THE KINETICS OF THE HYDROLYSIS OF
CARBON TETRACHLORIDE

By
KOZO TANABE and AKIKO ARAMATA*)

(Received October 15, 1960)

Introduction

We have investigated the kinetics of the chlorine exchange reaction be­
tween carbon tetrachloride and aqueous chloride solution and proposed the
mechanism of the reaction5). The kinetics of the hydrolysis of carbon tetra­
chloride has now been investigated over the whole pH range from 0-14 under
the same experimental conditions as those in the exchange reaction reported
in the foregoing paper5). It has been found that the rate of hydrolysis is
approximately constant independently of pH and about eight hundreds times
larger than that of the chlorine exchange and that there was no mass effect
of chloride ion on the rate. The experimental results are discussed in connec­
tion with those recently obtained by FELLS and MOELWYN-HUGHES5).

Experimental

Reagents: The preparation of carbon tetrachloride has been described in the
foregoing paper5). Solution of different pH used was simply water**, aqueous
sodium hydroxide, sulfuric acid or phosphate buffer solution***). Neutral salt
added was sodium chloride or sodium sulfate.

Kinetic runs: One mℓ of carbon tetrachloride was sealed air-free****)
together with 5 or 7 mℓ aqueous solution of known pH with or without ad­
dition of neutral salt in a quartz tube of 25-30 mℓ capacity and the tube was
placed in a constant temperature bath***** similar to described in the pre­
vious works13)4)3). At a recorded time, the tube was removed, opened, about

*) K. T.: Research Institute for Catalysis, Hokkaido University, Sapporo. For inquiries
address K. T.
A. A.: Department of Chemistry, Faculty of Science, Hokkaido University.
**) Conductivity water from an Amberlite resin column.
***** For the procedure of evacuating tube, see p. 407 of Ref. 3 or p. 84 of Ref. 4.
*****) The reaction tube was briskly shaken by a shaking machine in a few runs, no effect
of shaking being found on the rate of hydrolysis.
5 ml solution pipetted out and then analyzed for the decomposition rate at
different pH in a few different ways as shown below.
(i) The amount of chloride ion formed due to the decomposition was meas­
ured by MOHR's titration method or by UTSUMI's colorimetric method6 (col­
orimetry of ferric thiocyanate liberated by chloride ion in the presence of mercury
thiocyanate and iron alum). The rate was determined from the amount of
liberated chloride ion as described in the next section. The associated pH­
change was determined by pH measurement at room temperature by means
of a glass electrode pH meter.
(ii) The pH of the sample was determined at room temperature by means of
pH meter. The rate of decomposition was calculated from the observed pH
value as described in the next section.
Calculation of Decomposition Rates: The decomposition rate V_d for
unit volume may be represented by the equation, since a carbon tetrachloride
molecule yields four chloride ions6, as it decomposes,

$$V_d = \frac{1}{4} \frac{d[Cl^-]}{dt}, \quad (1)$$

where $d[Cl^-]$, is the increment of chloride ion concentration $[Cl^-]$ in solution
due to decomposition and t the time of reaction.

In the case of (i) in the foregoing section where $[Cl^-]$ was directly ob­
served, $d[Cl^-]/dt$ was determined simply as the quotient of $d[Cl^-]$ over t.
The associated pH range was determined by pH measurement. In the other
case (ii) where pH alone was measured, the decomposition rate was obtained
by equating the increment $d[H^+]$ of hydrogen ion concentration $[H^+]$ in solu­
tion to $d[Cl^-]$ in Eq. (1) in the acidic solution, since, according to MOELWYN-­
HUGHES et al.3, the final products of carbon tetrachloride were found to be
only hydrochloric acid and carbon dioxide, the acidity of the latter being
neglected.

Results and Discussion

Table 1 shows the results of decomposition. In the second to the fourth
column are shown respectively the quantities of carbon tetrachloride and aque­
ous solution, the added reagents and the time of reaction. The fifth column
gives pH before and after reaction measured by pH meter at room temperature.
The chloride ion concentrations in aqueous solution after the reaction is given
in the sixth column, together with the methods of its determination. The last
column shows the decomposition rate V_d calculated by Eq. (1) and $\log_{10} V_d$.
The reaction tubes were shaken by a shaking machine in runs 1 and 3, but
<table>
<thead>
<tr>
<th>Run</th>
<th>Carbon Tetrachloride</th>
<th>Aqueous Solution</th>
<th>Added Reagent</th>
<th>Time of Reaction</th>
<th>pH</th>
<th>Quantity of Cl- ion Concentration Decomposition Rate</th>
<th>Decomposition Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mℓ</td>
<td>mℓ</td>
<td></td>
<td>min</td>
<td></td>
<td>Cl- ion Concentration Decomposition Rate</td>
<td>Decomposition Rate</td>
</tr>
<tr>
<td>1a)</td>
<td>1</td>
<td>5</td>
<td>None</td>
<td>242</td>
<td>5.76</td>
<td>2.54</td>
<td>4.36 Colorimetry</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5.76</td>
<td>2.53</td>
<td>4.36</td>
<td>Colorimetry</td>
</tr>
<tr>
<td>3b)</td>
<td></td>
<td></td>
<td>NaOH</td>
<td>13.50</td>
<td>13.37</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>13.50</td>
<td>13.41</td>
<td>7.85</td>
<td>Colorimetry</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>None</td>
<td>5.76</td>
<td>2.34</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.1 N NaCl</td>
<td></td>
<td>131</td>
<td>5.79</td>
<td>2.48</td>
<td>3.31b)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1 N NaCl</td>
<td></td>
<td>5.96</td>
<td>2.27</td>
<td>5.37b)</td>
<td>Colorimetry</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.2 N Na\textsubscript{2}SO\textsubscript{4}</td>
<td>6.19</td>
<td>2.94</td>
<td>2.55</td>
<td>Colorimetry</td>
<td>2.76 × 10-4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Buffer</td>
<td>6.73</td>
<td>6.55</td>
<td>1.71</td>
<td></td>
<td>1.85 × 10-6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>NaOH</td>
<td>11.43</td>
<td>8.87</td>
<td>6.04</td>
<td></td>
<td>6.53 × 10-6</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>12.15</td>
<td>9.27</td>
<td>6.38</td>
<td></td>
<td>6.91 × 10-6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>H\textsubscript{2}SO\textsubscript{4}</td>
<td>2300</td>
<td>0.75</td>
<td>0.25</td>
<td>45.0</td>
<td>Mohr's Method</td>
</tr>
</tbody>
</table>

a) The reaction tube was shaken briskly.

b) The increment \(\Delta [\text{Cl}^-] \) of chloride ion concentration.
not in runs 2 and 4, no appreciable effect of shaking upon the decomposition rate V_d being observed as seen in the Table.

It is shown in Table 2 that the decomposition rates V_d obtained in the present work are in agreement with those calculated from the pH-measurement in the experiment of the chlorine exchange1 within the experimental error.

Table 2.

<table>
<thead>
<tr>
<th>Decomposition rate</th>
<th>No. of run in Table 1 of Ref. 1</th>
<th>$V_d = \frac{1}{4} \cdot \frac{d\xi}{dt}$</th>
<th>No. of run in Table 1 of this paper</th>
<th>$V_d = \frac{1}{4} \cdot \frac{d\xi}{dt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10$^{-6}$ mol/l min</td>
<td>10$^{-6}$ mol/l min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic region</td>
<td>1</td>
<td>6.6</td>
<td>1, 2</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>3, 4, 7</td>
<td>7.7</td>
<td>5</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.3</td>
<td>12</td>
<td>4.9</td>
</tr>
<tr>
<td>Buffer solution</td>
<td>10</td>
<td>1.3</td>
<td>9</td>
<td>1.8</td>
</tr>
<tr>
<td>Alkaline region</td>
<td>2</td>
<td>6.5</td>
<td>3</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.5</td>
<td>4</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.9</td>
<td>10</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The log$_{10} V_d$ was plotted against pH in Fig. 1 by circles, triangles or a square, each at the median of pH, if varied. The circles show the rates without added salt, through which a straight horizontal line may be drawn as shown in the Figure. The effects of neutral salt and buffer solution are shown respectively by triangles and a square in the same Figure; the decomposition rate was not perceptively affected by the addition of 0.1 N or 1 N sodium chloride but decreased slightly by 0.2 N sodium sulfate and considerably decreased in buffer solution.

Fig. 1 shows that the mass effect of chloride ion is imperceptible and that log V_d is almost constant independently of pH over the whole range.

The rate V_d of the hydrolysis was found to be about eight hundreds times larger than that of the chlorine exchange1 at 0.01 N chloride ion concentration.

Moelwyn-Hughes et al.2 have recently shown that the decomposition of carbon tetrachloride in aqueous solution can be represented by the equation, $\text{CCl}_4 + 2 \text{H}_2\text{O} = \text{CO}_2 + 4 \text{HCl}$ and the rate of the reaction is of the second order.
The Kinetics of the Hydrolysis of Carbon Tetrachloride

Fig. 1. Decomposition Rate of Carbon Tetrachloride (100°C).
○: No salt added, △: Salt added, □: Buffer solution.

with respect to carbon tetrachloride. The mechanism of the decomposition suggested by them may be represented by the scheme.

\[
\begin{align*}
\text{CCl}_4 + \text{CCl}_4 & \longrightarrow \text{CCl}_4^* + \text{CCl}_4 \\
\text{CCl}_4^* + \text{H}_2\text{O} \text{ or OH}^- & \longrightarrow \text{CCl}_4\text{OH} + \text{HCl} \\
\text{CCl}_4\text{OH} & \longrightarrow \text{COCl}_2 + \text{HCl} \\
\text{COCl}_2 + \text{H}_2\text{O} & \longrightarrow \text{CO}_2 + 2\text{HCl} ,
\end{align*}
\]

where \(\text{CCl}_4^*\) denotes an activated molecule of carbon tetrachloride formed by step a), which determines the rate of the decomposition.

It is seen that the following three facts obtained in the present work fits in sufficiently with the mechanism.

i) No mass effect of chloride ion upon the decomposition rate.

ii) Much smaller rate of chlorine exchange than that of decomposition.

iii) No pH effect on the decomposition rate over the whole range of pH.

Acknowledgment

We are indebted to Prof. HORIUTI for his discussion on the present work and to Kaisei Association for the grant which made this work possible.
References

1) K. Tanabe and A. Aramata, this Journal 8, 188 (1960).