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KINETICS AND THERMODYNAMICS OF THE STEADY 

STATE OF CHEMICAL REACTIONS. I 

By 

Takashi NAKAMURA*) 

,Receivpd December 30, 19591 

This paper deals with some general features of the steady state of chemical reactions. 

The description of macroscopic chemical change in the steady state, by re'lction equ'ltions 

(stoichiometric equationS I is discussed, and in this connection the concept of the principal 

,qet of reaction equations is introduced ,§ 1'. The application of the concept to the treatments 

of chemical reactions by thermodynamics of irreversible processes and by chemical kinetics 

is considered§ 3-§ 5). The connection with the previous papers ,by PRIG()GINE et a/., 

MEIXNER, HORlUTT, HOLLINGSWORTH, the present author, elt:. is also described. Further 

discussions are left to the subsequent paper ,Part II,. 

Introduction 

It is characteristic of most chemical reactions that they are described by 
more or less simple reaction equations (stoichiometric equations) such as :2H, 

-+- O2 = :2H,O. Hz -I Br, = :2HBr. JH2 -+ N2 c.cc :2NH3 , etc. However, the molecular 

processes underlying these reactions are not always so simple as the above 
equations look. For instance, the second of the above examples. i. e., the gas 
phase reaction, 

H, -+ Br, = :2HBr ( 1 ) 

is a compte.)' reaction l
) and has the mechanism consisting of the monomolecular 

decomposition process, 

Br, -, :2Br, ( :2 ) 

the binary rearrangement collision process, 

Br+ H2 -- HBr+ H, (3 ) 

and so onn. Elementary processes or elementary reactions such as (:2) or (3) 

can be theoretically treated, at least in principle, by the classical collision theory'>' 

the theories') of monomolecular reaction rate, the transition state method41, the 

quantum mechanical collision theoryS'. and the like'). In this way we can 

*) Research Institute for Catalysis. Hokkaido University. 
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understand the properties of the elementary reactions and derive laws for them, 
i. e., the rate law, the dependence of the rate on temperature, etc. 

How are the properties of an observed macroscopic chemical reaction 
(overall reaction) connected with those of the constituent elementary reactions? 
This is now one of important problems of chemical kinetics. If, for example, 
the gas phase reaction, 

2H, + O 2 = 2H20 

took place*! by the triple collision process, 

2H, + 0, --> 2H20 

(4 ) 

(5 ) 

and by its reverse process, the relation between the overall reaction (4) and 
the elementary reaction (5) would be trivial, e.g., the rate law of the former 

would be the same as that of the latter, and the relation between the rate 
constants and the equilibrium constant (or between the heats of reaction and 
the activation energies) of the reaction (4) could be most simply stated?). In 

reality, the reaction (4) is known to consist of several elementary reactions, and 
accordingly its behaviour is by no means simple lO

). However. even in the case 
of such a complex reaction, if one of the constituent elementary reactions can 
be taken to be the rate-determining step, then the other elementary reactions 

are practically in equilibrium, and under such a condition the properties of the 
overall reaction are closely related with those of the rate-determing step. 
HORICTI, using the concept of the stoichiometric llumber**) introduced by 

himself, has discussed the general properties of an overall reaction with a 
rate-determining step, and obtained a number of interesting results!!). For 
example, he has proved the relation)!" 

where J., is the stoichiometric number of the rate-determining step, and k k, and 
K are the forward and the backward rate constants and the equilibrium constant, 
respectively, of the overall reaction. 

In connection with the treatment of such complex reactions in general, the 

*) SLATER, in his celebrated textbook (Ref. 7), assumed this to be the case, in order to 
illustrate kinetics and equilibrium of chemical reactions. This is. of course, an over­
simplification and far from reality. The proof of the mass action law described in 
the above book is based on such an assumption, and is not valid for complex reactions 
in general. More correct proof has been given by FROST (Ref. 8) or by HORIUTI 

(§ 7 of Ref. 11 b). On the other hand. the reaction between hydrogen H2 and iodine 12 
is known to consist solely of the binary collision process, H2 +12 :=2HI (cf., however, 
Ref. 9). 

**) Cf. § 1 of this paper. 
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concept of the steady (stationary) state of a chemical reaction is very important, 
and has been the subject of many discussions. A classic example is the famous 
work of CHRISTIANSEN, HERZFELD and POLANYI who explained the hydrogen­
bromine reaction (1) in terms of the mechanism (2), (3), etc. and on the 
assumption of steady state. The purpose of the present paper is to examine 
some general features of chemical reactions in the steady state. We shall be 
interested especially in the behaviour of the chemical reactions in the neigh­
bourhood of equilibrium (§ 3 and the following), where rather simple and general 
theory can be developed by virtue of the simple linear rate law (§ 3) of con­

stituent elementary reactions. In recent years thermodynamical theory of the 

steady (stationary) state of irreversible phenomena has been investigated by 
a number of authors J2

)-16). Among them PRIGOGINE17) and others have discussed 
also the steady state of chemical reactions. The thermodynamical theory of 
irreversible processes deals almost exclusively with linear processes, and makes 
use of the linear relations between the fluxes and affinities, such as the above 
linear rate law. Consequently, our treatments of reactions in the neighbourhood 
of equilibrium have close connection with the thermodynamical theory. This 
point will also be discussed in the following. 

§ 1. Overall Reactions in Steady State*) 

We shall begin with the simplest example. 
reac6~ns, 

and X~B, 

Consider the elementary 

(6 ) 

taking place in a system. The macroscopic chemical changes resulting from 
the set of simultaneous reactions (6) can be equally well described by another 
set of reaction equations which are linear combinations of (6) ; for instance, by 

A=B and A+B = 2X, (7 ) 

which are the sum and the difference of the two reactions of (6). Thus the 
sets (6) and (7) are equivalent systems (PRIGOGINE 18l

) or equivalent sets. 
Mathematically, the relation between two equivalent sets of reaction equations 

is a linear transformation by a non-singular matrix, i. e., a matrix whose deter­
minantis not zero. Let bis and Bit he the stoichiometric coefficients**) of the 
i-th chemical species, in the s-th reaction of one set and in the t-th reaction of 

*) Cf. Ref. 22. 
**) Here we shall employ PRIGOGINE and DEFAY's definition of stoichiometric coefficient 

(cf. p. 14 of Ref. 19). The stoichiometric coefficients should not be confused with the 
stoichiometric number introduced by HORIUTI and discussed also in the present paper. 
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the other set respectively, then the relation is 

s 
L: btsa", = Bit , 
8=1 

J i=1,2,···,N 

l t = 1,2,,,,5 
(8 ) 

where as, is an (5 x 5) non-singular matrix, and 5 and N are respectively the 
number of reactions in each set and the number of the chemical species involved 
in these reactions. Corresponding to the linear transformation (8), the rates, 
the extents of reaction (DE DONDER20

)) and the affinities are similarly transformed: 

s 
L: as, V, = v 8 , 

t=1 

s 
~ aslBt == ~.s , 
t=1 

8 

L: aBaS ' = A, , 
8=1 

(t, 5 = 1,2, ",,5), (9 ) 

where v" ~s and as are the rate, the extent of reaction and the affinity, re­
spectively, of the 5-th reaction of the first set; V" E" A, are similar quantities of 
the t-th reaction of the second set. The relations (9) follow") from the equalities, 

s S 8 8 

L: L: biSa,,, V, = L: Bi' V, = Nt = L: biSvS , 
t , 

At = - L: PiB" , 
i 

(9 a) 

(9 b) 

(9 c) 

where Ni and Jli are the net rate of production (the rate of the change of the 
mole number201

) and the chemical potential, respectively, of the i-th chemical 
speCIes. 

Now suppose that the set of elementary reactions (6) are in the steady 
state, i. e., the rate of production of the intermediate X is balanced by the rate 
of its consumption. Thus the net rate of production Nx of the intermediate X 
vanishes; hence the rate of the second reaction of (7) is evidently zero. Ac­
cordingly the macroscopic chemical change is expressed by the single reaction 
A,=, B of (7), which does not involve the intermediate X. In the usual chemists' 
language the set of elementary reactions (6) is the "mechanism" of the observed 

steady overall reaction A = B, and A and B are the reactant and the product 
of the overall reaction. In the above transformation, (6) ....... (7), the transformation 
matrix [ast] is evidently 

(10) 
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and, according to (9), the rates, VI and V2 of the reactions of (7) satisfy the 

relation 

VI + V2 = 1'1' 1 
VI - V2 = 1'2, f 

(10 a) 

where VI and 1'2 are the rates of the elementary reactions of (6). Another 
simple example is a set of the simultaneous elementary reactions, 

A~X, X~C, X~D, (ll) 

where X is an intermediate. The set of reactions, 

A=- C, A+C+D = 3X, (12) 

IS equivalent to the set (ll), but in the steady state the rate V3 of the third 
reaction of (12) similarly becomes zero and the macroscopic chemical change 

is described by the two simultaneous overall reactions A=C and A=D. The 
matrix [a.a of the transformation (1l)~(12) is now 

( ~ ~ -~) 
o 1 -1 . 

(13) 

We see that by virtue of the transformation by (10) or (13) the intermediate 
X has been eliminated from the first reaction of (7) or from the first and the 
second of (12), and the new set (7) or (12) is suitable for the description of 
the macroscopic chemical change in the steady state. In the following we shall 
call such a set and such a transformation the principal set and the principal 
set transformation, respectively. 

The general form of the principal set transformation matrix has been studied 
by the present author and YAMAZAKI21l, who have shown that the matrix [erst] 
of the principal set transformation must satisfy the condition 

for s=1,2, ··,S and t=1,2,··,P, (14) 

where li;t) is the stoichiometric numbers defined by HORIUTI and the present 
author22)llb). 

We shall consider a set of S simultaneous elementary reactions, and suppose 

that /' che~ical species among the N chemical species involved in these rea~tions 
are the intermediates, so that, when the steady state is established, the remaining 
M chemical species (M=N-/,) are the reactants (or the products) of the 
overall reactions (d. the above examples and below). The latter M species are 
called "molecules" by HORIUTl llb1 22), or principal chemical components by 
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HIRSCHFELDER3Il
• Let biB be the stoichiometric coefficients in the s-th elementary 

reaction (s = 1,2,.··, S), and let the suffices i = 1,2,"" M and i = M + 1, 
M + 2, .. " N designate respectively the M "molecules" and the l' intermediates. 
Now the stoichiometric numbers*) are a set of S numbers (li1, liz,"', lis) which 
satisfy the l' simultaneous linear equations, 

i = M+l, M+2, ···,N. (15) 

More specifically, if the rank23) of the (1' x S) matrix [bi.l (i = M + 1, M + 2, "', N 
and s= 1, 2, "', S) is 1, we have P linearly independent solutions of (15), i. e., 
P sets of stoichiometric numbers denoted by (li;P),li~P\···,li:!»), p=I,2, ",P, 
where**) P= S - 1. 

In the case of the above examples, simple calculation leads to the results: 

S=2, M=2, 1'=1=1, P=1 and (li;", li~'»)=(I, 1) for the example (6); S=3, 
M = 3, l' =- 1 = 1, P= 2, (li;'\ li;'1, lii' ») = (1, 1, 0) and (li;Z\ li;z" li~Z»)=(I, 0, 1) 
for the example (11). Now one see that the first column, (1, 1) of the matrix 
(10), and the first and the second columns, (1, 1, 0) and (1,0, 1) of the matrix 
(13) are respectively the stoichiometric numbers for the sets of elementary 
reactions (6) and (11), i. e., these matrices satisfy the condition (14). 

In general cases, the transformation of the above set of S elementary 
reactions by the matrix [a.,tl subject to the condition (14), leads to the S reactions 
of the principal set, whose stoichiometric coefficients Bit, rates V" extents of 
reaction Bt and affinities At (t= 1, 2, "', S) are expressed by (8) and (9), in terms 
of the corresponding quantities, bi ." v., ~. and a. (s = 1,2, "', S) of the elementary 
reactions. As shown in Appendix, in a steady state in which the numbers of 
moles of the intermediates do not vary with time, i. e., 

Ni = ° for i = M + 1, M + 2, .. , N, 

*) The concept of the stoichiometric number has originated from HORIUT! and IKU­
SHIMA'S paper [Proc. Imp. Acad. Japan 15. 39 (1939)]. FROST (Ref. 8) has used similar 
numbers for his kinetic proof of the mass action law; his numbers np, nq,·· in p. 
177 of Ref. 1 are the same as our II" liz . .... BORESKOV [J. Phys. Chern. USSR 19. 92 
(1945); Dokl. Akad. Nauk SSSR 129, 607 (1959)], in his discussion of the relation 
between the activation energy and the heat of reaction, has used a number (called 
"molekuliar nosti" by him) which is closely related to HORIUT1's stoichiometric 
number of the rate determining step. 

**) In Refs. 11 band 22, M, [I, I and P are called the numbers of "molecules", of 
intermediates, of independent inte'rmediates and of -reaction routes, respectively, and 
tvi p\ II~P>, "', ":!l) or II~P) are called the stoichiometric numbers of the p-th reaction 

route or the stoichiometric number of the 8-th elementary reaction in the p-th 
reaction route. respectively. For further details and examples of the stoichiometric 
numbers, see Ref. 11 b and Ref: 22. 
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the rates of the (P+ 1)-th, (P+ 2)-th, . -. and 5-th reactions of this principal set 
vanish, i. e., 

VI = ° for t :> P . (16) 

Consequently, in the steady state of the above 5 elementary reactions, the 
macroscopic chemical change is described by the 1st, 2nd, .. , P-th reactions of the 
principal set, i. e., macroscopically, one observes P simultaneous overall reactions, 
In which the reactants (or the products) have the stoichiometric coefficients, 

S 8 

Bit = "L,blsasl = "L,bisli~t), i=I,2, ···,M and t=I,2, ._.,p., (17) 
s "",1 8= 1 

but none of the intermediates (i = 1\1 + 1, M + 2" N) is involved as shown in 
Appendix, t. e., 

Bit = ° , i=1\[ + 1, A1+ 2,··, Nand t=I,2, ... , P. (18) 

The applications of such a transformation and the principal set will be discussed 
in the following Sections. 

Algebraically, the linearly independent solutions of the homogeneous linear 
equations (14), having the properties of vectors, are not unique and neither are 
the stoichiometric numbers. However, it is usually convenient'Z) to choose such 
a set of P linearly independent solutions that make the resultant P overall 
reactions simplest. For instance, in the case of the example (ll), (li" liz, li,) 
=(2,1,1) and (0,1, -1) too are a set of linearly independent solutions of the 
equations (15), i. e., the stoichiometric numbers of (11). If we replace the first 
and the second columns of the matrix (11) by (2, 1, 1) and (0, 1, -1) respectively, 
the resultant overall reactions in the steady state will be 2A=C + D and D=C, 
which are equivalent') to the overall reactions, A=C and A=D of (12), but 
slightly more complicated. 

The relation (14) determines only the first P columns of the matrix [as,]; 
the (P+ 1)-th, (P+ 2)-th, .', 5-th columns are arbitrary in so far as the matrix 
is non-singular. This can be seen from the proofs of (16) and (18) presented in 
Appendix_ 

Taking into account (9) and (14), we have 
s p s 

v. = "L, 0'..1 VI = r; li~t)V, + "L, as, VI , (19) 
1=1 t=1 t=P-Il 

which, In a steady state, leads to 
p 

v. = L: Vtli~l) , (20) 
t=1 

by virtue of (16), This relation, which connects the rates v. of the 5 elementary 
reactions with those Vt of the P overall reactions in a steady state, has been 
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obtained by HORIUTI and the present author in a different way22). 
In general, the P simultaneous overall reactions determined by (17) are not 

necessarily independent*). 
The set of elementary reactions**\ 

C2H. ~ 2CH3 , 

CH3 + C2H. :;::::.::: CH. + C2HS , 

C2Hs~C2H.+H , 

H+C2H. ~ H 2+C2H s , 

H+C2H s ~ C2H., 

is the RICE-HERZFELD mechanism of the thermal decomposition of ethane24). 

For the above set with S=5, 1'=1=3 and P=2, the sets of numbers, (0,0,1,1,0) 
and (1, 2, 1, 0, 1) are two sets of the stoichiometric numbers, and the resultant 
overall reactions in the steady state are, according to (17), 

C2H. = C2H. + H2 , 

2C2H. = 2CH. + G.H. , 
which are, of course, independent. Next, we shall consider the set of elementary 
reactions***) , 

H'+c --::H(a) , 

2H(a)~H2 , 

E(a) + H+ + € ;:=::.> H2 , 

which were assumed****) to take place on a hydorgen electrode (cathode) by 
some authors") (the "dual theory" of the hydrogen electrode process). In this 
example involving one intermediate H(a), the stoichiometric numbers are****) 
taken to be (2, 1,0) and (1, 0, 1), which however lead to the same overall 
reaction, 2H+ + 2€ = H,. Thus we have one independent overall reaction, which 
takes place simultaneously by two mechanisms, 

H++€ ~ H(a) , 2H(a) ~ H2 (catalytic mechanism25)) , 

and 

H+ + € ~H(a), H(a)+H+ + € ~H2 (electrochemical mechanism25)). 

*) Cf. p. 468 of PRIGOGINE and DEFA Y (Ref. 19). for the definition of the independence 
of chemical reactions. Let R be the rank of the (M xP) matrix [Bit] (i=l, 2 •...• M 
and t = 1,2,.··, Pl. then R reactions among the P overall reactions are independent. 

** ) Quoted from p. 11 of Ref. 11 b. 
;>**) Here H(a), H+ and e denote re3pectively a hydrogen atom adsorbed on the 

electrode metal, a hydrogen ion in the electrolyte and a metal electron. 
****) Cf. also § 4 of Ref. 22. 
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§ 2. Establishment of Steady State: Simple Examples 

In § 1, we have discussed the relation between the rates of overall reactions 
in a steady state and those of the constituent elementary reactions. Of great 
interest in this connection is how such a steady state is established. We shall 
first treat some simple examples*) in order to illustrate some underlying principles. 

As remarked by DENBIGHJ5
)26a\ PRIGOGINEJ214

) and others, an "ideal" steady 
state, i. e., a steady state in which the net rates of production of the inter­
mediates are exactly equal to zero, is established only in an open system. 
As an example we shall consider the elementary reactions (6), which will be 
assumed to be first order. Thus the net rate of production nx of the inter­
mediate X is expressed as 

(21) 

where nA , nB and nx are the concentrations (number of moles per unit volume**)), 
and ks and k" are the forward and the backward rate constants of the s-th 
elementary reactions (s= 1, 2). Suppose that the reactions are taking place in 
an open system, where the "molecules" (principal chemical components")), A 
and B are exchanged with the external environment which acts as a reservoir27

) 

of the "molecules", so that the concentrations nA and nB are kept constant***" 
i. e., n.t =nl and llB=n~ where n~ and n~ are the concentrations of A and B 
in the reservoir (the environment). Thus Eq. (21) becomes 

nx = - (kJ +k2)nX +kJn1 +k2n~ , 

from which we have at once 

where n~ is the initial value of nx, and, and n~ are given by 

- -n~ = (kJn~ + k2n~) , , 

(22) 

(23) 

(24) 

l. ) To illustrate the steady shte of a chemical reaction, the water-tank model has 
been used by DENBIGH et al. (Ref. 26 a) and especially by HORIUTI ["Shokubai 
Kwagaku", Asakura Book Co., Tokyo (1953) (in Japanese)]. 

**) Of course nx=Nx/V, nA =NA/V, etc., where V is the volume of the system, and N x , 
NAo etc. are the numbers of moles. In this Section we consider reaction rates per 
unit volume. 

*** ) Since in the present paper we are not interested in transport processes, we shall 
assume that the transport of A and B, between the environment and the system, 
is rapid enough, so that the concentrations nA and nn in the system are always 
equal to the concentrations n~ and n~ in the environment, in spite of the chemical 
reactions (6). In other words, we shall neglect the affinities of the transport 
processes (cf. p. 79 of Ref. 14). 
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and 

(25) 

Eq. (23) implies that in the course of time, nx and nx exponentially approach 
to zero and to the steady state concentration'Sa) n~, respectively, the latter being 
such a value of nx that makes the right hand side of (21) zero for the fixed 
values, n~ and n~, of the concentrations of the molecules A and B [d. (24) 
and (25)]. In other words, for t?> T the exponential term in the right hand 

side of (23) becomes negligibly small, and a steady state (nx=O) is attained, 
the relaxation time T in (23) giving the measure of the induction period. A 
similar calculation can be carried out for the simultaneous elementary reactions 
(1l). In this case also, the change of nx is given by (23), but the steady 
state concentration n~ and the relaxation time T therein are now expressed as 

(26) 

and 

l/T = kl +k2+k3 . (27) 

The above calculations may be extended to the case of a more complicated set 
of first-order reactions by the general theory of coupled first-order reactions 
developed by a number of authors28l

-
32

\ 

In the case of reactions in a closed system, the concentrations of "molecules" 
can not remain constant. Let us again consider the reactions (6) taking place 
in a closed system. Instead of (22) we must then consider the differential 
equation (21) together with the rate equations for nA and nB, 

nA= -klnA+klnX' 
nB ::-...: -k,nB+k,nx . 

The formal solution of (21) is written as 

nx = C exp( -- t/T)+exp( -t/T) f(k,nA + k,nB ) exp (t'/T) dt' , 

(28) 

(29) 

where C is the integration constant. If the rate constants kl and/or k, are 
large (i. e., the chemical species X is very reactive), T is small according to (25), 

so that in the course of time, the first term on the right hand side of (29) 
rapidly approaches to zero. After this initial induction period, the change of 
nx is expressed by the second term, i. e., the principal solution") of (21). Only 
when n A and nB are constant and equal to n~ and n~, this term reduces to n~ 
of (24), 1. e., 

nx = n~ (constant), nx = 0 . (30) 
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However, when the changes of the concentrations, nA and nB of "molecules" are 
small in the time interval under consideration, we can, to a good approximation, 
neglect the deviation from the condition of the steady state (30). Such a 
situation has been discussed by a numb~r of authors33

)-34) for various special 
exa~ples. Also, HIRscHFELDER has show~ that starting from an expression like 
(29), one can calculate the small deviation from the steady state values (30),' 

. in a "closed system. . We shall examine this problem more closely in the 

succeeding paper (Part Il). 

§ 3. Linear Relations in the Neighbourhood 
of Equilibrium*) 

Consider an elementary reaction such as the binary collision process III an 
ideal gas, 

Hz+1z'~ 2H1. (31) 

The assumption of the reaction rate proportional to the collison frequency leads 
t07

) the rate equations for the forward and backward rates, v and v of the 
process (31): 

v = k [1z] [Hz] , (32) 

where k and k are the rate constants, and [1z] etc. mean the concentration of 
12 etc. Starting from such rate equations, PRIGOGINE, OUTER and HERBO have 
derived")36) the relation'O) 

v/v = exp (a/RT) , (33) 

1. e., 

v = v-v = v [1- exp (--a/RT)] , (34) 

where a and v are the affinity and the rate, respectively, of the elementary 
reaction, and Rand T are the gas constant and temperature. Although the 
above derivation of (33) or (34) is simple and elementary, the use of rate 
equations like (32) (i. e., the rate expression such that each reactant has an 
order equal to the absolute value of its stoichiometric coefficient in the 
"microscopic" reaction equation**)) is unwarranted for elementary reactions 
other than homogeneous elementary reactions in an ideal gas mixture. More 

*) Cf. Ref. 38. 
**) Ref. 1, p. 176. Note that reaction equations (stoichiometric equations) such as (1), 

(4) and (7) give only the stoichiometric relationship between the amounts of the 
chemical species produced (or consumed) by these reactions. whereas "microscopic" 
reaction equations such as (2), (3), (6) and (31) represent microscopic elementary 
processes themselves. 
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elaborate and general proof of (33), based on the theory of absolute reaction 
rate, has been given by HORIlJTI37

)40\ 

For a reaction close to equilibrium, we can suppose that lal/RT« 1, so 
that the expression (34) reduces to 

a = "'V with" = RT/vCe
\ (35) 

where vee) is the value of the forward rate at the equilibrium, and the constant 
coefficient " is called "reaction resistance" (PRIGOUNE et al, 35)), 

The expression (35) is the linear rate lavv or the linear relation")!4) between 
the affinity and the rate of elementary reactions in the neighbourhood of equili­
brium. The linear relations for .... ; simultaneous elementary reactions are 

a.<J == /(.'17)8 , 5=1,2, ···,S, (36) 

where a8 etc. denote the affinity etc. of the s-th elementary r.:action. 
Multiplying the' both sides of the first expression of (3f)) by a", (ef. § 1) 

and summing over 5=1.2, ··,S, we obtain, by virtue of (9), 
s 

A, = :E K,,,V,., t=:},2,· ·,S, (37) 
"/.1, 1 

where 
R R 

K tu c-::: :E ".,as,a.,,, = RTL; a8,a.,jv~e, . (38) 
8=1 

Now we see that corresponding to the transformation (8) of the reaction equations 
the linear relation (36) is transformed*' into (37); the equation (37) is the linear 
relation expressed in terms of the rates V, and the affinities A, given by (9)., 
and the expression (38) gives the transformation properties of the coefficients ",. 

Now let us suppose that the matrix [as,] of the transformations in (8) and 
(38) satisfies the condition (14); then the equations (37) are the linear relation 
for the reactions of the principal set and, as we have seen in § 1 , 

V" = 0 for u >- P , 

11l the steady state. Consequently, the first P equations c: (37) are written as 

t=1,2, .. ·,P. (39) 
1(,=1 

Since t~P, u~P in (39), the coefficients**) Kin in (39) are t;cpressed, according 
to (14) and (38), as 

(40) 

" ) The transformation properties of linear relations in general are frequently discussed 
in thermodynamics of irreversible processes (cf. Ref. 13, Chapter XI). 

**) Note that the coefficients K tu in (37) form an (;; /. oS) matrix, whereas those in (39) 
form a (PxP) matrix. 
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According to § 1, the relation (39) with (40) is now the linear relation between 
the rates and the affinities of the P macroscopically observed overall reactions") 
in the steady state of the S simultaneous elementary reactions (P < S). In the 
special case of P= 1, the relations (39) and (40) reduce to the formulae, 

s s 
il, = Kll V, and Kll = L; /(8(1'/,'»)' , = RTL; ().!~'»)2FfJ;e) , (41) 

8=1 8=-1 

which have been obtained independently by HOLLlNGSWORTH
39)*). 

The linear relations (37) and (39) are also written as 
S 

Y'n c=: L: "{".A, . u=1,2, ,S, (42) 
t""'l 

f' 

V" = L; L,llil, , u=1,2, ... ,p, (43) , , 
where [AUf] and [L",] are respectively the reciprocal matrices of the (S x S) 
matrix [Kill] of (37) and of the (Px P) matrix rKtu ] of (39)**). 

§ 4. Theorem of Minimum Entropy Production***) 

As is well-known. the thermodynamical the6ry of irreversible processes IS 

usually based on the linear relation of the form (37), (39), (42) or (43) between 
the rates (fluxes) and the affinities (forces). The constant coefficients. K"l' L,lt 
and ,1", in these expressions are the phenomenological coefficients in the ther­

modynamical the0ry, and satisfy the Onsager reciprocal relation, 

(44) 

as verified by the expression (38) or (40) as well as the reiation between K,n 
and L,a, or K tu and ,1t/(. 

One of interesting theorems of thermodynamics of irreversible processes is 
PRIGOGI:-.IE and DE GRO()T'S theorem of minimulll entropy production" 14). The 

theorem states: "\Vhen a system. charactenzed by S indepedent forces 

x" X,,··, XI" is kept in a state with fixed X" X, . ... , XI' (P<S) and minimum 
entropy production (dS/dtLr, the fluxes J, with the index numbers 

7:.) If v;') = v~I) = ... = v~) = 1, the relations (41) further reduce to the expression, 

A, = (~K.,) V,. 
s 

PRIGOGINE et al. have considered a special example, and obtained this expression 
[cf. Eq. (23) of Ref. 35]. They called Kll in (41) or (~Ks) in the above expression ., 
the "total reaction resistance". 

**) It can readily be shown that these two matrices [KtuJ of (37) and (39) are non­
singular [cf. Ref. 38]. 

***) Cf. Ref. 21. 

--236 .-



[( ineticH and Thermodynam1'cB of the Steady State of Chemical ReactionH. I 

t = P+ 1, P+ 2, ... , S vanish*\" The present author and YAMAZAKI2l
) have 

pointed out that this theorem can be applied to the c~se of chemical reactions 
by using the concept of the principal set**) discussed in § 1. In this case the 
affinities and the rates of the reactions of the principal· set are essentially the 

forces and the fluxes, respectively, in the above theorem, 1. e., 
1\1 

Xt=A,/T=-L,PiBtt/T, Jt=Vt (t=1,2,·,S), (45) 
. i=1 

where At and Vt obey the linear relation (37) or (42), and the entropy production 
(dS/dt),tr.' is given bi'I,,21) 

R"S .~s 8.~· 

(dS/dt)irr = L, vA,jT= L, VtAt/T= T-IL, L, AutAItAt = T'E, L, A,,,XuXt , 
,,,-I i-I t=I';t=1 t=lU=-l 

according to (42) and (45). Suppose that the concentrations or the chemical 
potentials of the "molecules" are kept constant (d. § 2), and those of the inter­

mediates are allowed to vary. According to (45) this amounts to fixing the P 
forces X t (t=1,2, ···,P), since the 1st 2nd,· ·,Fth reactions of the principal set 
involve only the "molecules" (i~M) [d. Eq. (18)], whereas the remaining S-P 
reactions involve the intermediates (i> AI) too. Then it follows from the above 

theorem that the minimum of the entropy production (dS/dtll,.r corresponds to 

for t>P, (46) 

which implies that the chemical reactions are in the steady state (d. Appendix). 
In DE GROOT'S terminology,I?) the order of this steady state is P, where P has 

been the number of the reaction routes***) defined by HORfUTI and the present 
author"l 

§ 5. Exponential Decay of Overall Reactions 

We have seen in § 1 that macroscopicaIIy we observe P over-all reactions 

III a steady state of S elementary reactions (P<S in genernl), aoo in §3 that 

if the constituent elementary reactions are close to equilibrium, these overall 

reactions obey the linear relation (39) or (43) betweeJll! the rates and the affinities. 

In the case of reactions in a closed system, we ctan further assume the linear 

relation between the affintie~ and the deviation from the equilibrium, as 
/' 

At::::: L: Alit (Bn- E';:)) , t=l,2:.,.··_··,P,. (47) 
It 1 

so far as the deviation is small and the condition of the steady state; Et =const. 

*) Quoted from § 71 of Ref. 13. with slight modification of the notations. 
-**) Another method which does not make use of the prineipal set, has been devised by 

PRIGOGINE (Ref. 14) and generalized by the present author and YAMAZAKI (Ref. 21). 
***) Cf. the footnote on p. 228 of this paper. 
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for t> P [ef. (46)] is maintained. In (47), Atu's are constant coefficients, Eu is 
the extent of reaction of the u-th overall reaction (d. § 1), and the superscript 
(e) designates the value at the equilibrium. On the other hand the linear relation 
(39) is rewritten as 

l' 

At = 1: K lu (dEu/dt) , t= 1, 2, .. ~ .. p. (48) 
u=l 

The system of the simultaneous equations (47) and (48) can be solved"a) 
as shown below, and consequently the approach to equilibrium (relaxation), of 
the P overall reactions may be calculated. However, we must remember that 
the use of the linear relations (48) [or (39)] and (47) rests on the assumption 
that the deviation from the steady state is negligible during the relaxation 
process {d. § 3 and the above}. This point will be more closely examined in 
the subsequent paper (Part II). 

In his paper4l) on the thermodynamical theory of relaxation phenomena, 
MEIXNER already treated equations of the same form as the above system of 
the linear equations (47) and (-18). Since the matrices [A.I .. ] and [Kta] are sym­

metric and the quadratic forms L: 1: (-Atu)XtXu and L: L: KtuxtX .. are positive 
• t u t u 

definite"l, they are simultaneously diagonalized by a non-singular matrix [T,p] as, 
p p p p 

1: 1: 1\.,;, TIP T"Q = 'poPQ , L: L: AtuTt1'Tuq = -opq , 
t=lu...,.,l 1=-1"=1 

where opq is the Kronecker delta, and '1"s (p=I,2, ···,P) are positive and the 
roots of the secular equation. 

det (Klu + ,A.,,,) = a . 
Thus Eqs. (48) and (47) become 

A~ = 'I' (d5~/dt) , p=I,2, ... ,p, (49) 

p=I,2, ... ,p, (50) 

where the quantities with a prime are related to the original ones by 
p l' 

A~ = 1: AuTup , 
u=l 

E u == L: Tup B~ . 
p=1 

(51) 

The solutions of (49) and (50) are now, 

p=I,2, ... ,p, (52) 

where Cp's are the integration constants to be determined from the initial 
condition. This is MEIXNER'S result41a

). 

Corresponding to the above transformation by the matrix [Tup], the set of 
the P overall reactions is transformed into a new set, i. e., an equivalent system 
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(ef. § 1); the relation between the both sets is given by 
p 

B;p = L: Biu T"p , (53) 
U-=-l 

where B iP and Bip are the stoichiometric coefficients of the i-th chemical species 

in the p-th reactions of the old and the new sets, respectively. The expression 
(52) means that the P overall reactions of the new set are "normal modes", 
and approach exponentially to the equilibrium, r p's being the relaxation times 
of this exponential decay. When expressed in terms of the old set of overall 
reactions, the decay is expressed as 

p 

Eu-5;:) = L: 7'upCpe-t'p , u=1,2,···,P, (54) 
p=l 

i. e., a superposition of exponentials, with a spectrum of P relaxation times. 
Now we suppose that the above reactions take place at constant temperature 

and volume. Then it follows from the definition of At, Atu and Eu that 
M 

A, = - L: fliBi' , 
i=l 

A = (_a~~)(e) 
tu as

u
/' 

p 

M-Nie) == .L: BiU(Btt-S'/j)) , (55) 
u=l 

where fli' Ni and Bit are the chemical potential, the number of moles and the 
stoichiometric coefficients in the t·th overall reaction, respectively, of the i-th 
chemical species, and in the differentiation with respect to Eu, temperature, 

volume and the remaining Eo's (s*u) are kept constant. Now assume that the 
system is a mixture of perfect gases and hence the chemical potential fli is 
expressed as") 

(56) 

where p.7 is a function only of temperature and V is the volume of the "reaction 
vessel". Then it follows from (55) and (56) that 

oA, __ :(-, 
---;:;;- -- - L.. Bit 
3.1j lj, i~-l 

a .1f 

RTln Nt = -RT"L. BitBtu/N, , 
i'-l 

l. e., 

If 

At" =1<.1'1:. Bi,Btu/NiCJ . (57) 
i=l 

It may be of interest to note the formal resemblance between the expreSSIOns 
(40) for K,,, and (57) for A tu . 

A corresponding expression of Atu for reactions at constant temperature 
and pressurt; can readily be obtained. Eq. (56) is rewritten as 

fli = p7+RTln(pNJNRT), 

where p is pressure and 
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i -·1 

Accordingly we have the differential at constant temperature and pressure: 

aA t , = -RTf. f. BitBJu(}iJ __ 1_) 
asu i-.j-. Ni N 

Then the expression of Aw become 

M ,>{ ( 0, 1)' 
A tu = -RT'L. 'L.BitBjt< N°:') - N(;) 

t=l)=l i 
(57') 

instead of (57), 

In the rather trivial case of a single overall reaction, i, e., P= 1, Eqs. (40) 
and (57) reduce to 

S 

Kll =RT'L. (I);l)y/v;,c) , (58) 
.5=1 

and 
H 

All = -RT'L. (B,,)2/NiC) . (59) 
i;.·" 1 

Furthermore, if the r-th elementary reaction is rate-determining step, l. (", 

v;e).zv~c)(s=l,·-·,r-l,r+l,·-·,S), then the expression (58) becomes 

Kll = RT(l.J~l))'/v~e) _ 

In this special case, the expressions (52) and (54) become 

and the relaxation time r , is given by 

_ Kll _ (1)~.'))2/v~e) 
r. - - -- - ---M------~--

All 'L. (Bi,)'/Nie
) 

i=:1 

(60) 

(61) 

(62) 

The expressions essentially same as (61) and (62) are first obtained by HORIUTI") 

in a different way, and applied to the experimental determination of the mechanism 
of the catalyzed ammonia synthetic reaction, 

N, + 3H2 =- 2NH3 , (63) 

by ENOMOTO and HORIUTI
43

\ and more recently by BOKHOVEN, GORGELS and 
MARS"\ ENOMOTO and HORIUTI observed exponential decay of-' the overall 
reaction (63), and measured the relaxation time and the "forward rate")" 
v,e)=v~e)/I);l), of the overall reaction (63) at the equilibrium, in order to deter­

mine the stoichiometric number I);.') of the rate-determining step: In this 
particular case of (63), Eq. (62) becomes 
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(64) 

The author takes this opportunity to thank Professor J. HORlOT! for sug­

gesting the problem and for his continued interest. The author is also indebted 
to Dr. TOYA and Dr. TANABE for reading the manuscript. 

Appendix 

According to (9 a), (8) and (14), the net rate of production Nt of an inter­
mediate (i=Nl + 1, M + 2, "', N) is given by'O) 

. s ,":I~ sSP S s 

Nt = ~ Bit Vt = r; r; b i ,a31 Vt = r; L: bi ,)..!:" V t + r; L: bi,ast V t 
"t=i 8""lt=I" 8=1t=1 S-lt==P+l 

= ,t, (~ bis )..!~')) V t '+ '~j b is (~, , as! V t ) 

, ( 

Thus, by virtue of (15), we h~ve 

Ni = £, bi ., (' £ ~a8t Vt)' , ic~}H+l, 2\1+Z, .. ,N. (A) 
8=1 t=-- T'-I-l 

In the steady state, Nt=O fOf i> 1\1, so that the equations (A) become 

t,biSC~~"ja8tVt) =0" 

which implies that 
s 
L: a st Il, , 

t=P+l 

i=lU+l,lU+2, ,N, 

s=I,2, ···,S (B) 

is a solution of (15), i. e., (B) IS expressed as a linear combination of the 
stoichiometric numbers; 

S l' 

r; as, V, = r; Ct )..!~t) , (C) 
t .... I'+1 t 1 

where C,'s are the coefficients of the linear combination. By virtue of (14), 

I,C) is now rewritten as 
[) s 

o = L: a8l Ct - L: ({s' V, , s=I,2, .. ,So (D) 
1=1 t,:p+l 

In so far as the matrix [as,] is non-singular, the S columns of [as,] are linearly 
independent23'. Hence it follows from (D) that 

C,=C.=···=Cp = V Pt '== Vp + 2 =···= V.~=O. 

On the other hand, according to (8), (14) and (15), we obtain 
s s 

B -- '" b - '" b (t) -. 0 it -- L....J is(Xt;t - L.J i.s]..is - , for 1> At and t-:;'P. 
8 -=1 8= 1 
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Thus we finish the proofs of (16) and (18). 
Next we shall show that each of the (P+ l)-th, (P+ 2)-th, ... , S-th reactions 

of the principal set involves at least one intermediate. The number of the 
independent solutions of the simultaneous equations (15) is P (§ 1), and according 
to (14), the 1st, 2nd, .. , P-th columns of the matrix [a.,,] are a set of P inde­
pendent solutions of (15). Since all the columns of [astl are independent (see 
above), any of the (P+-l)-th.(P+~,-th.··.S-th columns of [as,] can not be 
a solutions of (15). Consequently. for t--P, at least one of Bi,'s (i=1'vl+1, 
1.11 + 2, .. , N) is not zero. smce ()tl1L'nYi~e it would follow that 

s 

L bi.,aS' = Bit =; O. for i=.i.11+1,1H+2, .. ·,N, 
8=1 

i. e., the t·th column would be a solution of (15)' contrary to the above fact. 
According to (8), Eq. (A) IS re\Hitten as 

s 
Nt = L Bit V, for i-· .11 . 

1=/'+1 

Thus the condition (46) of § 4 necessarily implies that 

N. O~: 0 for i~·JI. 

I. e., the steady state. 
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