
 

Instructions for use

Title KINETICS AND THERMODYNAMICS OF THE STEADY STATE OF CHEMICAL REACTIONS. Ⅱ

Author(s) NAKAMURA, Takashi

Citation JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 9(2), 87-106

Issue Date 1961-10

Doc URL http://hdl.handle.net/2115/24737

Type bulletin (article)

File Information 9(2)_P87-106.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


KINETICS AND THERMODYNAMICS OF 

THE STEADY STATE 

OF CHEMICAL REACTIONS. II 

By 

Takashi NAKAMURA *) 

(Received March 10, 1961) 

In connection with the irreversible thermodynamical treatment of chemical reactions, this 

paper deals with kinetics of a complex kinetic system consisting of elementary reactions whose 

rates vary linearly with their affinities. First, the establishment of a steady state in an open 

system is examined. Second, the treatment is extended to the case of a quasi-steady (pseudo­

stationary) state in a closed system, and the results so obtained are compared with HIRSCH­

FELDER's discussion of the steady state approximation in chemical kinetics [J. Chern. Phys., 

26, 271 (1957)1. This paper also supplements the treatment of a preceding paper (Part I) by 

the present author [This Journal, 7, 224 (1959)]. 

Introduction 

The application of irreversible thermodynamics!)2) to chemical reaction has 

been described by a number of authors. In this connection the relation between 
chemical kinetics and the thermodynamical theory of chemical reactions has also 
been discussed. We shall recall some of the results. First, the force X of 
a chemical reaction is its affinity divided by temperature and the flux v is 
its reaction rate!)2). On the other hand, the theory of absolute reaction rates 
provides the relation between the reaction rates and thermodynamical quantities3l, 
i. e., free energy, affinity, etc.; thus it can be shown,)-6) that in the neighborhood 
of equilibrium the flux (rate) of an elementary reaction is expressed in the 
linear form**" 

v =LX, ( 1 ) 

and the constant coefficient L in (1) is written as 

*) Research Institute for Catalysis, Hokkaido University, Sapp:)ro. Present, temporary 
address: Department of Chemistry, University of Utah, Salt Lake City 12, Utah, U. S. A. 

"*) The expressions (1) and (2) have first been obtained by PRIGO::;INE et at.')' whose deriva­
tion is based on the naive, empirical rate equations- for elementary reactions (ef. § 3 'of 
Part I7»). Essentially the same expressions have been derived from the theory of 
absolute reaction rates, by several authors 5)6). 
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(2 ) 

where R is the gas constant, Vf is the forward rate and the superscript (e) 
designates the value at equilibrium. Now suppose that S elementary reactions 
are simultaneously taking place in a system, and that each of them obeys the 
linear relation of the form (1). Then we can write as 

v. = L8Xs, s = 1, 2, ···,S, (3 ) 

where Vs and Xs are the flux and the force of the s-th elementary reaction. 
The expression (3) is a special case of the linear phenomenological relation 

III irreversible thermodynamics, which is usually expressed as 1)2) 

s 
Vs = L: L.tX, , s=I,2,·-·,S. 

t=1 

Namely, the, off-diagonal coefficients L st (s=l=t) of (4) do not 
which implies that the S reactions are kinetically independent. 
thermodynamics the linear transformation of the form, 

s 
Vs = L: a8tv~ , (det(ast)=I=O) , 

t=1 8=1 

(4 ) 

occur III (3), 
In irreversible 

(5 ) 

IS often considered for forces and fluxes 8). When expressed in terms of the 
new set of forces X: and fluxes v;, the linear relation (3) takes the form (4), 
in which the martix (coefficients) L st obeys the ONSAGER reciprocity relation, 
L st = L ts , because the congruence transformation 8) of the diagonal martix Ls 
of (3) yields a symmetry martix *). 

An interesting example is the system of the monomolecular triangular 
reactions, B ~ C, C ~ A and A ~ B, which has been considered by ONSAGER 9) 

or DE GROOT 1), in order to elucidate the relation between the principle of detailed 
balance and the ONSAGER reciprocal relation. Suppose that the fluxes, Vi and 
the forces Xi (i = 1,2,3) of the three monomolecular reactions are transformed 

into the new fluxes, v;=V l -V3, V~=V2-'V" V~=V3' and the new forces, X:= 
Xl' X~ = X" X~ = Xl + X 2 + X 3. Obviously this transformation is an example 
of (5). Then we obtain Eqs. (49) and (50) of DE GROOT's Chapter IX **)1), 
which satisfy the ONSAGER reciprocity relation. 

The expression (4) together with the ONSAGER relation is usually the basis 
of thermodynamical theories 1)2); e. g., MEIXNER 10), and KIRKWOOD and CRAW­
FORD12

), starting from (4), discussed the relaxation of chemical reactions. 

*) Cf also Eq. (44) of Part I. 
**) Note that the third force, X~ (=Xl +X2 +X3) is identically equal to zero in this example, 

and that DE GROOT's Ji and Ai/T are the same as Vi and Xi, respectively, of this paper. 
Also, there are a few misprints of signs in DE GROOT's Eqs. (49) and (50). 
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In the present case of chemical reactions, the transformation (5) is accom­
panied 7)10)11) by a transformation of the reaction equations, and vice versa. 
This is of considerable interest, because chemists often consider such a trans­
formation of reaction equations and use different representations to describe 
a macroscopic chemical change due to simultaneous chemical reactions: the 
preceding paper, Part 1') has been concerned with transformations between 
different representations. Suppose, for instance, that two reactions l3

), 

(a) 

(b) 

2C+02 = 2CO, 

C+02 =C02 , 

(6 ) 

are taking place in a system. Macroscopically, the chemical changes due to 
the simultaneous reactions (a) and (b) can be equally well described by 

(a' ) 

(b/) 

2C+02 = 2CO, 

2CO + O2 = 2C02 , 

(7 ) 

where the reaction (b /) is a linear combination 13) of (a) and (b); i. e., the latter 
representation, (a/) and (b /) can be obtained by a linear transformation, from 
the former representation, (a) and (b). In other words, these two representations 
are equivalent 7)11). 

In chemical kinetics, on the other hand, the treatment of a complex kinetic 
system 14) (i. e., a system of simultaneous reactions) has been a subject of 
a number of discussions 15). When all the reactions in the system are first­
order, the mathematical treatment is rather simple and a general theory can be 
developed !5)16). The system which involves higher-order reactions defies such 
a simple, general treatment. Even in that case, provided that the reactions are 
elementary reactions in the neighbourhood of equilibrium, their "rate equations" 
reduce to the linear form (3) irrespective of their orders, so that the system 
is capable of general, exact mathematical solutions lO

). Among various irreversible 
processes, chemical reactions are a notorious example which, in many practical 
cases, does not obey the linear relation such as (3) or (4),)!7); in other words, 

a chemical reaction "in the neighbourhood of equilibrium" is considered a rather 
exceptional case. Recently, however, several authors have been concerned with 
chemical reactions close to equilibrium, and interesting result, experimental and 
theoretical, have been obtained2)')!O)!2),!')-2!). 

In Part I, § 27
) we have briefly discussed the concepts of the steady state 

in an open system and the quasi-steady state ("approximately" steady state) in 
a closed system. In the present paper, we shall deal with the establishment 
of a steady or quasi-steady state in a kinetic system of simultaneous elementary 
reactions whose rates are given by (3). Thus we shall further elucidate the 
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relation between chemical kinetics and the thermodynamical theory of chemical 
reactions. On the other hand it will be shown that this kinetic system also 
serves as a "model" which illustrates the general features of a steady or quasi­
steady state") of chemical reactions. The treatment of such a model has the 
advantage that simple solutions can be readily obtained whereas the mathematical 
solutions of complex kinetic systems far from equilibrium are, in general, too 
complicated to be visualized easily. 

§ 1. Fundamental Equations 

We shall consider S simultaneous elementary reactions which obey the 
linear relation (3) and take place in a closed system of constant temperature 
and volume. In the case of reactions close to equilibrium, we can assume 
the linear relation between the forces Xs and the deviation from the equi­
librium10l, as 

(8 ) 
t ~- 1 

where the variable ~t is the "extent of reaction" of the t-th reaction 2)22l, the 
superscript (e) designates the value at equilibrium, and X st is a constant 
coefficient (see below). Combining (3) with (8) and using the relation2

)22), 

we have a set of simultaneous equations, 
s 

(I/Ls)d~s/dt = L: Xst(~t-~ie»), s=l, 2,···, S. (9 ) 
t=1 

Since the transformation property of ~s IS the same as that of the fluxes Vs> 

Eq. (9) becomes, after the transformation of variables (5), 

where 

s s 
L: Hstd't/dt = L: Yst', , s=I,2,···,S, 
t=1 t=l 

s S 

~s-_~;e) = L: ast't , H st = L: (I/L u )c<usaut , 
t=1 'It=l 

s s 
Yst = L: L: Xuvausavt . 

U=l V=l 

(10) 

(ll) 

If the matrix ast in (ll) is so chosen 23) that H st and Yst are unit and diagonal 

matrices, respectively, then the variables 'S defined by (ll) are the "normal 
coordinates" 23\ and the set of equations (10) take the simplest form, 

s=I,2,···,S, (12) 
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where As is the s-th diagonal elements of the above diagonal matrix, i. e., the 
s-th eigenvalue. As pointed out by MEIXNER lO

), the eigenvalues As are always 
negative, and the solution of the simultaneous equations (9) is readily obtained 
from (11) and (12): 

S 

~s-~;e) = L; as.,(;~) exp (-t/"J , (13) 
1£.=1 

where (~) is the initial value of C, and 'u IS the relaxation time defined by 

'u = -,{,:'>O . (13 a) 

In the above treatment we have tacitly assumed that the S elementary 
reactions of (3) are (stoichiometrically) independent. In the case of a kinetic 
system with (stoichiometrically) dependent reactions*J, there is a certain difficulty 
with the definition of the variables ~,. The definition of ~s in such a case will 
be discussed in § 2. 

Suppose that the above S reactions involve N chemical species. To the 
same approximation as (8), the change of the chemical potential Pi of the i-th 
chemical species is given by 

S 

Pi = pie) -I- L; Mis(~s-~;e)) , i=1,2,···,N, (14) 
8=1 

where 

MiS = (apda~8)(e) . 

By virtue of the relation, 

N N 

Xs = - L; PibiS/T = - L; (Pi-p~"))bis/T, (15) 
i=1 i=1 

we have 
N 

X st = - L; }v!itbiS/T , (16) 
i = 1 

where biS is the stoichiometric coefficient22l of the i-th chemical speCIes m the 
s-th reaction. For the simplicity of discussion, we assume the system under 
consideration to be an ideal system; **) thus Pi' MiS and X st are written as22) 

Pi = Pi -I- RTln (NdV), 
N 

X,/ = -R L; bisbit/N~e) , (17) 
i=1 

where Pi is a function only of temperature, Ni the number of moles of the 

-)(-) c;: DE GROOT, Ref. 1, p. 180. The definition of (stoichiometrical) independence of simul­
taneous reactions is described in p. 468 of PRIGO::;INE and DEFAY, Ref. 22. 

,fl. ) A more general treatment is possible, but will be more cumbersome. 
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i-th chemical species, and V the volume of the system. 

§ 2. Steady State 

According to the thermodynamical theory of irreversible processes 1)\, ex­
ternal constraints (dis-equilibrium forces 24») need to be applied to a system for 
a steady state to be established in it. In the case of the kinetic system con­
sidered in § 1, the chemical potentials of some of the N chemical species involved 
in the reactions (say, the species with the index numbers i=1,2,···,M, where 
M <N) need to be kept constant by the constraints. In accordance with 
HIRSCHFELDER'l) and Part 1'1, the M chemical species whose chemical potentials 
are fixed, will be called principal chemical species, and the other chemical 
species will be called intermediates. 

In § 1 we have assumed that the change of the chemical potentials in the 
system obeys the expression (14). Suppose, however, that at a certain time 
(say t=O) the system is brought into contact with an "infinite" reservoir 2S

)26) 

which contains the M principal chemical species and exchanges them with the 
system, so that the chemical potentials (concentrations) of the principal chemical 
species in the system are fixed *). Thus after t=O we can write as 

i=l, 2,···,M, (18 a) 

S 

Pi = pi") + L: Mi8(~8-~;e»), i=.M+l, A1+2,···,N, (18b) 
8=1 

where P~ is the value of the i-th chemical potential in the reservoir, which is 
constant. After t=O, the system becomes an open system. It is no longer 
possible to define the variables ~8 as quantities of state, in the case of an open 
system**). However, the rates Vs of elementary reactions, rather than macro­
scopic reaction rates, are always unambiguously defined quantities, and after 
t=O we define ~8 by 

(t>O) , (19) 

where ~;O) is the value of ~8 at t=O. 

") Cf Part I, §2. Similar cases have been considered by DE GROOT 1) PRIGOGINE 2l, 
DENBIGH 27)28>, lOST 16>, BAK 29) and others. Since, in this paper, we are not interested 

in transport processes, we shall neglect the affinities of the transport processes between 
the system and the reservoir'O). 

'Hf) Cf DE GROOT, Ref. 1, p. 180. As was pointed out in § 1, a similar difficulty arises 
in the case of (stoichiometrically) dependent reactions in a closed system. In that case 

also, we .can unambiguously define ~8 of elementary reactions by using an expression 
similar to (19), i.e., by defining ~8 as the integral of Vs over t. 
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According to (18), the forces (15) are written as the sum of the contribution 
from the intermediates and that from the principal chemical species: 

(20 a) 
t=1 

where X;~ and X~ are constants defined by 

(20 b) 

M 

X~ = - L: (f1.~-f1.;el)biS/T. (20 c) 
i:-=1 

Combining the fundamental equations (3) with (20), and introducing the "normal 
coordinates" Tj8 defined by the relations23l, 

S 

~s-~;e) = L: rslTjI , 
t=1 

s S 

S 

081 = L: (I/Lu)rusrw , 
U.=l 

),:081 = L: L: X~"r"sr'l , det(rsl ) *0, 
'/1,=1 v=l 

we have, instead of (12), a set of simultaneous equations, 

dTjs/dt = ),;Tj8 + y~ , s=l, 2,,,,, S, 

(21) 

(22) 

In (21) and (22), 081 is KRONECKER's delta and y~ IS a constant defined by 

s 
Y~: = L: X~r18 . (23) 

1=1 

Of particular interest, 10 connection with the solution of (22), IS the rank 
I of the matrix*" 

bM+l,l b Mn ,2 ... b,lf+l,S 

bMH" bM+2 ,O ••• b JI+2,S 

(24) 

which consists of the stoichiometric coefficients biS of the intermediates (M < i::::;: N 
and l::::;:s::::;:S). It can now be shown (cf Appendix) that P of the eigenvalues 
),: are zero, and that the remaining ones are negative**l: say, 

" ) HORIUTI and the present author 33) have previously considered the physical meaning of 
the rank I, and called the quantity "the number of independent intermediates". 

"") The relation (25) implies that the quadratic form I;8I;tx';'tX8XI is negative semidefinite, 
and the rank'S) of the quadratic form is 1. Similar quadratic form are discussed in 
the theory of stability of thermodynamical systems2)22)22a). 

- 93-



Journal of the Research Institute for Catalysis 

A;' = 0 for s= 1,2, ... , P; A; <0 for s = P+ 1, P+2,· ··,S, (25) 

where 

P=S-I. (26) 

Hence the solutions of (22) is*) 

for s=1,2,···,P, (27 a) 

(00) + ((0) (00») (tl) 7]8 = 7]8 7]8 -7]8 exp - '8' 

for s=P+1, P+2,···,S, (27 b) 

where 7];0) is the initial value of 7]" 7];00) the steady state value of 7]8' and '8 

the relaxation time: 

s=P+1, P+2,···,S. 

As mentioned in Introduction, the transformation (5), (11) or (21) is accom­
panied by a transformation of the reaction equations, and the new set of S 
reactions associated with')lO) the normal coordinates 7]8 (s = 1,2, .", S), have the 
stoichiometric coefficients,7) 

s 
b~s = L: burts . (28) 

'-1 

The force of the reaction associated with 1), is given by 

x 
X~ = - 1: f1ib~sIT, s=l, 2, ···,S, (29) 

£=1 

which, in turn, is equal to the right hand side of (22), as one can easily prove 
it. Let us now describe the chemical change in the system in terms of this 
new representation, i. e., this new set of reactions. The solutions (27) imply 
that in the course of time the rates, dr;sldt of the S-P reactions with the 
index number s = P + 1, P + 2, ... , S approach exponentially to zero, whereas the 
P reactions with s = 1, 2, ... , P take place with the constant rates, 

dr;sldt = y~ , s=1,2,···,P. (30) 

In the following the former S- P reactions will be called the transient reactions, 
and the latter P reactions the steady reactions. Namely, the S-P transient 
reactions decline with the relaxation times 's> so that the system approaches 
to a steady state, in which only the P steady reactions exist. 

In Appendix we shall further prove interesting relations: [A] the steady 
reactions involve no intermediates, i. e., 

if) Compare this solution with Eq. (23) of Part 1. 
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s 
b~s = L: bitrts =0 for i>M and s=I,2,···,P; (31) 

t=1 

[B] each transient reaction involves at least one intermediate. It follows from 
(18), (29) and (31) that the forecs X~ of the steady reactions are kept con­
stant*l, i. e., 

M 

X~ = - L: f1~b~8/T = const., s=I,2,···,P. 
i =1 

Thus the result (27) is quite understandable; in the course of time the con­
centrations of the intermediates vary, approaching constant values (the steady 
state concentrations)7)2713l), so that the rates of the transient reactions change 
with time until the steady state is reached, whereas the steady reactions, which 
involve no intermediate, proceed with constant rates. In this connection it 
is interesting to see that the rate of irreversible entropy production in the 
system (dS/dt)irr is given by 1)2) 

s 
which takes its minimum value L: (Y~)" at the steady state, in accordance with 

8-1 

the theorem of minimum entropy production 1)2)7)24). 

Example**): Two monomolecular reactions A~M and M'~B are taking 
place in a system, and the concentrations of A and B are kept constant. The 
concentration of M will vary until the steady state cocentration is reached7)27). 
In the steady state the rates of the two reactions become equal, so that the 
net rate of production of M is zero; then the macroscopic chemical change in 
the system is expressed by the single overall reaction A~B7), which is the 
sum of A~M and M~B and does not involve the intermediate M. A simple 
calculation shows that the steady reaction in this case is aA~aB, where the 
constant coefficient a is expressed, in terms of Ls of (3), as a = [L ,L 2/(L , + L2)]'/2; 
in other words, the steady reaction is essentially the same as the overall reaction 
A ~.B, as might be expected beforehand. 

In general, the macroscopic chemical change in the steady state of a 
complex kinetic system is expressed in terms of a few, simple overall reactions, 
which involve no intermediates, i. e., satisfy the relation (31). This point has 
been the subject of Part 1. It can be readily shown ***) that the set of these 
overall reactions are equivalent7

)1l) to the set of the P steady reactions, i. e., 

i,) Such a situation is called isoaffine (cf. DE GROOT, Ref. 1, p. 174). 
*" ) Cf. also the calculation in Part I, § 2. 

;"H,) Cf. §4 of this paper. 
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the reactions which correspond to the zero eigenvalues. In the above example, 
in which case P= 1, the steady reaction and the overall reaction A~B differ 
only by a constant factor a. 

§ 3. Quasi#steady State 

The system considered in § 2 is an open system, smce the exchange of 
matter with the external reservoir is allowed. Removing the reservoir we now 
return to the case of the closed system, which is again described by the set 
of simultaneous equations (9). Although a steady state is established only in 
an open system, the concept of a quasi-steady state 25

)31) is often very useful 
in chemical kinetics of a closed system. In the following we are concerned 
with the establishment of a quasi-steady state in the above closed system. 

In the present case principal chemical species and intermediates are defined 
by their relative stabilities; intermediates are unstable species, so that their 
concentrations are at all times much less than the concentrations of principal 
chemical species 32). Supposing that the chemical species with the index numbers 
i =1,2, ···,M are principal chemical species and those withj=M + 1, M + 2" ·.,N 
are intermediates, we have the relation, 

if i-:;,M and j> M. (32) 

The solution of the simultaneous equations (9) is (13), but for our purpose it 
IS convenient to rewrite it in terms of the variables '1)8 defined in § 2 : 

S 

fj8 = 1: (38U(~O) exp( - tj, ,.) , (33) 
u=l 

where (38U is the transformation matrix which connects '1)8 with (ll' i. e., 
S 

'1)8 = 1: (38UC . (34) 
U-I 

A situation of great interest arises under the condition (32). Namely, [1] 

'u ?> 'v if u-:;'P and v> P, i. e. the first P of the S relaxation times 's 
(s = 1,2, .. , S) in (33) are quite long compared with the remaining ones, where 

P is defined by (26); [2] 1(38UI?> 1(38vl in (33) if s-:;,P, u-:;,P, and v> P, i. e. the 
contribution of the exponential terms with the short relaxation times, to '1)8 

with the index number s=I,2,···,Pis negligibly small; [3] l(3sul~l(3svl in (33) 
if s> P, u-:;'P and v> P, i. e. the contribution of the exponential terms with 
the long relaxation times, to fj8 with sc-=P+l, P+2,···,S is negligibly small. 
The mathematical derivation of these results will be described later in this Section. 

We shall hence suppose*) that the "negligibly small" terms in (33) are 

*) In other words, we shall assume the relation (41). 
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omitted; then (33) will be called the solution of the steady-state approximation. 
The physical significance of this approximate solution is clear when the macro­
scopic chemical change in the system is again described in terms of the S 
reactions associated with the variables (extents of reaction) 1)s, s = 1, 2, . -', S 
(d. § 2). Then the first P reactions are slow reactions, i. e., characterized by 
the long relaxation times, whereas the remaining S - P reactions are transient 
reactions with the short relaxation times and will quickly decay. After the 
transient reactions have died away, i. e., after the induction period'4

)3!), a quasi­
steady state will be attained; then the change in the system is described by 

the above P slow reactions, which do not involve the intermediates according 
to (31) of § 2. 

We shall now consider the relation between the condition (32) and the 
above statements [1]-[3]. For this purpose, the fundamental equations (9) will 
be rewritten in terms of the variables 1)s. The right hand side of (9) splits 
into two parts: 

s s 
Xs = I: X st (~t-~ie») '= L: (X:; + X~t)(~t_~;e)) , (35) 

t~l t=1 

where the relations (17) and (20 b) have been used, and X~t IS defined by 

M 

X~t = -R L: bi8bit/N~e) . (36) 
i= 1 

Using the transformation properties (21) we obtain from (9) , 

s 
dr;s/dt = I: (,1;08t + Y~t)r;t , (37) 

t=1 

where ,1; and Y~t is written, by virtue of (21), (28) and (36), as 

N SSM 

,1: = -R I: (bis)2/N~e), Y~t :..-= I: L: X~J usl"t = - R L: b~sb~t/Nl) . 
i=M"+l u=l1J=l i=1 

(38) 

The equations (35) and (37) correspond to (20a) and (22), respectively, in 
the case of an open system. In handling the fundamental equations (37), the 
properties of the matrix [;(~ 08t + Y~tl are important. Suppose that the matrix 
is divided into the four submatrices A, B, C and D as shown in Fig. 1 a. 
Taking (25) of §2 into account, we observe that actually the eigenvalues ).; 
occur only on the principal diagonal of B. If, as expressed by (32), the 
concentrations of the intermediates are sufficiently low, it follows from (38) 
that the absolute values of the non-zero eigenvalues ,1: are much larger than 
the absolute values of Y~t' because ;(; and Y~t contain the "large" factor 
I/N~e) (i> M) and the "small" factor I/Ni") (isM), respectively: 
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s 
h. c. 

Fig. 1. a. Matrix [{~Ost+ygtJ (=Fa+F'); 
h. Zero-order approximation matrix Fa; 
c. Perturbation matrix F/. 

(39) 

Let us now tentatively assume that the submatrices C and D in the matrix 
P;Ost -I- Y~t] (Fig. 1 a) are negligible. If the matrix elements in C and Dare 
set equal to zero, then the matrix takes the form of Fig. 1 b, so that the 
fundamental equations (37) splits into the two sets, 

p 

dr;8/dt = L: Y~tr;t , S'= 1,2, ... ,p, (40 a) 
t=1 

and 
l' 

dr;8/dt = L: (A;O-,/ -I- Y:t)r;t, s:=P-I-1, P-I-2,·--,S, (40 b) 
t=--P+l 

where we have used (25). Thus the sets (40a) and (40b) are solved indepen­
dently; the solution of (40a) and that of (40b) take the form of (33), but there 
are obviously no "cross terms" between them, i. e., 

Psn = 0, if s::;; P and u > P, or if s > P and u::;; P. (41) 

In terms of the normal coordinates (8 which diagonalize the matrices [Yst ] of 
(40a) and [A;Ost -I- Y.: t ] of (40b), i. e., A and B of Fig. 1 b, the equations (40a) 
and (40b) take the forms 

so=: 1,2. '-',P, (42 a) 

and 

s=P-I-1, P-I-2,···,S, (42 b) 

respectively. Comparing (42) and (40) with (39), we observe*l that the absolute 
value of As in (42a) is of the order of IY~tl, whereas that of As in (42b) is of 

*) It follows from (25) and (39) that the submatrix A consists of the "small" elements 
Y2t , whereas the submatrix B consists of the "large" negative diagonal elements ;.r+ Y28 
and the "small" off-diagonal elements Y2,. 
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the order of IA~' I (u > Pl. Since the relaxation time 'n in (33) is given by 
'u=-l/A~, we thus find 

'8 = -l/As?> -l/A, ='" if sSP and t> P, (43) 

which is the above statement [1]. Combining the results (41) and (43), we 
see that when the submatrices C and D are neglected in solving (37), the 
solution of the steady state approximation (see above) is obtained. 

The effect of the neglected submatrices C and D upon the results can be 
calculated by the perturbation theory frequently used in quantum mechanics; 
the solution of the equations (40) is considered the zero-order approximation, 
and C and D are treated as a perturbation. Since the difference IAs-A,1 (sSP 
and t>P) between the zero-order approximation eigenvalues in (42a) and (42b) 
is "large" (see above) and since the matrix elements Y~, in C and D are "small" 
the effect of C and D is, according to the perturbation theory, expected to be 
small [cf (51) below]. When C and D are not neglected in solving (37), 
those coefficienst psu which have been considered in (41) (i. e. the coefficients 
of the "cross terms") will no longer be zero, but still their absolute values will 
be quite small. Thus we arrive at the results [2] and [3] mentioned above. 

We shall now turn to the perturbation theoretical calculation of the cor­
rection terms due to C and D, which represent the "interaction" between the 
slow reactions and the transient reactions. For this purpose we shall use the 
formula devised by MONTROLL34

) and matrix notations. The fundamental 
equations (37) are rewritten in a matrix form as 

dx(t)/dt= (Fo+F')·x(t). (44) 

In (44), x (t) is a vector whose s-th component is 1j8' and the matrix [2;08, + Y;,] 
of (37) has been split into the two terms Fo and F'; Fo is the matrix of Fig. 
1 b, and hence pi is the perturbation matrix consisting of the submatrices C 
and D (Fig. 1 c). The vector x(t) is expressed as 

x(t) ,= K(t) 'x(O) , (45) 

where x(O) is the initial value of x(t), and K(t) is the transltlOn probability 
matrix3l). Let Ko(t) represent the transition probability matrix K(t) calculated 
in the zero-order approximation, so that Kc(t)·x(O) is the zero-order solution, 
i. e. the solution of the steady-state approximation (see above). According to 
MONTROLL"') the solution x(t) in the first-order approximation IS calculated by 

(46) 

where the second term of the right-hand side represents the first-order correction 
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due to F' (i. e. C and D). 
The equation (33) is also written In a matrix form as 

x(t) = S·T(t)·y(O) = S· T(t)·S-'·x(O) , (47) 

where S represents the matrix [.Bsu], S-' is the reciprocal matrix of S, T(t) IS 

the diagonal matrix [ost exp (-t/rs)] = [OSI exp (Ast)] , and y (0) is a vector whose 
s-th component is (~ol. We shall suppose that .BUBO As and rs in the zero-order 
approximation are known and have been used for the matrices Sand T(t) of 
(47); then the expression (47) is the zero-order solution, and we have 

Ko(t)·x(O) = S·T(t)·S-l·X(O), i. e. Ko(t) = S·T(t)·S-l. (48) 

Hence (46) is rewritten as 

x(t) = S{T(t) +T(t). f: T(-rJ'(S-', F'·S)·T(rJdr J y(O). (49) 

The integral on the right-hand side of (49) is easily calculated, and the following 
expression is obtained; 

(50) 

where Cuv is the (u, v)-element of the matrix S-l·F'·S. The second and the 
third terms on the right-hand side of (50) are the correction terms in the first­
order approximation. Since the matrix S:= [.Bst] in (49) is of the zero-order 
approximation and hence satisfies the condition (41), it can be readily shown*l 
that 

if u~P and v~P, or if u>P and v>P, 
P 8 

Cuv = Cvu = L: L: Y~I.B8U.Btv' if u~P and v>P. 
8=1 t=P+l 

Therefore we observe that the correction terms on the right-hand side of (50) 
contain the factors 

(51) 

where u ~ P and v> P, or u > P and v:::::; P. As was pointed out above, the 
factor Y~t/(Au-A,,) in (51) insures the smallness of the correction terms. Also, 
the expression (50) is rewritten as 

") Here it is to be noted that [P8U] is an orthogonal matrix and [Y%t] a symmetrical 
matrix. 
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r;8= ~J38U [exp(-t/,,J[Z:~)+ V'~+l G"v(A,,-,U-lZ:~O)J 
S 1 

-F~nexp(-t/'v)Guv(l"-Avt'Z:~O)J' for s-::;'P, (52 a) 

and 

for s>P. (52 b) 

These results will be discussed in § 4 . 

§ 4. Discussion 

Under the condition of a steady state, as many chemists realize, the 
mathematical treatment of complex kinetic systems")31) as well as the stoichio­

metric equations describing the macroscopic chemical change*) is much simplified, 
because the concentrations of the intermediates are supposed to be kept constant. 

We shall return to the case of the open system considered in § 2. The 
macroscopic chemical change has been described by the S variables r;8 and the 
S reactions associated with r;:s, where S is the number of the elementary 
reactions in the system. A few of these reactions, which have been called 
steady reactions, involve no intermediates and take place with constant rates, 
dr;8/dt = y~ [cf (30)]; the other reactions called transient reactions produce 
(or consume) the intermediates and exponentially die down during the induction 
period. Therefore, when a steady state is established, the system is described 
in terms of a few steady reactions or a few variables (r;. with s-::;'P). These 
steady reactions are not quite the same as the "overall reactions" usually con­
sidered by chemists and discussed in Part 1. However they are equivalent**) 
to the overall reactions. Also the "rate equations" (30) of the steady reactions 
are equivalent to the linear relations of the overall reactions, Eq. (39) of Part 
1. In other words, the solution of (30) is the same as that of Part I, Eq. (39). 
Further details will be described in Appendix. 

The same variables r;8 and the same reactions have been used in the 
treatment of the closed system in § 3. We have, to a good approximation 

" ) Cf, Part 1. § 1. 
';1;) The definition of the word, equivalent (PRIGOGINE 11)) has been described in Part 1. 

In other words, the steady reactions and the overall reactions are connected by a linear 
transformation. Cf, also (6) and (7) of Introduction, and the simple example at the end 
of §2. 
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(steady-state approximation), demonstrated that the transient reactions (involving 
unstable intermediates) rapidly die away, whereas the steady reactions (called 
slow reactions in § 3) decay quite slowly as compared with the transient 
reactions. The "rate equation" of these steady (slow) reactions is, in the steady 
state approximation, given by (40a). In Appendix we shall show that Eqs. 
(47) and (48) of Part I are equivalent to (40a) of the present paper. In other 
words Eqs. (47) and (48) of Part I, on which the treatment of Part I, §5 is 
based, are the relations in the steady state approximation. In § 3 of the present 
paper, starting from the relation (32), we have also examined the validity of 
the steady state approximation. In this connection, it is to be noted that in 
the limiting case of infinitely large amounts N~e) (l:S;i:S;M) of the principal 
chemical species in (32), the results of the closed system of § 3 coincide with 
those of the open system of § 2*). 

In Part I, we have not been concerned with the transient reactions, because 
our discussions there have been based on the assumption of a steady state or an 
approximate steady state (quasi-steady state). In order to eliminate the transient 
reactions we have used the "principal set transformation" defined by Eqs. (9) 
and (14) of Part I; in this way Eqs. (39), (47), (48), etc. of Part I have been 
derived. 

The expressions (52 a) and (52 b) of § 3 include the first-order correction 
to the steady state approximation. For example we shall consider (52 b); as 
a result of the perturbation, the exponential terms with the long relaxation 
times as well as the terms with the short relaxation times occur in (52 b). It 
follows therefore that the transient reactions do not completely die down after 
the induction period. This corresponds to the fact that in a closed system the 
concentrations of the principal chemical species gradually change with time, 
and so do the concentrations of the intermediates even after the induction 
period. 

It is to be noted that the results of § 3 have various points of contact with 
the theories of BENSONl5

), BAUER3», and especially HIRSCHFELDER3!). The exact 
solution of the fundamental equations (37) or (44) of § 3 is written in the form 
of (45). Substituting (45) into (44), we have 

dK(t)/dt= (Fo+F')·K(t) , (53) 

from which we obtain 34) 

(54) 

*) Remember that we have considered an "infinite" reservoir attached to the closed system 
in §2. 
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where Ko(t) satisfies 

dKo (t)/dt = Fo' Ko (t) , Ko(O) = unit matrix. 

When the zero-order solution Ko (t) is known, the right-hand side of (54) can 
be calculated by the iteration procedure; the expression (46) is the first approxi­
mation solution in the iterative calculation34

). On the other hand, HIRSCHFELDER'S 
discussion 31) on the steady state approximation has been based on a similar 
iterative solutions of rate equations *). 

As was pointed out in the Introduction, the treatment in the present paper 
is restricted to kinetic systems in the neighborhood of equilibrium, but other­
wise considerably general (i. e. independent of the "orders" of the elementary 
reactions, etc.). Also many of the features of a steady (or quasi-steady) state 
observed for reactions close to equilibrium are, at least qualitatively, of more 
general validity. 

The author wishes to thank Professors Henry EYRING (University of Utah) 
and Juro HORIUTI (Hokkaido University) for helpful comments and their interest. 
He is also grateful to Professor Alexius T. REE (University of Utah) for 
friendly encouragement. 

Appendix 

We shall first examme some algebraic properties of the matrix [X:'] 
defined by (20b): 

N 

X:, = - :E (R/Me»)bisbu , (AI) 
i~j~f+l 

As shown in (?l) and (38), the matrix [X:'] is transformed into the diagonal 
matrix [Ai OSI], where 

8 8 N 

A: = L; L; X~ll"8r,S = - L; (R/Nt»)(bi8)2~O. (A 2) 
1(,=11:=1 i-j_f+l 

Thus one sees that the eigenvalues A~:' are negative or zero. Let P be the 
number of the zero eigenvalues, and let us suppose that Ai=O for s=1,2,· .. ,P. 
Since R/N~e) in (A2) is positive, A::.::: 0 implies bis=O for i=2\1+l, M+2,···,N; 
t. e., 

S 

bi8 = L; bitrls = 0 for i=M+l, M+2,···,N, (A 3) 
t=l 

which is the expression (31) of §2. Similarly we can show that if s>P, 
then A::;t:O and at least one of bis's (i:=M+l,M+2, .. ·,N) is non-zero. 

·X·) Cf, also Part I, § 2. 
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We shall now prove the relation (26). Consider the two sets of simul­
taneous linear equations *), 

s 
L: bit))t = 0 , i=M+l, M+2,···,N, (A 4) 
t=1 

and 

s=l, 2, ···,S , (A 5) 
t--=1 

where bit and x.~ are considered constant coefficients. With the help of the 
relation (AI), we can readily prove**) that the set of equations (A 4) is 
equivalent to the set (A 5,), i.e., the solution of (A 4) is the same as that of 
(A 5). Since the rank of the coefficient matrix of (A 4) is J (c}: § 2), the 
number of independent solutions of (A 4) and therefore that of (A 5) are 
S-J 36

). On the other hand, a solution of (A5) is an eigenvector belonging 
to the zero eigenvalue of the matrix [X:;] 23), so that the number of the in­
dependent eigenvectors for the zero eigenvalue is also S-l. It follows that 
the multiplicity (degeneracy)23) of the zero eigenvalue is S-J; i. e. we obtain 
the relation P= S - J. 

The P( = S - J) independent solutions of (A.4) or (A 5) are not unique36
). 

Previous papers 33)7) by HORIUTI and the present author have discussed this point 
and led to the concept of the stoichiometric number. N ow we shall consider 
a set of P independent solutions of (A4) or (A5), i. e. a set of P independent 
eigenvectors belonging to the zero eigenvalues of [X:;]. These solutions or 
eigenvectors will be denoted by (~~P!, ));p)" "'))~)'))' p=1,2, ··.,P***). On the 
other hand, it follows from (21) and (25) that the first P columns of the trans­
formation matrix [rst] are also P independent eigenvectors belonging to the zero 
eigenvalues"!' so that we can write as 

p 

rst = L: ))~1.<)Cut' s=1,2,···,S and t=1,2,···,P, (A 6) 
It- 1 

where [Cut] is a (Px P) transformation matrix which connects the two sets of 
the eigenvectors, and 

det (Cut) * 0 . 

;') Cj. Eq. (15) of Part 1. 
;H') Note that we have, from (A.5) and (A.l), 

0= I: I: X~'tvsVt = ~ (-R/N}")) (f bitvt)2 , 
s t i=M+l \t=1 

which implies 
s 
I: bitvt = 0, i = M+l, M+2, ... N. 

t=1 

;H»;') Cj. Part I, § 1 or Ref. 33. 
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Now Eq. (39) of Part I is rewritten as 

p 

L: (K.tIT ) (dBtldt) = AslT , s=1,2, .. ·,P. (A. 7) 
t=1 

Similarly, Eqs. (47) and (48) of Part I are combined as follows: 
p p 

L: (KstIT) (dBtldt) = L: (AstIT)(Bt-B~e)), s=1,2,···,P, (A. 8) 
t=1 t=1 

on which equation the calculation of Part I, § 5 has been based. The various 
quantities in (A. 7) and (A. 8) are expressed as 

s s 
KstlT = L: (lILu)"''::\/';) , A IT= " X ",(8) s i...J t t , 

U=l t=1 

s S ftl ) S s 
A IT = - R" "(,, b· b. INCe

) ",(s)",(t) = " "xO "CS)",CO sf L.J L...J £.oJ ~u 'tv i U v L..J L..J ·uv .... u v , 
U=l v=l 1=1 u=l v=l 

where Eqs. (9), (14), (17), (36), (40) a,nd (57) of Part I, and (36) of the present 
paper have been used. If, therefore, the both hand sides of (A. 7) and (A. 8) are 
multiplied by Crs and summed over s = 1,2, ... , P and if we make the substitution, 

p 

E t - Eic
) == I: Cts1)s , (A. 9) 

8=1 

then we obtain the equations (30) and (40a), respectively, of the present paper. 
Hence we can conclude that equations (A. 7) and (A. 8) are equivalent to (30) 
and (40a), respectively, of the present paper. 

Similarly, the relation between the steady reactions in § 2 and § 3 and the 
overall reactions of Part I is calculated as 

s p p 

b;s = L: L: bit"';") Cus = L: Bi,.CUS , s-::;'P 
t=-I1.I,,=1 U=l 

where (28) and (A.6) of the present paper, and (17) of Part I have been used. 
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