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Introduction

GRUNEISEN" has first derived an expression of the coefficient a of thermal
expansion, i.e.,
a=711C,V, (1)
where C; is the heat capacity at constant volume, V the volume, X the com-

pressibility, and

= —dlogw/dlog V {w: circular frequency (2)
of lattice vibration)

assumed according to GRUNEISEN to be same for all modes of vibration of the
metal. The constant 7 is correlated with dlog Z/dlog V, provided that the
PoissoN’s ratio is independent of volume, as

1 1 dlogx

T=— = 2085 3
6 2 dlogV (3)
as derived by SLATER?, or
1 1 dlogx
7’ - + — s 3
2 2 dlogV 3a)

as corrected by DUuGDALE and MAacDONALD®, so that 7:=0 for a crystal with
harmonic potentials between adjacent atoms. The 7 derived according to
(3) or (3a) from the observed change of compressibility with pressure agrees
approximately with that from the observed a, X and C, by (1), although the
PorssoN’s ratio depends more or less on atomic volume, or the assumption of
GRUNEISEN on 7 is not exactly valid, as shown below.

The frequency of long wave-length is given as

*) Supported in part by the Grant in Aid of the Fundamental Research of the Ministry

of Education.
#*) Research Institute for Catalysis, Hokkaido University.
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Mw(q) = N¢|al*,

where M is the mass of a metal atom, N the number of atoms per unit volume,
q the wave number vector and ¢, is the elastic constant® appropriate to the

wave number vector g and the polarization vector e,, e.g., %(cll——clz) and

¢, for the transversal modes propagating in the direction (1, 1, 0)**. We have
from (2)***)

7., = —(1/2) dlog(c,,—c/2N)/d log V+1/3 = 0.05

1

or

7, =—(1/2) dlog (c,/N)/d log V+1/3 = 0.66

for Na respectively, by making use of the expressions of ¢, and 1/2(¢,,—cu),
valid at any lattice constant, as derived by Fuchs®.

Eq. (1) is exact, however, f we replace 7 by the mean 7, of 7,=
—d log w(q)/dlog V with weights

(fiw/eT)* exp (ko/sT) {exp (ko/sT)—1} ",

where % is the PLANCK constant divided by 2z, and x the BOLTZMANN constant.
The 7, is not a constant now, but depends on temperature. Actually, recent
experiments by RUBIN, ALTMAN and JoHNSTON®, BiJL and PULLAN®****®_ and
SiMMONS and BALLUFFI” on the thermal expansion coefficient at low temperatures
show that the 7 of Cu, Al or Fe as determined by (1) decreases with decrease
of temperature below 0.3 @ (6: the DEBYE temperature). BARRON® has in-
vestigated the variation of 7,, with temperature according to the lattice dynamics.
He carried out calculations for a cubic close packed lattice assuming central
forces between nearest neighbours, and found that the theoretical 7, obtained
behaved qualitatively similarly to the 7 determined experimentally by (1).

The anharmonicity of potentials of interatomic forces plays an essential
role in the thermal expansion since 7, and consequently «, vanishes identically,
if the potentials are harmonic, as discussed by Born and Bropvy®, WALLER™,
DaMkGHLER™, and Ducpalk and MacDonarLp™. Thus, one of the main

*) The ¢, is the elastic constant in VOIGT’s notation.
#*%) It is necessary in order to designate a normal vibration to give e, and q, but we will
not write eq explicitly for the sake of simplicity.

##% ) FUCHS assumed that the contributions from valence electrons to shear moduli is negli-
gible. His aussumption is, however, not rigorous as will be seen in this paper (cf:
also ref, (13)\

Systematic error is present in the experiments by BIIL and PULLAN (ref. 6), as con-
cluded by SIMMONS and BALLUFFI (ref. 7).
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problems in the theory of thermal expansion is to determine the potentials
between atoms in a metal, inclusive of anharmonic terms. However, it appears
too difficult to give the correct potentials explicitly, since they are in general
of long range and non-central forces.

The potential between atoms in a metal is given, on the other hand, as
the sum of the CouLomB repulsive potential v, between metal ions, the inter-
action potential vy induced by valence electrons, and the exchange repulsion
potential v, between atom cores. It is more general and straightforward, as
investigated by the present author previously'®, to compute the respective contri-
butions from v, v, and v, to the adiabatic potential of the normal mode at
a given lattice constant, which includes automatically the contributions from
the anharmonic terms in question as developed below §1. The calculated
values of the appropriate mean 7, of alkali metals (§2) and copper (§3) are
found to be in good agreement with observed values. The temperature de-
pendency of 7 is also worked out, in good agreement with existing experimental
results or predictively for unobserved values.

§ 1. Dispersion relation of normal vibration

We start with the Hamiltonian for a monovalent metal,
= (1/2m) I pi+(1/2) 5 ¢ lrv—r,| + T valr—R)

: . (4)
U2 TR ~R | +(1/2) TR~ R,) + DM/ R,
where the first term is the kinetic energy of valence electrons i,7,---, the second
term the CoULOMB repulsion potential between them, the third term the potential
of electrons in the field of metal ions, the fourth or the fifth term the CouLomB
or the exchange repulsion potential between ion-cores /,/'---, respectively, and
the last one the kinetic energy of the ions; p, or r, is the momentum or the
coordinate vector of the i-th electron, m or M the mass of an electron or an
ion, and R, or R, the coordidate or velocity vector of the /-th ion.
Expression (4) reduces to the Hamiltonian &, of a perfect crystal without
any deformation, when each ion is at rest on the equilibrium lattice point RS.
The displacement vector u,=R,—R} of the /-th ion from its equilibrium position
R} may be expressed in terms of normal coordinates a, and a} as

w, = $'N e, {a, exp (iqR}) +a} exp (—iqRY)} , (5)
a,cq
where N is the number of ions per unit volume, q the wave number vector,
and e, the unit vector in the direction of polarization of lattice wave, taken in
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the same sense as e ,, so that ag,==a*,, The summation Y’ is taken over
either +q or —g on account that a,=a*, by definition. It is convenient to
express q, or a; and its conjugate momentum p, or p* by the creation and
destruction operators a, and ) as

a, = ——-(71'/2(1)(, ]\4)*/2 (aq +“Tq) s

6
po=1{ho M2} (af—a_ ), [6)

where w, is the circular frequency of a normal vibration of wave number
vector q, as will be determined below. The commutation relations of a,’s are
Ao, —a, 0, =a;al—aray =0 (7]
A0y — 0G0 = gy
and afe,= N, is the number of the phonons designated by q.
The Hamiltonian (4) may be expanded into a power series of a, and a}.
The zeroth order term is the Hamiltonian & of a perfect crystal without any
deformation. The first order coefficient of a,, which arises from the third term

of (4), is given as
vj=—N"3] {exp (iaRj) e, - grad vx(r-Rﬁ)}‘, (8)
Z

and that of & by the complex conjugate of the above expression. The
CouLoMB repulsion potential between electrons given by the second term of
(4) contributes also to the first order term of a, or af in the one-electron
HARrTREE-Fock wave equation derived from (4), since electrons redistribute to
shield the perturbing ionic field v} given by (8) plus its complex conjugate v}*.
The explicit expression has been previously derived by the self-consistent field
method, taking the exchange and correlation effects into account.

The terms of the second order coefficients of afa, arising from the third,
fourth and fifth term of (4) are readily derived. It is not necessary to derive
the coefficients of a,a, or a}a} explicitly, since they contribute nothing to the
second order energy of the metal, up to which we are going to deal with.

The perturbed wave functions and hence the crystal energy are now worked
out by extending HARTREE-Fock method to take the effects, on the self-consistent
shielding field, of the correlation as well as the exchange interactions between
electrons into account'®. The energy expression of a monovalent metal is
thus derived from (4); it consists, as shown below, of the energy of the perfect
crystal (zeroth order), the energy of lattice vibrations (2nd order) and electron-
phonon interaction energy which arises from the non-adiabatic terms.

The adiabatic potential of lattice vibration of wave number q is given as

(Ex+ En+ Ec+ Ex), (9)
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where

E;= Ne*(4z/3), (9 a)
En= % [AR){1—flk+q +K,) | vovh{ Bl — E(k +q +K,)}
+/ k)| 1—f(k—a—K,)} vhv,n ] Ek)— E(k—q—K,)} |

= 5 {/0)—/tk—a—K,)} vhv,| E(k)— E(k—q—K,)| " (9b)

and E; or E, is the contribution to the coefficient of a;a, from the fourth
or fifth term of (4) respectively. In (9b), f{k) is the probability that a state k
is occupied, K, a vector of reciprocal lattice space, E{(k) the energy of an
electron of wave number vector k, which involves the exchange and correlation
energies with other electrons, and v,, or v}, is the matrix element of the per-
turbation of ionic field v/, 7. e.,

v =V F(kHg+ K, r)vigk, r)dr , (10 a)
or
vk =L g*(k, 1) vi*g (k+q + K, v)dr
= {9*(k—a—K, 1)v/*¢ (K, x)dr , (10 b)
where ¢(k+q+K,,r) or ¢(k,r) is the non-perturbed wave function of an
electron of wave number vector k=-q+K, or k, and the star signifies its

complex conjugate. The v,, in (9b) is the effective matrix element of the
perturbation of the shielded ionic field by valence electrons, given as

Uin

Vpn ™
"+ {8retf|lq + K, P —2B(q + K )ret /K3 D{Elk-q+K,)—E(k)}

for 8re’/|la +K,|’>2B{q +K,) ze’/k5, (11 a)
or as
Vs °= Vs for 8z¢’/|q +K,|’<2B(q+K,) ne’/k, (11 b)

where £, is the wave number of an electron on the Fermi surface, and B(q +K,)
is approximately constant near unity as estimated previously'™'?, which allows
for the effect of the exchange and correlation interactions between electrons.
The latter interactions taken into account in terms of B(q+XK,) diminish
the denominator of (11a) to increase the absolute value of the effective matrix
elements. This effect may be interpreted physically as follows. The charge
density of electrons is redistributed by crystal deformation, to shield the per-
turbing ionic field as mentioned above. Electrons tend, however, to keep apart
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from each other by exchange and correlation interactions to reduce the shielding
effect as given by the second term in the denominator of (1la).

These interactions affect, on the other hand, the effective matrix elements
through the approximate relation

-1

S {Ek+q+K,)—E®K)] =DIDE{E&+q+K)—E)] . (12)

where FE,(k) is the HARTREE energy of k-electron, and D or D, is the density
of states in the presence or absence of the exchange and correlation energies.

BarDEEN and PiNEs'™ have recently investigated the réle of the exchange
and correlation interactions between electrons by extending the Bonm-PiNes
collective description method and concluded that their effects on the adiabatic
potential (9) and on the effective matrix element (11} are negligible, in deviation
from the present conclusion. It has been shown, however, in favour of the
present theory that the compressibilities, the electric conductivities and the DEBYE
temperatures of alkali metals derived from (9) and (11) are respectively in good
agreement with experimental values as well as with those from WIGNER-SEITZ
theory in the case of compressibilities, whereas the neglect of the exchange and
correlation effects leads to the values of compressibilities and conductivities twice
as large as the experimental values and to those of the DEBYE temperatures
larger than the observations by 25%.

Expression (9) is in general a quadratic form of e, e, and e,, so that
the normal modes as well as the vibrational frequencies w, are determined by
transforming it to their principal axes (see §2). The Hamiltonian of lattice
vibrations is now given as

1 1 )
Zq: {TM‘P;Pq+’2—M(”;ajaa =

¢

l\/,)—‘

Z‘] {afaq + a;‘aq} fw,

S

(13)
=2, (ajaq + L few, .
< | 2

It should be remarked that the frequencies thus derived without any reference
to the equilibrium lattice constant are exact at any lattice constant and in con-
sequence the same is the case with 7,=—dlog w /d log V derived from them.
The electron-phonon interaction energy arising from the non-adiabatic terms

1s given as',

1 . '
— L R R AR —a =K Rt (10— Elk—a—K,)F—(Fo,f}
4q

which represents alternatively the electron-electron interaction via lattice vibra-
tions. Its order of magnitude is a few cal/mol and is important only for such
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phenomena at extremely low temperatures as superconductivity.

The contributions to the entropy of the crystal from the distribution of
valence electrons may be neglected except at extremely low temperatures and
those from the non-adiabatic energy as well, as mentioned above, hence the
free energy F of the crystal is given by the usual expression as

F=FE¢+rT X log|1—exp(—kaw,/cT)f , (15)

where FE. is the cohesion energy at absolute zero inclusive af the zero-point
energy. Differentiating (15) with respect to the volume, we have
—P=08F|3V =0EoV+(1/V) Y Njiw,d log w,/d log V) (16)
remembering N,= {exp(kw,/xT)—1} " qunce we have
(8P T),=(1/V)1,,Cy
or, referring to the relations (3P/07T),:=—(8V/oT),/(0V/[aP)r, a=(1/V)(@V/[oT),
and y=—(1/V)(dV/oP);,
a=T1XC,V, (17)
where 7, is the mean of 7’s, defined by
%} T Fw /e TV exp(ha,/xT) {exp(fiw,/eT)—1}*

Y law, /e T explliw,/cT){exp(hw,/sT)—1}

q

TM: 5 (18)

At high temperatures 7, is simply the arithmetrical mean of 7,’s, as readily
be seen from the above equation, but at low temperatures 7, of lower frequency
increasingly preponderates, so that 7, depends on temperature in general.

§ 2. Evaluation of Griineisen constants of alkali metals

The expression (9) of the adiabatic potential of lattice vibration of wave
number vector q is a quadratic form of e, ¢, and e,, as mentioned in the
preceding section, 7.e.,

Ei+Eqg+Eo+Er= ) [xylese, , (19)
(¥
where [xy]=[xy]"+[zy]"+ [xy]”,
B+ En= Y [xyl¥eqe,, s (19 E)
EL‘ = Z [xy]Cerzxerm/ ’ (19 C)

and
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Elf = Z [xy]”eqzeqy . (19 R)

With approximations
ok, r)=Ufr)exp{ike}, |Uilr)’=1, (20)
and its HARTREE energy ‘
E,(k) = E, -+ (#*/2m)k* , ‘ (21)

we have from (10)

vin = iNV* cos (e, g +K,) ﬁ Gt), ()
~h

where r, is the radius of a sphere of atomic volume,
3z )

t 2kprit) . (22a
il 9 (k) )

g{x)=3(sinx—x cos x)/x*, V{(r,) the HARTREE potential at », so that V(r,)x0,
and t=|q+K,|/2k;. The summation in the denominator of (11) is given, on
the other hand, as '

Git)= {1 +H(V(r)—E)

-1

T {Ek+q+K,)—EK)] = f%z (E(k+q+K,)—E(#)}

Do N o 23
SANPY

D, 4,

and ,=(#*/2m)k%. The [2y]” is now

with f(t):—%%— (1;‘2) log) 1+¢

given from (9), (11}, (19 E), (22) and (23), as

[ey]e= Net [ — 47 5, 4 30 O PG IR Grppipia), (24
| 3 % Ig+h]? J

where Q=(7., 7, 7.)(=(r/x)q) and h=(h,, h,, h.)(= (r,/7)K,), . being the half

of the lattice constant®’, and

F(t) o Dg; ﬂhzkl,'

= 2 B 2 (1Bl (25)

The [xy]° is readily formulated as
[2y)° = 3 {v.(Ri— R )} exp {ia (Ri—RS.0)} , (26)

1

%) (ha+hy+h,) is even for b.c.c. crystal, and ke, hy, ke are all odd or all even for foec.
crystal.
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where vo(RI—R)_,)=e*/|RI—R).,| for I#0, vo(Rj—R;-,) for /=0 being defined
by

lim |[zy}"+ [2y)} =0, (27)

and the subscripts xy of {v:(R)},, signify the partial difierential coefficient
d*v:(R)/6X0Y (X, Y and Z are components of R). We have, by applying the
method of EwALD'®, from (26)

%l/ﬁ 04y for (b.c.c.)
[.I?/]C‘:Nez[-—GW-I-Hw-F ‘8” ] (28)
3/7;’ 5351‘1/’ for (f.c.c.)
where
G,=4 G+ D), + 1) f_ = q+h 2|
v An ks la+hlr P g (a+hy
and
Hx :j4] 1 [51 + [ lllg/ —’1 lfOr b.C.C.
J= Lo [ e+ gt Jeosxlay [ e
with
. 2 i (el)
Z'_: — § —— —1—_9) s
JU) s z
4 o 6 e’ 3 (el)
l)=-—_ + 2 + 2P
g V r ¢ VY= 1 r

[=(B4+1+1)",

and ¢ is a constant, which should be chosen so as to make the both series
> and )’ rapidly convergent.
I3 I#0

The exchange repulsion potential between two ions is given, according to
BorN and MAYER, as

va(R)= A exp(2rs—R)/P},

where A=125-10""erg, £#=0.345-10"*cm and 7, is given in units of
107* cm as
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Na K * Rb Cs
0.875 1.185 1.320 1.455

The [xy]” is expressed as

[29]" = T {va(RI—R2.0)|_-exp{ia(Ri—R:.,)}
- %z‘é exP [(2’ wrod /p} |[ r(,l 5W+< 0 * ril) llliy} (29)
x {exp(in-i:]l)-—l)} ,
Vr(R,—R;.,) for [=0 being defined by
I;rf: [xy]* = 0.
The equation for the normal mode e, is now given as
[xx] e, +xyle,, + x2]e,. = — Mdle,. ,
[2yle.+ [yyle, + lyzl e, = — Moy, , (30)
[z2] e, +[yz]e, +[22]le,, = —Muale,, ,
where the circular frequency w, is given by the secular equation
t [zz] + Mo, [xy] [zz]
| Lyl lyyl + Mo, [yz] =0. (31)
| [xz] ly=] [22] + M),

For vibrations propagating in the (1,0, 0), (1,1,0) or (1,1, 1) direction, the
modes as well as the frequencies are given readily as

(1) q==/r(q,0,0):

L (longitudinal): e,=(1,0,0}), Mew:= —[xx], (32 L)
7, (transversal) : €,=(0,1,0), Mao’=—[yyl, (32 Ty)
T, (transversal) : e,=(0,0,1), Ma:= —[zz], (32T,

(1) and T, degenerated)
(11) aq= 77/7'0((79 q, 0) :
L: e=01/2,1/V2,0) M} = — {[xzx] +[xyl}, (33 L)
T e = (Y2, —1/V2,0), Mdo,=—{{xx]—[xyl}, (33T
T,: e,=(0,0,1), Mo = —[z2=]. (33 T3)
(i) q==a/rlq,q,q):
— 187 —
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L: e, =(1/¥3,1/V3,1/¥3), Mw:=—{[zx]+2[xy]}, (34L)

Ty e,=()yT, —1yT,0), Mae:=—{[zzl—[z]}, (34T}

T,: e, =({1}y6,1//6, —2/6), Mo:== —{[{xx]—{xyl}. (34 7))
(T, and T, degenerated)

The validity of these equations at the equilibrium lattice constant has been
previously examined in details', and applied to the calculations of the frequency
versus wave number vector relations for monovalent metals. These formulae
are also rigorous at any lattice constant, since they are derived without any
reference to the equilibrium lattice constant, provided the approximations of (20)
and (21), as well as the approximation of (12) and the approximate value of
B(q+K,), are valid.

As an example, we compare the compressibility’® derived from (32 L) and
(33T3) for |q/<1 with the one in the WIGNER-SEITZ theory of a perfect crystal.
The reciprocal of compressibility 1/y=¢,;,—(2/3) (¢.,—¢:,) is given in the present
formulation as™®

1o N[—zmn) E)+ Mgo 0.20¢ _ 0.204¢"
X Ts 7s
|

W%noﬁ“ ;g@=%%] (35)

On the other hand, the cohesion energy E; per electron of perfect crystal is
expressed, according to the WIGNER-SEITZ theory, as
2 2
Ec:Eo(f”.g)-i-—BfCa— 0.60¢’  0.458¢ [C¢+C log< s )+C( 7 )] ¢
5 7 7 ay az /) 2a
where the first term is the HARTREE energy of an electron 2=0 given by (21),
the second the FERMI energy, the third term cotrects for the doubly reckoned
CouLoMmB energy in the first term, the fourth the exchange energy, and the
last term is the correlation energy'”, C,, C, and C, being constants and a, the
BoHR radius. We have from the above expression,

1 1 (dE._ 2 dE)

£ 1277, |\ di? r, dr, |

20 2 2
= N[ 2V =B+ 2 gy 0207 02048 6

2

(Lol 20/ LE._]
+l 3 Gt 9 CZ(Z;)J 2aq |’

*) The contributions of exchange repultions between ion-cores are neglected for the sake
of simplicity,
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1420

making use of the relation

dE, . 3 1 (viry—E)—020€ )

dr, re | re
Egs. (35) and (36) are identical except the last terms, which are approximately
numerically equal with each other for B:=1.25 on the base of C;=0.0313 and
C,==0.0005", indicating that the dispersion relations (31), (32), (34) and (35) are
valid at any lattice constant.

Now, we are ready to evaluate 7,= —d logw,/dlog V for the modes of
waves propagating along the three principal axes from (32), (33) and (34). The
7, for the longitudinal mode of (1,0,0) direction is given, for example, from
(32 L), (24), (28) and (29) as

1 dlog(—[xx])

7, =—dl dlog V== —
og @/d log ) dlog V.~

. —1 { d[xx]’ dfxx]” d[xx]"?\
2[xx] | dlog V dlog V dlog VI’ ’ (37)
1 _[gx]’ﬂ—[xx] 1 dxx]”
2 lxx] 6[xx]l dlogr,
_ 4zNE « (Gt h.) GlerFla-ra)! 2dlogG(t) _ dlog F(1)
6{xx] * |q-+h| UL ()l dlogr, dlogr, |’
where
= ,[xﬁ]_li - 2 Z’ exp {(ZrB———rol)/p} [,1_. -+ ;Jf,,,
dlog r, O i% el
(rd 1, 1\ 2 (87 a)
— Ty 2y —x] irql)—11{,
"o ol {exp imal)—1]
Aog Gl _ (187 _ovir)—E) 2 egtiGle, (7h)
dlog r, {7 eky
dlog F(t) i rsd Dy\\ 28, , rdB ] . .
-0 DoV EEs L TED F | B F(¢
d log r, L s D >J ek, dr, S ®
(37 ¢)
with reference to the relations
dlogky __ 1
dlog 7, ’
dlogl, _ o
dlogr, ’
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rdE, _of 0.20¢°)
: = 3N Vir)—E)— ,
dr, V= B re )
and
AN
dlogV ’

We have, furthermore,

T di‘g(’%) = ﬁﬂ%{%ﬂl {d, +2d,(r,Jas)—1—log (ria)}

using the relation according to Pines'”

Do +~<fs§zﬂ> {d,+du(rJa)—log(riax)} , (374)

where d,, d,, and d, are constants.

The r,dB/dr, is estimated by putting the last term of (35) equal to the
last one of (36), i, e.,

(2 D, 1 ,
Be=1- 0.2704e {”?TC"G_D)JF(? C r) 24,, , 87¢)
hence
dB . (2 D\, /1 4 oy &
= oot |5 () (g Gl

The estimated values are given on the base of d,=12.07, d,==1.47, d,=0.0625,
C,==0.0313 and C,==0.0005" as below :

Na K Rb Cs
d /D
. ’ 0.13 0.20 0.25 0.29
0D )
7 d—B —0.28 —0.16 —0.17 —0.17
dr,

The contributions from these terms to 7, are only a few percent of the re-
sultant values.

The numerical results for 7, of longitudinal and transversal modes in the
three principal axes are given in Figs. 1, 2, 3 and Table A1 in Appendix for
Na and K, and in Figs, 4, 5 and 6 for Rb and Cs®. The second, third and

*) The singular behav1or of Tq at |q|=0.1x/ry of the Ti-branch of the transversal wave
propagating in the direction (110) is due to the contribution from valence electrons (see
the column (III) of (73} of (ii) in Table AT in Appendix).
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fourth columns of Table AT in Appendix show the contributions from the
first, second and third terms on the fifth member of (37) respectively for
(1,0,0) and coresponding terms for (1,1,0) and (1,1,1).

The 7, at high temperatures 7> is estimated by (18), assuming that its
weight in g-space is proportional to |q|’, and taking into account that the
proportion of the weight of (1,0,0), (1,1,0) and (1,1, 1) directions is 6:12:8.
The theoretical results are given in Table T in comparison with the experimental

TaBLE 1. 7 at T>6

Na K | Rb Cs
s (in atomic units) 3.96 4.87 'j 5.18 ‘ 5.57
2o (eV) 3.17 2.10 | 1.86 1.61
B (g=0) 1.25 1.21 \ 1.18 1.18
D/D, 0.90 0.935 | 0.945 0.965
V (rs)—E, (€V) 0.08 — 0.02 ‘ 0.03 0.00
r (theoretical) 1.24 ; 1.46 | 1.76 1.93
JE— - . . IR . I - !
v derived from (3) 1.19 1.30 1 0.90 1.14
1 derived from (3a) 0.86 0.97 : 0.57 0.81
7 (experimental)® ‘ 1.25 1.34 , 1.48 : 1.29
¥ (experimental)# } 1.37 141 186 1.60

#*} Given by GRUNEISEN (see ref. (18)).
®i#) Revised value by GILVARRY (see ref. (18)).

.50

145+

120k Na

[M3-1

l.lo L I 1 Il 1 L.
[¢] 10 20 30 40 50 60

TK
Fig. 7. Criineisdn 7 = aV/zCr versus temperature for
Na and K (theoretical).

193 —



Journal of the Research Institute for Catalysis

values as well as those given by (3) or (3a). The 7{7") as a function of T
is predictively calculated for Na and K according to (18), as shown in Fig. 7.
The 7, of Na decreases at low temperatures, while that of K has a maximum
at T'=10°K, because of the T-branch propagating in the (1, 1, 0) direction with
low frequencies and large 7,.

§3. Normal vibrations and Griineisen constant of Cu

The electronic structure of Cu has been investigated theoretically by a
number of authors®®?”, Extending the quantum defect method, KawmBsg®
obtained 0.988 for the reciprocal of the ratio of the effective electron mass to
the free electron mass, and |U,(r)|*s=1.01. HowarTH*®, by applying the
argumented plane wave method, and Fukuchr®®, by applying the orthogonalized
plane wave method, concluded that the effective mass is almost equal to the
free electron mass, except for electrons of energies near the Fermi surface.
These conclusions of KaMBE, HowArTH and FukucHI indicate that the approxi-
mations of (20} and (21) are close enough to apply the formulae given in the
preceding section directly to the evaluation of normal vibrations and 7,’s of Cu.

The theoretical values of E, are not, however, coincident with each other
as E,==—2.7eV obtained by KamBe" and F,=—4.2 eV by Fukucuar”. The
former value gives too small a cohesion energy of Cu, while the latter too
large one. In the present paper, we have carried out calculations for three
values of E, inbetween these values, Z.e., (a) E,—=—3.33eV, (b) E==—3.70eV
and (c) E,==—4.07eV. We have D/D,==0.875 and B==1.37 respectively from
(37d) and (37e) for the present calculation.

Correction terms 2.90-107* 7:(gi-+q;, +q2)—2.06-10"* rilq|* is added to
g(2k, 1) in the expression (22) of v,,, so as to satisfy the condition v,,=v,,==0
for K,=(z/r,)(1,1,1) and K,=(=/r,) (2,0,0)%.

BorRN-MAYER type A exy (—R/P) of exchange repulsion potential between
a pair of ion-cores is assumed, and the two constants A and © are so adjusted
as to give the observed frequencies of the longitudinal and transversal modes
of g.==(n/rs) (4,4, %) observed by JACOBSEN™ *®.

The values of A and © thus determined assuming V/(r,)=0 are*** :

(a) E,= —3.33¢eV;

*) Any such correction term were not required in the case of alkali metals of b.c.c.
structure and very small value of V{(rs)—F,, since then vz=0 already for [q+K.|>
K, Kn=(n/ro) X(1,1,0) without any correction terms.

#%)  According to JACOBSEN, the data for the {1,1,1) direction is the most accurate (private
communication).

%) We have to replace A exp(—2r/0) in (29) and (37a) by A in this section.
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A=0.123exp (Y2 r/P) eV and r,/0==7.730,

hence
vx(R)=0.123 exp {10.94(R,—R)/R.} eV ,

where R,=y 2 r, is the distance between nearest neighbours in the equilibrium
configuration of the lattice.

(b) E,=—370eV:
A =0.156exp (Y2 r,/?) eV and r,/0=7.148,
hence
Ux(R) = 0.156 exp {10.12(R,—R)/R.} eV ,
(¢) E,= —4.07eV:
A=0.192exp (Y 2 7/0) eV and r,/0=6.717
hence
U,(R)==0.192 exp {9.46(R,—R)/R.} eV .

The frequency versus wave vector relations are calculated for waves propa-
gating in the (100), (110) and (111) directions. The results are tabulated in
Table A1l in Appendix and shown by solid curves in Figs, 8, 9 and 10 for
the case of (b) in comparison with the experimental results of JACOBSEN®® given
by crosses there. The dispersion relations derived for the three sets of values
(a), (b) and (c¢) coincide with each other within a few percent as seen from
Table AIL

The elastic constants ¢, ¢, and ¢,;—c,, are estimated from the long wave-
length limit of the above relations to be 14,0, 8.2 and 4.6 in units of 10"
dynes/cm’, respectively. The electronic term Ej of (9) compensates ca. 80%
or 20% of the contribution to ¢, or ¢,—c¢;, respectively from the FE;+ E, of
9). The value of ¢, is somewhat small as compared with the experimental
value of 17.0 10" dynes/cm®. The discrepancy might be attributed to the free
electron approximations of (20) and (21) for electrons of energies lying near the
FERrwMI surface, which contribute to longitudinal frequencies of long wave-length
(as readily seen from (9a)) and consequently to the elastic constant ¢,;, since
these electrons are expected according to the investigations by HowARTH® and
FukucHr’® to deviate in behaviour from free electrons.

The 7.'s are calculated similarly as in the case of alkali metals. The
results are tabulated in Table AIIl and shown in Figs. 11, 12 and 13 for the
case of (). The 7,/(T) calculated by (18) in given in Fig. 14, in comparison
with the experimental results obtained by RuUBIN, ALTMAN and JoHNSTON®, and
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20k _
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Fig. 14. Griineisen r=aV/xCyv wversus temperature for Cu: ( )
theoretical in the cases of (a) Ey=—3.33¢eV, (b) Ey=-—3.70eV
and (¢) Eo,=-—4.07 eV, respectively; --—-- SIMMONS and
BALLUFFI {ref. 7); O Rubin, Altman and Johnston (ref. 5).

SimMmons and BurLLurri®. The agreement batween the theoretical and the
experimental values is satisfactory.

It should be noted that the respective contributions of the first, second
and third terms of (37) to 7, differ markedly from those of alkali metals,
notwithstanding the same order of magnitudes of the resultant values.

Conclusion

The dispersion relation of circular frequency w versus wave number vector
g and polarization vector e,, which the present author has previously derived
by extending HARTREE-Fock method, is proved to be valid as a function of
lattice constant or atomic volume, hence 7,= -—d log w/d log V of any vibrational
mode is readily evaluated.

Griineisen constant 7 is given by the mean of 7, with weights (Zo/sT) x
exp (hw/xT) {exp(lio/cT)—1} % The I of alkali metals thus derived at high
temperatures 7>6 are 1.24, 1.46, 1.76 and 1.93 for Na, K, Rb and Cs,
respectively, which are compared with the respective experimental values 1.25
~1.37, 1.34~1.41, 1.48~1.86 and 1.29~1.60. The 7 at lower temperatures is
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also worked out predictively. In the case of Na, the 7' decreases monotonously
as T tends to 0°K, but in the case of K, it has a maximum at about 7=
10°K.

Frequency versus wave vector relations as well as 7(7") of Cu are calculated
similarly for the cases of the HARTREE energies of an electron k==0 being
—3.33eV, —3.70eV and —4.07eV. As for the exchange repulsive potential
between ion-cores, the central force potential of BoRN-MAYER type is assumed,
the two constants involved being adjusted to the observed longitudinal and
transversal frequencies at the largest q of (1,1, 1) branch. The theoretical
results are in conformity with experimental results by JAcoBsEN, RUBIN,
ALTMAN and JounsTonN®, and SiMMONS and BULLUFFI”.

In conclusion, it has been shown that the extention of the HARTREE-Fock
method enables us to calculate from first principles the thermal expansion
coefficients or Griineisen constants as functions of temperatures, as well as the
absolute magnitude of electrical conductivities, frequencies of normal vibrations,
and consequently elastic constants and heat capacities or DEBYE temperatures
of monovalent metals. The agreements of the theoretical values with
observations are found satisfactory.

The present method will further be applied to elucidate the nature of
electrical conductivity of transition metals®, the change of electrical conductivity
under pressure, the temperature variation of compressibility and the martensitic
transformation of Li and Na at low temperatures.
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Appendix

TaBLE Al The 7, versus wave number vector q=(z/r,) (4, 0,0),
q=(7/r)(d4,4,0) or q=(x/ry)(4,q4,4) for Na and K.
The first column gives the value of §, the second,
third and fourth columns give respectively the con-
tributions of the first (I), the second (II) and the third
(III) terms of Eq. (37). The 7/s are given in the

last column.
(i) q=(z/ry)(q,0,0)

(L) Longitudinal mode eq=(1,0, 0).

) o - | i
q } 9] (%) 1 {11) Tq
0o | Na 0.448 0.192 0.984 1.623
“ 1 K 0.452 0.217 1.191 1.860
04 Na | 0.446 0.197 0.981 1.624
) K | 0.449 0232 | 1.223 1.903
06 Na 0.446 0194 0.828 1.468
: K 0447 0.235 1041 1723
08 Na 0.448 0.182 0.563 1.193
‘ K 0.449 0.224 0.712 1.385
o | Na 0.449 0177 | 0.443 1.069
: K 0450 0.219 0.575 1.244

(T1,2) Transversal mode e,=(0,1,0) or (0,0,1)

q (1) (11) (11L) Ty
0.0 Na 0.454 0.158 0153 | 0.764
-2 K 0.453 0.193 0192 0.838
0.4 Na ! 0452 0165 | 0260 0.878
: | K 0.451 0204 | 0335 | 0.990
06 Na 0.450 | 0.172 0.364 | 0.987
- ; K 0.450 0.213 0475 | 1.137
08 Na 0.449 0.176 0422 1.047
- ‘ K 0.450 0.217 0.549 | 1.216
o . Na | 0.449 0177 0.443 1.060
: | K | 0.450 0.219 0.573 1.242

! . [ — S S — i e e —
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(L) Longitudinal mode e;=(1/¥'2, 1/¥' 2, 0).

g om (1) o
0.1 Na 0.453 0.187 0.686 1.326
: K 0.450 0.223 0.790 1.463
0.2 Na 0.452 0.192 0.762 1.406
* K 0.448 0.234 0.917 1.598
0.3 Na 0.451 0.195 0.819 1.465
. K 0.446 0.239 1.011 1.697
0.4 Na 0.451 0.196 0.852 1.499
' K 0.445 0.243 1.069 1.757
0.5 Na 0.451 } 0.197 0.863 1.510
" K 0.445 ! 0.244 1.089 1.778
(T,) Transversal mode e={1/¥ 2, —1/¥' 2, 0}
_ | .
g om | m () o
0.1 Na [ 0.786 ‘ - 1.005 1.437 1.217
: K i 0.639 — 0.587 1.498 1.550
0.2 Na 0.752 I - 0.890 1.123 0.984
- K 0.628 ‘ — 0.537 1.218 1.309
0.3 Na ‘ 0.767 — 0.946 1.285 1.106
" K ‘ 0.637 — 0.578 1.416 1.475
|
0.4 Na i 0.799 i — 1.061 1.601 1.339
: K | 0.655 — 0.652 1.777 1.780
0.5 Na ‘ 0.812 — 1.105 1.718 1.425
i K i 0.661 i — 0.680 1914 1.895
(T;) Transversal mode eq=(0, 0, 1)
|
q (I) (11) (L) Tq
01 Na 0.453 0.159 0.145 0.758
: K 0.455 0.193 0.181 0.830
0.2 Na 0.454 0.157 0.127 0.738
= K 0.456 0.191 0.159 0.806
0.3 Na 0.454 0.158 0.138 0.750
: K 0.455 0.193 0.174 0.882
0.4 Na 0.161 0.161 0.155 0.759
: K 0.454 0.196 0.197 0.847
0.5 Na 0.453 0.162 0.160 0.775
" K 0.454 0.197 0.204 0.855
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(i) q=@/r)d.3.9)

(L) Longitudinal mode eq=(1/¥'3 ,1//3 ,1/Y3)

‘ - ‘ ,
q o () am | n
01 Na 0.448 0.187 0.612 1.247
: K 0.450 0.224 0.708 1.381
0.2 Na 0.446 0.194 0.693 1.333
: K 0.447 0.235 0.837 1.520
0.3 Na 0.445 0.197 0.755 1.397
: K 0.446 0.241 0.942 1.629
04 Na f 0.446 0.196 0.783 1.425
: K 0.446 0.242 1.005 1.693
05 Na 0.447 0.193 0.775 1415
: K 0.447 0.239 1.021 1.707

(Ti,2) Transversal mode e;={1/¥ 2, —=1/¥ 2 ,0) or 1/¥6 ,1/Y 6 ,—2/¥ 6 )

3 Mm | oo 7o
01 Na 0.445 0.163 0.265 0.873
: K 0.456 0.201 0.337 0.995
0.2 Na 0.452 0.176 0.470 1.098
‘ K 0.452 0.220 0.622 1.294
0.3 Na 0.449 0.185 0.638 1.272
y K 0.450 0.230 0.854 1.534
04 Na 0.448 0.190 0.731 1.369
. K 0.448 0.236 0.973 1.657
0.5 Na 0.447 0.193 0.775 1.415
. K 0.447 0.239 1.021 1.707
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TaBLe AIL

q=(x/r)(g,0,0)
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Circular frequency o, versus wave number vector
a=(7/70)(4,0,0), @:=(7/r,'(4,4,0) or q=(7/r,)(4,6, )
for Cu. The first column gives values of ¢, the
second, third, fourth and fifth columns give respect-
ively the contributions of Ego+ Ey, Eun, Er and their
sum in Eq. (9) in units of Ne?. The circular frequ-
encies are given in the last column in units of
(Ne?/M)/2=1.35x 10" sec .

(L) Longitudinal mode eq=(1, 0, 0)

f

q ‘ Ec+-Er En Er sum wy
(a) 12.202 — 12417 1.305 1 1.091 1.044
0.2 (b) 12.202 —12.494 1.421 i 1.129 1.063
{c) 12.202 — 12573 1.539 1.168 1.081
(a) 11.227 — 12,102 4.695 3.819 1.954
0.4 (b) 11.227 — 12412 5.098 3.013 1.978
{c} 11.227 - 12727 5.509 4.010 2,002
(a) 9.978 —11.816 8.828 6.990 2.644
0.6 (b) 9.978 —12.464 9.559 7073 2,660
(c) 9978 —13.134 10.300 7.144 2.673

(a) 8.93 — 11.66 12.13 9.39 3.06

0.8 (b) 8.93 - 1263 13.10 9.41 3.07
() 8.93 --13.63 14.08 9.38 3.06

{a) 8.52 —11.59 13.38 10.30 3.21

1.0 (b) 3.52 — 12.68 14.44 10.28 3.21
(c) 852 —13.82 15.50 10.21 3.20

(T1,2) Transversal mode eq=(0, 1,0) or (0,0, 1}

q Ec+Ex En Er sum wy
(a) 0.182 - 0.093 0.508 0.597 0.773
0.2 {b) 0.182 — 0.107 0.535 0.610 0.781
{c) 0.182 — 0122 0.562 0.622 0.788

(a) | 0.670 — 0.459 1.841 2,052 1 1.433
04 (b) | 0.670 — 0524 1.93¢ 2,085 1.444
(¢} 0.670 — 059 2.037 2.112 1.453
(a) ! 1.294 — 1.054 3.492 3.731 1.932
0.6 (b) | 1.294 — 1.200 3.679 3773 1.942
(¢} ] 1.294 — 1356 3.868 3.807 1.951
(a) ‘ 1.82 — 1.62 4.83 5.03 2.24
0.8 (b) | 1.82 — 184 5.09 5.08 225
(e ! 1.82 — 207 5.36 5.11 2.96
(a) 2.02 — 1.86 5.34 5.50 2.35
1.0 (b} | 2.02 — 211 5.63 5.55 2.36
()| 2.02 — 237 5.93 5.59 2.36
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(i) q=(a/r)(q, 7, 0)
(L) Longitudinal mode eq=(1/¥' 27, 1/¥ 2 , 0)

q ‘ Ec+ Er ‘ En Ep sum @
(a) 12121 ‘ — 12.637 3.080 2.564 1.601
0.2 (b) 12,121 — 12.840 3.345 2,626 1.621
(c) | 12,121 — 13.047 3.612 2.686 1.640
(a) 10.500 — 12,354 8.573 6.720 2592
0.4 (b) 1 10.500 — 12,995 9.296 6.801 2.610
(¢} 10.500 — 13.658 10.026 6.868 2621
(a) 7.41 — 9.74 ; 10.22 7.89 2.81
0.6 (b): 741 — 10.55 11.04 7.89 2.81
(]! 7.41 — 11.40 11.86 787 281
|
()| 461 — 599 | .28 6.90 2.63
0.75(b) | 4.61 — 6.60 ; 8.87 6.83 2.62
(c) ] 4.61 — 7.23 ; 9.47 6.85 262

(Ty) Transversal mode e,=(1/¥"2 , —1/¥ 2,0}

q | E¢+Ex Enr Er " sum i wqy
— |

(a) 0.055 —0.000 0304 | 0.359 0,599
0.2 (b 0.055 - 0.000 0.304 0.359 0.599
(c) 0.055 — 0,000 0.305 0.360 0.600
(a) 0326 | - 0182 1.305 1.449 1.204
0.4 (b) 0326 | — 0210 1.333 1.449 1.204
(c) 0.326 — 0239 1.365 1.452 1.205
(a) 0.94 — 073 2.96 3.16 1.78
0.6 (b) 0.94 — 084 3.07 3.18 1.79
(¢} 0.94 — 095 3.20 3.19 1.79
(a) 1.51 [ — 131 1.26 146 211
0.75 (b) 151 [ 149 447 449 2.12
(e} 151 — 167 468 451 2.12

(T2) Transversal mode e;=(0, 0, 1)

. . : -
q Ec+Ex En Ep sum W
(a) 0.393 — 0315 1.041 1.119 1.058
0.2 (b) 0.393 — 0.360 1.099 1.133 1.064
(¢) 0.393 — 0408 1157 1,142 1.069
(a) 1.741 — 2065 4.003 3.679 1.918

04 (b) 1.741 — 2.323 4.255 3.673 1.917
(c) 1.741 — 2.598 4.508 3.662 1.911

(a) 4.22 — 5.58 8.14 6.77 2.60

0.6 (b) 4.22 — 6.20 8.70 6.74 2.60
(c) 492 — 684 9.30 6.68 2.58
(a) 6.45 — 8.60 11.08 8.93 2.99

0.75 (b) 6.45 — 9.46 11.97 8.91 2.99
{c) 6.45 — 10.37 12.76 8.85 2,98
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(i) q={/r (2,3, @)

(L) Longitudinol mode e;=(1/¥'3,1/¥' 3 ,1// 3 )

q Ec+Ex En Ep sum wq
(a) 12.456 — 12635 1.348 1.169 1.081
0.1 (b) 12.456 — 12720 1.464 1.200 1.095
(e) 12.456 — 12.807 1581 1.230 1.109
(a) 12.167 —13.123 4.878 3.923 1.981
0.2 (b) 12.167 — 13.474 5.298 3.991 1.998
{c) 12.167 —13.835 5.721 4,052 2.013
(a) 11.81 —13.94 9.24 7.11 2.67
0.3 (b) 11.81 — 14,66 10.04 7.16 2.68
{c) 11.81 — 1541 10.84 7.24 2.69
(a) 11.53 - 1472 12.77 9.58 3.10
0.4 (b) 11.53 - 15.77 1387 9.63 3.10
(e) 11.53 —- 1686 14.98 9.65 3.11
(a) 11.42 — 1504 14.12 10.50 3.24
0.5 (1) 11.42 —16.22 15.33 10.54 3.25
(¢) 11.42 —17.44 16.56 10.54 3.25
\
(T1,2) Transversal mode eq=(1/Y 2, —1/¥ 2 ,0) or (1/Y 6,1/ 6, —2/ 6 )
q } E¢-+Ex En Er sum g
' |
{a) ! 0.056 L — 0019 0.198 0.235 0.485
0.1 (b) 0.056 — 0.022 0.203 0.237 1 0.487
(e) 0.056 0.025 0.210 0.241 | 0.491
(a) 0.200 — 0060 0.715 0854 | 0.924
0.2 (b) 0.200 — 0.069 0.736 0.867 0.931
le) 0.200 — 0.079 0.759 08380 0.938
{a) 0.38 - 0.10 1.35 1.63 i 1.28
0.3 (b) 0.38 — 012 1.39 1.66 ; 1.29
(c) 0.38 — 0.13 1.44 1.68 1.30
(a) 0.22 — 0.19 1.87 2.20 1.48
0.4 (b) 0.52 — 022 1.94 2.23 1.49
(¢ 0.52 — 026 201 2.27 1.50
(a) 0.57 — 021 207 2.43 1.53
0.5 (b) 0.57 —~ 025 213 2.45 1.57
(c) 0.57 — 028 2.20 2.48 \ 1.58
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TasLeE AIll

q=(r/re){@,0,0)

The 7, versus wave number vector q=(/7,)(q, 0, 0),
a=(w/r,)(d, G 0) or q=(n/#,}(4,q,q) for Cu. The first
column gives the value of §, the second, third and
fourth columns give respectively the contributions
of the first (I}, the second (II) and the third (III) terms
of Eq. (37). The 7/s are given in the last column.

(L} Longitudinal mode e;=(1, 0, 0

q (1) (1) ‘ (I11) Tq
(a) — 0099 2181 0.079 2.161
02 (b) — 0129 2124 0,059 2.054
(¢) ~ 0159 2094 0.037 1.972
(a) — 0115 2190 } 0.093 2168
04 (b — 0151 5192 ; 0.073 2113
(c) — 0187 i 5174 ! 0.050 2.037
(a) —~ 0132 2.288 § 0.112 2.269
06 (b — 0176 2.263 j 0.094 2182
(¢) — 0221 2.269 ‘ 0.071 2119
(a) — 0145 2.333 ; 0.130 2317
08 (b) — 0197 2324 , 0.114 2042
{c) — 0.250 2.351 0.091 2192
(a) — 0149 2,343 " 0.136 2.330
10 (b) — 0202 2341 : 0.123 ‘ 2262
(c) — 0.260 2.375 ] 0.099 : 2214

(T1,2) Transversal mode e;=(0, 1, 0) or (0,0, 1)
i (1) ‘ (1) (I11) Ty
(a) 0.074 1.833 0.026 | 1.933
0.2 (b) 0.062 1.829 0.023 1.913
(¢ 0.048 1.798 0.018 1.864
(a) 0.052 1.932 0.037 2020
04 (b) 0.035 1.940 0.033 2.008
(c) 0.018 1.919 0.027 1.964
(a) 0.032 2.016 0.046 2,094
06 (b) 0.013 2035 0.042 2.090
(¢) — 0.008 2,024 0.034 2.050
(a) 0.020 2,069 0.053 2142
0.8 (b) — 0.002 2,095 0.048 2.141
(¢) — 0025 2,091 0.040 2106
(a) 0015 2,091 0.055 2.162
1.0 (b) — 0.008 2121 0.050 2.163
(c) — 0.032 2119 0.042 2129
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(i) q=(n/re}(q,7,0)
(L) Longitudinal mode eq=(1/¥ 2, 1/¥ 2, 0)

7 (m a o an | 2
(a) — 0.101 2,184 0.000 | 2173
02 (b) — 0137 2.142 0.071 2.076
(e) — 0172 2197 0.049 2.004
(a) — 0138 2.315 0.117 2.293
04 (b) — 0.184 2.293 0.098 2.207
{c) — 0.230 2.303 0.074 ; 2,147
(a) — 0.148 2.339 0.130 2.322
06 (b} — 0.199 2.332 0.114 2.247
(¢) — 0253 2360 0.091 2198
(a) — 0.100 2.149 0.114 2.163
0.75 (b) — 0.144 2.127 0.102 2.085
(¢) — 0191 2.141 0.067 2.016

(Ty) Transversal mode e;=(1/¥ 2, —1/Y' 2, 0)

g | (1) 1 (1) 1 (1 7o
(a) 0.077 | 1.400 0.000 1.476

02 (b) 0.077 1.267 0.000 1.344
(c) 0.076 ’ 1.186 0.000 1,262

(a) 0.050 1526 0.021 1.596

04 (b) 0040 | 1421 : 0.019 1.480
(c) 0.030 1.357 ; 0.015 1.402

(a) 0.033 1.618 ‘ 0038 1.688

06 (b) 0.016 ; 1.534 0.034 1,584
(c) — 0,002 | 1.484 0.028 1511

(a) 0.035 ‘ 1.670 0.048 1.745

0.75 (b) 0.002 1,597 : 0.044 1,643
(e} — 0019 1,554 ; 0.036 1,571

(T%) Transversal mode eq=(0, 0, 1)

g ! (1) (In ‘ (111) Tq
(a) 0.035 1.638 0.046 1.719
0.2 (k) 0.015 1.567 0.041 1.623
{¢) 0.006 1.525 0.034 1,552
(a) 0.044 1.931 0.091 1.978
04 (b) 0.079 1.891 0.083 1.895
(¢) 0.117 1.882 0.071 1.836
(a) 0.101 2.151 0.118 2.168
06 (b) 0.147 2,134 0.107 2.094
(c) 0.196 2.152 0.090 2.045
(a) 0.120 ‘ 2.231 0.126 2.236
0.75 (b) 0.169 : 2.220 0.113 2.164
(¢) 0.221 i 2.244 0.073 2.096
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(i) gq=({n/ro}l¢, 7, Q)

(L) Longitudinal mode e,=(1/¥3,1/¥ 3 ,1/¥ 3),

7 () () | my Y
(a) — 0077 2,097 ! 0.081 ! 2.101
01 (b) — 0110 2.051 0.064 ! 2.005
(c) — 0.143 2,031 0.044 : 1.932
(a) — 0,122 2.261 0.106 f 2245
0.2 (b) — 0.164 2.231 0.088 i 2.155
(c) — 0.206 2230 0.064 2,088
(a) - 0.150 2.962 0.126 2.338
0.3 (b) - 0.198 2348 0.107 j 2956
(¢) — 0.249 2.366 0.082 ! 2.199
(a) — 0.167 2.423 0.138 | 2.394
04 (b) — 0.220 2421 0.119 2.319
(¢} | — 0276 2451 0.093 2.268
(a) \ - 0.172 2.444 3 0.142 2.414
0.5 (b) — 0.288 : 2.446 : 0.123 2.341
() — 0.286 ; 2.481 0.097 2.292

(T1,2) Transversal mode e,={1/¥2 , —1/¥ 2 ,0) or Ay 6,14/ 6, —2//'6 )

g l (1) | (1) | (1) | o
|
(a) 0.079 1.440 0.013 \ 1.532
0.1 (b) 0.072 1.341 0.012 : 1.425
) 0.065 1.263 0.009 ‘ 1.337
(a) 0.082 1.431 0.012 ; 1525
02 (b) 0.076 1.426 0.010 ; 1412
{c} 0.069 1.252 0.008 3 1.329
I
(a) 0.085 1.420 0.010 : 1.515
03 (b 0.079 1.315 ; 0.009 ‘ 1.403
{c) 0.073 1.239 ‘ 0.007 1.319
(a) 0.074 ‘ 1.457 0.015 1.546
04 (b 0.066 1.349 0013 ‘ 1.428
{c) 0.060 1.310 : 0011 } 1.381
{a) 0.073 1.460 0.015 \ 1.548
05 (L) 0.066 1.357 i 0.013 f 1.436
{c) 0.058 1.283 0.010 1 1.352
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