (\varphi_{n,h,e})_{i=0}$.

Fig. 2. Current-potential curves of zinc amalgam. $\varphi_{n,h,e}$: potential of the electrode referred to the normal hydrogen electrode. \hat{i} : unidirectional cathodic current density. i: overall current density.

Table I. Concurrent values of η , i, \vec{i} and \vec{i} derived from Losev's results in Fig. 1.

Table II. Concurrent values of η , i, i and \vec{i} derived from Losev's results in Fig. 2.

η (m v)	<i>i</i> •10 ⁵ (a/cm ²)	$\vec{i} \cdot 10^5$ (a/cm ²)	i̇·10 ⁵ (a/cm²)		η (mv)	$i \cdot 10^5$ (a/cm^2)	ĩ•10 ⁵ (a/cm²)	i∙1 (a/c
21.8	4.82	5.72	0.90	3	- 16.0	- 3.94		***************************************
18.9	3.80	4.78	0.98		- 11.4	- 3. 02		
14.5	3.03	4.10	1.07		- 6.4	-2.02		
11.4	1.95	3.39	1.44		- 3.6	-1.00		
7.3	1.13	2.88	1.75		0	0	3.47	3.4
0	0	2.14	2.14		2. 5	0.50		
- 0.7	- 0.10				4.6	1.02		
- 3.3	- 0.40				7.1	2.07		
- 7.3	- 0.97	1.49	2.45		8.5	2.72		
— 11.2	- 1.41				11.7	3.98	2.57	6.5
- 14.5	-1.94	1.03	2.97		15.0	5.22	2.26	7.4
-15.2	-1.97				23 5	8.71	1.92	10.6
-21.8	- 2.68	0.77	3.45		26.4	10.20	1.60	11.8
29.1	- 3.44	0.55	3.99		35.6	17.9 0	1.11	19.0
- 36.4	-4.27	0.40	4.67	2				
- 43. 6	- 5.22	0.28	5.50					
 50 .9	- 6.24	0.20	6.44					
 58 .2	- 7.11	0.15	7.26					
- 65.4	-8.14	0.10	8.24					

The ratio i/\bar{i} derived from Table I and II is now related with the stoichiometric number $\nu(r)$ of the rate-determining step* according to the general theory of reaction rate as³

$$\vec{i}/\vec{i} = \exp\left(-\Delta F'/\nu(r)RT\right). \tag{3}$$

 ΔF is the free energy increment of the whole system associated with the overall reaction or, particularly for (1),

$$\Delta F = 2\mu^{\rm e} + \mu^{\rm Zn^{2+}} - \mu^{\rm Zn,am} , \qquad (4)$$

where $\mu^{\rm e}$, $\mu^{\rm Zn^{2+}}$ and $\mu^{\rm Zn, am}$ are the chemical potentials of metal electron e, zinc ion ${\rm Zn^{2+}}$ in the solution and amalgamated zinc Zn, am respectively. Let $\mu^{\rm e}_{\rm eq}$ be the particular value of $\mu^{\rm e}$, when (1) is in equilibrium. We have from (4) by definition

$$0=2\mu_{
m eq}^{
m e}+\mu^{{
m Z}_{
m H}^{2}}-\mu^{{
m Z}_{
m B},{
m am}}$$
 ,

so that

$$\varDelta F = 2 \left(\mu^{\mathrm{e}} - \mu_{\mathrm{eq}}^{\mathrm{e}} \right) \quad \mathrm{or} \quad \varDelta F = -2 F \eta \; , \tag{5}$$

where η is the potential of the electrode in question referred to that in equilibrium.

We have now from (3) and (5)

$$\nu(r) = \frac{2F\eta}{RT \ln i/i} . \tag{6}$$

The η , $\log \tilde{i}/\tilde{i}$ -curve at cathodic polarization ($\eta < 0$). \tilde{i} or \tilde{i} : the unidirectional anodic or cathodic current density.

The 7, $\log i/\bar{i}$ -curve at anodic polarization (7>0). i or i: the unidirectional anodic or cathodic current density.

^{*)} The number of times of the rate-determining step to occur for every act of t overall reaction. The similar concept the "molecularity of a reaction" has be independently introduced by BORESKOW⁵).

The η is plotted against $\log i/i$ in Fig. 3 and 4 as derived from Table I and II respectively.

Excellent straight lines through origin show that $\nu(r)$ derived from the results according to (6) is practically perfectly constant independent of η . We have from Fig. 3 and 4 $\nu(r)=1.1$ and 1.0 respectively.

The $\nu(r)$ is alternatively determined as follows from the exchange current i_0 at the electrochemical equilibrium, where $\nu(r)$ is indeterminate as expressed by (6). Expanding $\ln \vec{i}/\vec{i}$ in the latter equation with respect to i/\vec{i} referring to (2) as $\ln \vec{i}/\vec{i} = \ln (1+i/\vec{i}) = i/\vec{i}-1/2 \cdot (i/\vec{i})^2 + \cdots$, we have in the limiting case of $\eta = 0^{40}$,

$$u(r) = rac{2F \, i_{\scriptscriptstyle 0}}{RT (\partial i/\partial \eta)_{{\scriptscriptstyle m{\eta}}=0}}, \qquad (7)$$

where $i_0 = \vec{i}_{\eta=0} = \vec{i}_{\eta=0}$. The $\nu(r)$ is determined by (7) from the values of i_0 and $(\partial i/\partial \eta)_{\eta=0}$ of the inclination of i against η at the electrochemical equilibrium. Table III shows the values of i_0

Fig. 5. The i, η-curves in the neighbourhood of electrochemical equilibrium.

•: derived from Fig. 1, O: derived from Fig. 2.

observed by Losev, $(\partial i/\partial \eta)_{\tau=0}$ determined from the plot in Fig. 5 of i against η in the neighbourhood of the equilibrium as derived from Fig. 1 and 2 and $\nu(r)$ calculated from these data by (7).

Table III. The i_0 , $(\partial i/\partial \eta)_{\eta=0}$ and $\nu(r)$.

Source of Data	i_0 a/cm 2	$\left(\frac{\partial i}{\partial \eta}\right)_{\eta=0}$ a/cm²mv	ν (r)
Fig. 1	2.14 • 10 - 5	1.30 • 10 - 6	1.3
Fig. 2	3.47 • 10 - 5	2.75 • 10 - 6	1.0

The Stoichiometric Number of Zinc Amalgam Electrode Reaction

The stoichiometric number is further evaluated by differentiating (6) with respect to η as

$$\nu(r)(\alpha_a + \alpha_c) = 2 , \qquad (8)$$

where

$$a_n = rac{RT}{F} rac{\partial \ln ilde{i}}{\partial \eta} \; , \qquad a_c = -rac{RT}{F} rac{\partial \ln ilde{i}}{\partial \eta} \; ,$$

are Tafel's constants for the forward and backward current and evaluated from Table I as

$$\alpha_a = 1.2$$
, $\alpha_c = 0.6$.

We have according to (8)

$$\nu(r) = 1.1$$
.

The latter method of finding $\nu(r)$ would be expedient, when the isotopic difference of rates is pronounced as in the case of hydrogen isotopes.

It is thus concluded that $\nu(r)$ is unity.

The rate-determining step of the overall reaction (1) may be

$$Zn.am \longrightarrow Zn^{2+} + 2e$$
.

or the overall reaction (1) may consist in the above single step in accordance with the above conclusion.

References

- 1) V. V. LOSEV, Collected Works Inst. Phys. Chem. Acad. Sci. USSR 6 (2) 20 (1957).
- 2) V. V. LOSEV, Compt. Rend. Acad. Sci. USSR 100, 111 (1955).
- 3) J. HORIUTI, Theory of Reaction Rate, Iwanami Book Co. Tokio, (1940). J. HORIUTI, this Journal 1, 8 (1948-51). J. HORIUTI and S. ENOMOTO, Proc. Japan Acad. 29 160, 164 (1958). J. HORIUTI and H. SUGAWARA, this Journal 5, 1 (1957). J. HORIUTI and T. NAKAMURA, Z. phys. Chem. (Neue Folge) 11, 358 (1957). J. HORIUTI, Z. phys. Chem. (Neue Folge) 12, 321 (1957).
- 4) J. HORIUTI and M. IKUSIMA, Proc. Imp. Acad. Tokio 15, 39 (1939).
- 5) G. K. BORESKOW, J. Phys. Chem. USSR 19, 92 (1955).