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LATTICE VIBRATION AND THERMAL EXPANSION 

OF MONOVALENT METALS*l. 

By 

Tomiyuki TOYA **) 

(Received July 29, 1961) 

Introduction 

GRONEISEN') has first derived an expression of the coefficient a of thermal 
expansion, i. e., 

a = rxCv/V, ( 1 ) 

where C v is the heat capacity at constant volume, V the volume, X the com­
pressibility, and 

r == -d log w/d log V (w: circular frequency (2 ) 
of lattice vibration) 

assumed according to GRONEISEN to be same for all modes of vibration of the 
metal. The constant r is correlated with d log X/d log V, provided that the 
POISSON'S ratio is independent of volume, as 

r = _ ~ +~ d log X ( 3 ) 
6 2 dlog V 

as derived by SLATER2l, or 

(3a) 

as corrected by DUGDALE and MACDoNALD'l, so that r=o for a crystal with 
harmonic potentials between adjacent atoms. The r derived according to 
(3) or (3a) from the observed change of compressibility with pressure agrees 
approximately with that from the observed a, X and Cv by (1), although the 
POISSON'S ratio depends more or less on atomic volume, or the assumption of 
GRONEISEN on r is not exactly valid, as shown below. 

The frequency of long wave-length is given as 

") Supported in part by the Grant in Aid of the Fundamental Research of the Ministry 
of Education. 

"") Research Institute for Catalysis, Hokkaido University. 
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where M is the mass of a metal atom, N the number of atoms per unit volume, 
q the wave number vector and Cq is the elastic constant*) appropriate to the 

wave number vector q and the polarization vector eq , e.g., l:.-(cll -c12 ) and 
2 

c" for the transversal modes propagating in the direction (1, 1,0)**). We have 
from (2) ***\ 

rt , = -(1/2) dlog(c ll -cJ2 /2N)/dlog V + 1/3 = 0.05 

or 

r t , = -(1/2) dlog (c,,/N)/dlog V + 1/3:= 0.66 

for Na respectively, by making use of the expressions of c" and 1/2 (cll-Cl2), 
valid at any lattice constant, as derived by FUCHS'). 

Eq. (1) is exact, however, if we replace r by the mean rM of rq === 

-d log w(q)/d log V with weights 

C/iw/KT)2 exp (fiW/KT) {exp (fiW/KT)-l} -2, 

where "Ii is the PLANCK constant divided by 2rr, and K the BOLTZMANN constant. 
The rJ[ is not a constant now, but depends on temperature. Actually, recent 
experiments by RUBIN, ALTMAN and ]OHNSTON'\ BIJL and PuLLAN6)****), and 
SIMMONS and BALLUFFI7) on the thermal expansion coefficient at low temperatures 
show that the r of Cu, Al or Fe as determined by (1) decreases with decrease 
of temperature below 0.3 8 (8: the DEBYE temperature). BARRON") has in­
vestigated the variation of r AI with temperature according to the lattice dynamics. 
He carried out calculations for a cubic close packed lattice assuming central 
forces between nearest neighbours, and found that the theoretical rAt obtained 
behaved qualitatively similarly to the r determined experimentally by (1). 

The anharmonicity of potentials of interatomic forces plays an essential 
role in the thermal expansion since r, and consequently cr, vanishes identically, 
if the potentials are harmonic, as discussed by BORN and BRODy9

), W ALLERlO), 

DAMKOHLERlll, and DUGDALE and MACDoNALDl2). Thus, one of the main 

") The c" is the elastic constant in VOIGT's notation. 
,H> ) It is necessary in order to designate a normal vibration to give eq and q, but we will 

not write eq explicitly for the sake of simplicity. 
,H>* ) FUCHS assumed that the contributions from valence electrons to shear moduli is negli­

gible. His aussumption is, however, not rigorous as will be seen in this paper (cf. 
also ref. (13)1. 

""~>") Systematic error is present in the experiments by BUL and PULLAN (ref. 6), as con­
cluded by SIMMONS and BALLUFFI (ref. 7). 
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problems in the theory of thermal expansion is to determine the potentials 
between atoms in a metal, inclusive of anharmonic terms. However, it appears 
too difficult to give the correct potentials explicitly, since they are in general 
of long range and non-central forces. 

The potential between atoms in a metal is given, on the other hand, as 
the sum of the COULOMB repulsive potential VI' between metal ions, the inter­
action potential VE induced by valence electrons, and the exchange repulsion 
potential V R between atom cores. It is more general and straightforward, as 
investigated by the present author previously">, to compute the respective contri­
butions from VI', VB and VR to the adiabatic potential of the normal mode at 
a given lattice constant, which includes automatically the contributions from 
the anharmonic terms in question as developed below § 1. The calculated 
values of the appropriate mean r'f of alkali metals (§ 2) and copper (§ 3) are 
found to be in good agreement with observed values. The temperature de­
pendency of r is also worked out, in good agreement with existing experimental 
results or predictively for unobserved values, 

§ 1. Dispersion relation of normal vibration 

We start with the Hamiltonian for a monovalent metal, 

JY = (1/2 m) L: p~ +(1/2) L; e'/Iri-rjl + L; vr(ri-RZ) 
i Uj i,Z (4) 

+ (1/2) L;e'/IRz-Rrl +(1/2) L;v}'iRz-R r ) + L;(M/2) R~ , 
Nt' Nt' Z 

where the first term is the kinetic energy of valence electrons i,j," -, the second 
term the COULOMB repulsion potential between them, the third term the potential 
of electrons in the field of metal ions, the fourth or the fifth term the COULOMB 

or the exchange repulsion potential between ion-cores l, l' , . " respectively, and 
the last one the kinetic energy of the ions; Pi or r i is the momentum or the 
coordinate vector of the i-th electron, m or M the mass of an electron or an 

ion, and Rz or It the coordidate or velocity vector of the loth ion. 
Expression (4) reduces to the Hamiltonian $0 of a perfect crystal without 

any deformation, when each ion is at rest on the equilibrium lattice point R1. 
The displacement vector Uz= R z- R~ of the loth ion from its equilibrium position 
R1 may be expressed in terms of normal coordinates aq and a: as 

Uz = L;' N l/'eq {aq exp (iqR1) + a: exp (-iqR1)} , 
q,t'q 

(5 ) 

where oN is the number of ions per unit volume, q the wave number vector, 
and eq the unit vector in the direction of polarization of lattice wave, taken in 
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the same sense as e_,p so that a,joc:oa: q • The summation L.;' is taken over 
either +q or -q on account that a,,=a:q by definition. It is convenient to 
express aq or a; and its conjugate momentum p" or p: by the creation and 
destruction operators aq and a; as 

(6 ) 

where w" is the circular frequency of a normal vibration of wave number 
vector q, as will be determined below. The commutation relations of a,,'s are 

a"a",-aq,aq = a~'aq*,-a:;a: = 0 

aqa,~ -a:,aq = Oq'1' , 

and aiaq=Nq is the number of the phonons designated by q. 

(7 ) 

The Hamiltonian (4) may be expanded into a power series of aq and a:, 
The zeroth order term is the Hamiltonian £0 of a perfect crystal without any 
deformation. The first order coefficient of aq , which arises from the third term 
of (4), is given as 

vi = - N'/2 L.; {exp (iqR~) eq • grad vr(r- R~)} , ( 8 ) 
l 

and that of a: by the complex conjugate of the above expression. The 
COULOMB repulsion potential between electrons given by the second term of 
(4) contributes also to the first order term of aq or ai in the one-electron 
HARTREE-FocK wave equation derived from (4), since electrons redistribute to 
shield the perturbing ionic field vi given by (8) plus its complex conjugdte v:*. 
The explicit expression has been previously derived by the self-consistent field 
method, taking the exchange and correlation effects into account. 

The terms of the second order coefficients of a: a'i arising from the third, 
fourth and fifth term of (4) are readily derived. It is not necessary to derive 
the coefficients of a,a" or a: a;' explicitly, since they contribute nothing to the 
second order energy of the metal, up to which we are going to deal with. 

The perturbed wave functions and hence the crystal energy are now worked 
out by extending HARTREE-FoCK method to take the effects, on the self-consistent 
shielding field, of the correlation as well as the exchange interactions between 
electrons into account 13)14). The energy expression of a monovalent metal is 
thus derived from (4); it consists, as shown below, of the energy of the perfect 
crystal (zeroth order), the energy of lattice vibrations (2nd order) and electron­
phonon interaction energy which arises from the non-adiabatic terms. 

The adiabatic potential of lattice vibration of wave number q is given as 

(Er+Eu+Ec+ER)' (9) 
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where 

Er = Ne'(4rr/3) , (9 a) 

En ,= it [f(k) { I-f(k +q + K,,)}viI,v;,.{ E(k)-E(k +q +K,,)}-I 

+ f(k) { l-f(k-q-K,,)}v7i,v p ,,{E(k)-E(k-q-K,,)} -I] 
:-= L: {f(k)-f(k-q-K,,)} vi\vPh { E(k)-E(k-q-K h )} -I (9 b) 

kIt 

and Ec or En is the contribution to the coefficient of a,;:' aq from the fourth 
or fifth term of (4) respectively. In (9b), f(k) is the probability that a state k 
is occupied, K" a vector of reciprocal lattice space, E(k) the energy of an 
electron of wave number vector k, which involves the exchange and correlation 
energies with other electrons, and Vii, or v7" is the matrix element of the per­
turbation of ionic field v~, i. e., 

or 

\' * I d V ih.:= . ¢ (k + q + K,,, r) vi¢(k, r) r, 

vi,,:= S ¢*(k, r)v~*¢(k+q +K,,, r)dr 

= S ¢*(k-q-K'D r)v~*¢(k, r)dr , 

(10 a) 

(10 b) 

where ¢ (k ± q ± K'D r) or ¢ (k, r) is the non-perturbed wave function of an 
electron of wave number vector k ± q ± Kh or k, and the star signifies its 
complex conjugate. The V ph in (9 b) is the effective matrix element of the 
perturbation of the shielded ionic field by valence electrons, given as 

V :- Vii, 

p" - 1 + {8rre'/lq + K"I'-2B(q + K,,)rre'/k~,.}- L: {E(k:+: q:±:: K,.)-E(kWI 
I, 

for 8rre'/lq + K"I' >2B(q --J- K,,) rre'/k~", (11 a) 

or as 

(11 b) 

where k", is the wave number of an electron on the Fermi surface, and B(q + K,.) 
is approximately constant near unity as estimated previously")14), which allows 
for the effect of the exchange and correlation interactions between electrons. 

The latter interactions taken into account in terms of B(q + K /,) diminish 
the denominator of (l1a) to increase the absolute value of the effective matrix 
elements. This effect may be interpreted physically as follows. The charge 
density of electrons is redistributed by crystal deformation, to shield the per­
turbing ionic field as mentioned above. Electrons tend, however, to keep apart 
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from each other by exchange and correlation interactions to reduce the shielding 
effect as given by the second term in the denominator of (lla). 

These interactions affect, on the other hand, the effective matrix elements 
through the approximate relation 

where Eo(k) is the HARTREE energy of k-electron, and D or Do is the density 
of states in the presence or absence of the exchange and correlation energies. 

BARDEEN and PINES") have recently investigated the role of the exchange 
and correlation interactions between electrons by extending the BOHM-PINES 
collective description method and concluded that their effects on the adiabatic 
potential (9) and on the effective matrix element (11) are negligible, in deviation 
from the present conclusion. It has been shown, however, in favour of the 
present theory that the compressibilities, the electric conductivities and the DEBYE 
temperatures of alkali metals derived from (9) and (11) are respectively in good 
agreement with experimental values as well as with those from WIGNER-SEITZ 
theory in the case of compressibilities, whereas the neglect of the exchange and 
correlation effects leads to the values of compressibilities and conductivities twice 
as large as the experimental values and to those of the DEBYE temperatures 
larger than the observations by 25%_ 

Expression (9) is in general a quadratic form of eqx , eqy and eqz , so that 
the normal modes as well as the vibrational frequencies Wq are determined by 
transforming it to their principal axes (see § 2). The Hamiltonian of lattice 
vibrations is now given as 

(13) 
= " (a*a +~l1i.w "S;t qq 2J q' 

It should be remarked that the frequencies thus derived without any reference 
to the equilibrium lattice constant are exact at any lattice constant and in con­
sequence the same is the case with Tq = -d log wjd log V derived from them. 

The electron-phonon interaction energy arising from the non-adiabatic terms 
is given as14

), 

which represents alternatively the electron-electron interaction via lattice vibra­
tions. Its order of magnitude is a few cal/mol and is important only for such 
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phenomena at extremely low temperatures as superconductivity. 
The contributions to the entropy of the crystal from the distribution of 

valence electrons may be neglected except at extremely low temperatures and 
those from the non-adiabatic energy as well, as mentioned above, hence the 
free energy F of the crystal is given by the usual expressIOn as 

(15) 

where EI' is the cohesion energy at absolute zero inclusive af the zero-point 
energy. Differentiating (15) with respect to the volume, we have 

-p= aF/aV:= aEr/aV +(I/V) L, Nqnwq(d log wq/dlog V) (16) 
'1 

remembering N q ={exp(nwq/KT)-I}-l. Hence we have 

(ap/aT)v= (I/V)r,uCv , 

or, referring to the relations (ap/aT)v= -(av/aT)p/(av/ap)r, a=(l/V)(aV/aT)p 

and x=-(l/V)(aV/ap)r, 

a= rMXCV/v, (17) 

where r AI is the mean of rq'S, defined by 

L, rq(nwq/KT)2 exp(nwq/KT) {exp(nwq/KT)-I}-2 
rM = ---"q-----------------

L, (nwq/KT)" exp(nwq/KT) {exp(nwq/KT)-I}-2 
(18) 

q 

At high temperatures rJf is simply the arithmetrical mean of rq'S, as readily 
be seen from the above equation, but at low temperatures rq of lower frequency 
increasingly preponderates, so that rM depends on temperature in general. 

§ 2. Evaluation of Griineisen constants of alkali metals 

The expression (9) of the adiabatic potential of lattice vibration of wave 

number vector q is a quadratic form of C'IX> Cq?J' and Cq" as mentioned in the 
preceding section, i. C., 

Er + En + Ec+ ER = L, [xy] CqxCqy , 
(xy) 

where [xy] == [xy]E + [xy f + [xy]R , 

and 

Er + En = L, [xy y' CqXCqy , 

Ec:=: L, [xy ]C C"XC,,?! , 

-184--
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E R := L: [xy y" eqxeqy . (19R) 

With approximations 

¢(k,r):=Uo(r)exp{ikr}, IUo(1'8 )I':::::-I, (20) 

and its HARTREE energy 

Eo(k):= Eo + (fi//2m)k' , (21) 

we have from (10) 

4rre2 
V ih = iN!/2 cos (eq , q + K h ) Crt) , 

Iq+K,.,2 
(22) 

where r., is the radius of a sphere of atomic volume, 

Crt) = fll + (V(1's)- Eo) ~rr t2
J

1 g (2kp1'st) , 
ekp 

(22 a) 

g(x)=3(sinx-x cos xl/x', V(1's) the HARTREE potential at 1's so that V(1's):::::-O, 
and t= Iq + K,.1/2kp . The summation in the denominator of (11) is given, on 
the other hand, as 

(23) 

. 1 (1- t') )1 + t I -wlthf(t)=-+--log -- and (0=(fi2/2m)k~,. The [xy]E 
2 4t I-t 

IS now 

given from (9), (11), (19 E), (22) and (23), as 

[xy]E:= Ned __ 4rr 0 +4rr L: (fix+hx)((jy+h y ) 1 C(t)'F(t)-'f(t) 
l 3 xy h 1 q + h I' J ' 

(24) 

where q==(qx,cjy, Eiz)(:=(1'o/rr)q) and h==(hx, h y , hz)(=(1'o/rr)K,.),1'o being the half 
of the lattice constant*), and 

F(t) = Do rrfi'kp t'+(I-Bt')f(t). 
D me2 

(25) 

The [xy]C is readily formulated as 

(26) 

if) (hx+hy+hz) is even for b.c.c. crystal, and hx, hy, hz are all odd or all even for f.e. e. 
crystal. 
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where vc(R1-R1~o)=e2/IR1-R1~ol for 1*0, vdR1-R1~o) for 1=0 being defined 
by 

(27) 

and the subscripts xy of { vdR)} xy signify the partial difierential coefficient 
a2vc(R)/aXay (X, Yand Z are components of R). We have, by applying the 
method of EWALDI6

), from (26) 

for (b.c.c.) 

(28) 

for (f c. c.) 

where 

and 

Hxy = 1[41
J 

x L:'[-f(l)oxy + g(/) ixly ] cos rr(q, 1) ffor b. c. c. 
2 UO 12 lfor fc.c. 

with 

I(t) = 2 C~"Z2 +2.!!!l 
I rr 1 13

' 

g(l) :.= 4. c3e-"z, + ~_ c e-"z' + .lef(el) 
Irr Irr 1 1" 

<p(el) =1-~ e-< d~. 2 J'Z 2 

I rr 0 

R1 = = ro (lx, ly, lz) , 

1 = (1; + l~ + l;f2 , 

and c is a constant, which should be chosen so as to make the both senes 
L: and L:' rapidly convergent. 
It 1:1=0 

The exchange repulsion potential between two ions IS given, according to 
BORN and MAYER, as 

where A=1.25·1O- 12 erg, P=0.345·1O- 8 cm and rB IS given 10 units of 
10- 8 cm as 
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Na 

0.875 

K 

1.185 

The [ xy ] R is expressed as 

Rb 

1.320 

Cs 

1.455 

[xy]R= I: {vR(R~-R~_o)} .exp{iq(R~-R~_o)} 
1 Xl! 

= ~ I:'exp f(2rll-rol)/pl f -~~OX'l+ (2-+_1_) U y 1 
p z*o l J I rol' p rol l2 J (29) 

vR(Rz-Rz_o) for l=O being defined by 

lim [xy]1I = 0. 
q ,0 

x {exp(irrql)-I)} , 

The equation for the normal mode eq is now given as 

[xx]eqX + [xy]eqy + [xz]eqZ = -Mw~eqx, 
[xy]eqx + [yy]eqy + [yz]eqZ = -Mw~eqy, 
[xz] eqx + [yz] eqy + [zz] eqZ = -Mw~eqz , 

where the circular frequency W(I is given by the secular equation 

[xx] + Mw~ [xy] [xz] 

[xy] [yy] + lvfw~ [yz] = 0. 

[xz] [yz] [zz] + Mw~ 

(30) 

(31) 

For vibrations propagating in the (1,0,0), (1, 1,0) or (1, 1, 1) direction, the 
modes as well as the frequencies are given readily as 

(i) q=rr/ro(ij,O,O): 

L (longitudinal): eq = (1, 0, 0), Mw~ = -[xx], 

7', (transversal) 

T2 (transversal) 

(ii) q=rr/ro(iJ,ij,O): 

eq,=(O,I,O), Mw~=-[yy], 

eq ,= (0, 0,1), Mw~ = -[zz] , 

(T, and T2 degenerated) 

L: e'l= (I/(Z, I/IT, 0) Mw~= -{[xx]+[xy]}, 

T,: eq = (I/!2 , -I/l2, 0), Mw~ ,= - {[xx]-[xy]}, 

T 2 : eq = (0,0,1), 

(iii) q = rr/ro(ij, ij, (j) : 

Mw~ ,= -[zz]. 

-187-
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L: eq = (1/13, IN3, l/(3), M(j)~ = - {[xx] + 2 [xy]}, (34 L) 

T.: eq = (l/l2, -1/l?:, 0), M(j)~= -{[xx]-[xy]}, (34 T.) 

Tz: eq = (l/lti, l/l6, -2/6), M(j)~ '--= - {[xx]-[xy]}. (34 7~) 

(T. and T2 degenerated) 

The validity of these equations at the equilibrium lattice constant has been 
previously examined in details13), and applied to the calculations of the frequency 
versus wave number vector relations for monovalent metals. These formulae 
are also rigorous at any lattice constant, since they are derived without any 
reference to the equilibrium lattice constant, provided the approximations of (20) 
and (21), as well as the approximation of (12) and the approximate value of 
B(q + K h ), are valid. 

As an example, we compare the compressibility l3) derived from (32L) and 
(33 T.) for /q /,,::;: 1 with the one in the WIGNER-SEITZ theory of a perfect crystal. 
The reciprocal of compressibility 1/7..== cll -(2/3) (cll-Cu ) is given in the present 
formulation as*) 

~ = N[-2(V(rs)-Eo)+2.,0+ 0.20tC_ 0.204e
2 

X 3 rs r. 

- {(B-1) _0.2~4e2 + ~ '0 (1- ~o)}l (35) 

On the other hand, the cohesion energy Ec per electron of perfect crystal IS 

expressed, according to the WIGNER-SEITZ theory, as 

E - E ( ) + 3 I' _ 0.60e
2 

_ 0.4S8e
2 fe + C I (r.,) + C ( r. ) 1 e

Z 

c- 0 r. -. ,"0 --- l ~ . og ~ 2 - --, 

5 r. r. an aFI J 2all 

where the first term is the HARTREE energy of an electron k= 0 given by (21), 
the second the FERMI energy, the third term c()rrects for the doubly reckoned 
COULOMB energy in the first term, the fourth the exchange energy, and the 
last term is the correlation energy17), Co, C. and C2 being constants and an the 
BOHR radius. We have from the above expression, 

1 _ 1 fdzEc_ 2 dEc 1 
-;: - - 12rrr. - I dr;---;:' -dr. -J 

= N[_2(V(r
s
)_Eo)+2.'o+o.20e

2 

_ 0.204e
2 

3 r. rs 

+ f~C.+2.C2(~,,--)1~. J' l 3 9 an J 2a(( 

(36) 

'1) The contributions of exchange repuitions between ion-cores are neglected for the sake 
of simplicity. 
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making use of the relationl
4:1) 

!!E,,- '--' ~ I(V(r,)-Eo)- 0.20e' 1. 
drs 1', l 1', J 

Eqs. (35) and (36) are identical except the last terms, which are approximately 
numerically equal with each other for B~= 1.25 on the base of C = 0.0313 and 
C,=0.000517

), indicating that the dispersion relations (31), (32), (34) and (35) are 
valid at any lattice constant. 

Now, we are ready to evaluate rq= -d log {j)old log V for the modes of 
waves propagating along the three principal axes from (32), (33) and (34). The 
rq for the longitudinal mode of (1 ,0,0) direction is given, for example, from 
(32L), (24), (28) and (29) as 

where 

r == -dlog (j) jd log V ~== _~.:Q~g( - [xx]) 
q q 2 dlog V ' 

~= -1 {~[xxl~+!![xxf + d[xx]", , 
2 [xx] dlog V dlog V dlog V I 

~'-' ~ [xx)'"' + l~xF ___ 1 __ !![xxy' 
2 [xx] 6 [xx] dlogro 

_ 4rrNe
2 L: (ei" + h,,)' C(t)' F(t(lf(t) f 2dlog C(t) 

6 [xx] I. Iq + hl 2 l dlog r. 

(37) 

dlogF(t) I 
dlog 1', J' 

(37 a) 

(37 b) 

dlogF(t) = _l~f(Po. )_!.8d (' 0.)I~~,,--+r8dB f(t)] t2F(t(1 
dlog 1', l D / dr, D J e'kF drs 

with reference to the relations 

dlog kp := -1 , 
dlog 1'8 

dlog(o = -2, 
dlog 1'0 

(37 c) 
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dN =-N, 
dlog V 

We have, furthermore, 

1'8~ __ (_Do) = (1's/afl) {d,+2d2(r./au)-I-log(rs/afj)} , 
drs D do 

using the relation according to Pines 17) 

where do, d" and d2 are constants. 

(37 d) 

The 1'sdB/d1's is estimated by putting the last term of (35) equal to the 
last one of (36), i, e., 

B==I- rs f 2 (o(I- D O)+(}_C,+ 2 C2r8)~1, (37 e) 
0.204 e2 l 3 D 3 9 aH 2aH J 

hence 

The estimated values are given on the base of do= 12.07, d,==: 1.47, d2=0.0625, 
C, = 0.0313 and C2= 0.000517) as below: 

Na K Rb Cs 

d 'D) 
r'd1':( D 0.13 0.20 0.25 0.29 

dB -0.28 -0.16 -0.17 -0.17 1'. ------
drs 

The contributions from these terms to rQ are only a few percent of the re­
sultant values. 

The numerical results for rq of longitudinal and transversal modes in the 
three principal axes are given in Figs. 1, 2, 3 and Table A I in Appendix for 
Na and K, and in Figs, 4, 5 and 6 for Rb and Cs*). The second, third and 

*) The singular behavior of rq at I q I:::::: O.l7r/ro of the T,-branch of the transversal wave 
propagating in the direction (llO) is due to the contribution from valence electrons (see 
the column (!II) of (T,) of (ii) in Table A I in Appendix). 
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fourth columns of Table A I in Appendix show the contributions from the 
first, second and third terms on the fifth member of (37) respectively for 
(1,0,0) and coresponding terms for (1,1,0) and (1,1,1). 

The rx at high temperatures T>e is estimated by (18), assuming that its 
weight in q-space is proportional to 1 q I', and taking into account that the 
proportion of the weight of (1,0,0), (1,1,0) and (1,1,1) directions is 6: 12: 8. 
The theoretical results are given in Table I in comparison with the experimental 

TABLE I. r at T>B 
-=- -=---~ -" --:" --- - -- "_--CC-_- __ c=-.:...- ::~_-'" .• -:c 

Na K Rb Cs 
------_._--------------------_ .... __ .-

rs (in atomic units) 3.96 4.87 5.18 

(0 (eV) 3.17 2.10 1.86 

B (q= 0) 1.25 1.21 1.18 

DIDo 0.90 0.935 0.945 

V (rs)-Eo (eV) 0.08 - 0.02 0.03 

r (theoretical) 1.24 1.46 1.76 
---- _._---- . --_.- ---

r derived from (3) 1.19 1.30 0.90 

r derived from (3a) 0.86 0.97 0.57 

r (ex peri men tal)if) 1.25 1.34 1.48 

r (experimental)"") 1.37 1.41 1.86 

*) Given by GRUNEISEN (see ref. (18)). 
"i') Revised value by GILVARRY (see ref. (18)). 
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values as well as those given by (3) or (3a). The r(T) as a function of T 
is predictively calculated for Na and K according to (18), as shown in Fig. 7. 
The r,l[ of Na decreases at low temperatures, while that of K has a maximum 
at T~lOoK, because of the T,-branch propagating in the (1,1,0) direction with 
low frequencies and large rQ• 

§ 3. Normal vibrations and Griineisen constant of eu 

The electronic structure of Cu has been investigated theoretically by a 
number of authors19

)20)2'). Extending the quantum defect method, KAMBE19
) 

obtained 0.988 for the reciprocal of the ratio of the effective electron mass to 
the free electron mass, and I Uo (r8) 1

2
c.c: 1.01. HOWARTH20

\ by applying the 
argumented plane wave method, and FUKUCHI21l, by applying the orthogonalized 
plane wave method, concluded that the effective mass is almost equal to the 
free electron mass, except for electrons of energies near the Fermi surface. 
These conclusions of KAMBE, HOWARTH and FUKUCHI indicate that the approxi­
mations of (20) and (21) are close enough to apply the formulae given in the 
preceding section directly to the evaluation of normal vibrations and rq'S of Cu. 

The theoretical values of Eo are not, however, coincident with each other 
as Eo'--= -2.7 eV obtained by KAMBE19

) and Eo= --4.2 eV by FUKUCHI2'
). The 

former value gives too small a cohesion energy of Cu, while the latter too 
large one. In the present paper, we have carried out calculations for three 
values of Eo inbetween these values, i.e., (a) Eo=-3.33eV, (b) Eo~-3.70eV 
and (c) Eo= -4.07 eV. We have D/Do=0.875 and B= 1.37 respectively from 
(37 d) and (37 e) for the present calculation. 

Correction terms 2.90.10- 4 r;(q!+q;,+q;)-2.06·1O-' r;lql' is added to 
g(2kp r st) in the expression (22) of Vi!" so as to satisfy the condition Vi/,=vp,,=O 

for K,,=-.(rr/ro) (1,1,1) and K,,=(rr/ro) (2,0,0)*). 
BORN-MAYER type A exy (-R/P) of exchange repulsion potential between 

a pair of ion-cores is assumed, and the two constants A and P are so adjusted 
as to give the observed frequencies of the longitudinal and transversal modes 
of qm=--c.(rr/ro) (t, t, t) observed by ]ACOBSEN22»1<*). 

The values of A and P thus determined assuming V(rs)=O are***): 

(a) Eo=-3.33eV; 

") Any such correction term were not required in the case of alkali metals of b. c. c. 
structure and very small value of V(rs)-Eo, since then Vi":::O already for Iq+K"I> 
K", K,. = (tr/ro) X (1,1,0) without any correction terms. 

"*) According to JACOBSEN, the data for the (1,1,1) direction is the most accurate (private 
communication) . 

. """) We have to replace Aexp(-2rs/P) in (29) and (37a) by A in this section. 
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A = 0.123 exp ((2 ro/P) eV and ro/P==7.730, 

hence 

vR(R) = 0.123 exp {10.94 (Re-R)/Re} eV , 

where Re= l2 ro is the distance between nearest neighbours In the equilibrium 
configuration of the lattice. 

(b) Eo=-3.70eV: 

A = 0.156 exp (/2 ro/P) eV and ro/P=7.148, 

hence 

vR(R) = 0.156 exp [10.12(Re-R)/Re} eV , 

(c) Eo= -4.07 eV: 

A=0.192exp(!2ro/P) eV and ro/P=6.717 

hence 

The frequency versus wave vector relations are calculated for waves propa­
gating in the (100), (llO) and (lll) directions. The results are tabulated in 
Table A II in Appendix and shown by solid curves in Figs, 8, 9 and 10 for 
the case of (b) in comparison with the experimental results of JACOBSEN22) given 
by crosses there. The dispersion relations derived for the three sets of values 
(a), (b) and (c) coincide with each other within a few percent as seen from 
Table A II. 

The elastic constants cll , c" and Cll -C!2 are estimated from the long wave­
length limit of the above relations to be 14,0, 8.2 and 4.6 in units of lOll 

dynes/cm2
, respectively. The electronic term En of (9) compensates ca. 80% 

or 20% of the contribution to c" or Cll -C!2 respectively from the Er + Ec of 
(9). The value of Cll is somewhat small as compared with the experimental 
value of 17.0 10" dynes/cm'. The discrepancy might be attributed to the free 
electron approximations of (20) and (21) for electrons of energies lying near the 
FERMI surface, which contribute to longitudinal frequencies of long wave-length 
(as readily seen from (9a)) and consequently to the elastic constant C11 , since 
these electrons are expected according to the investigations by How ARTH20 and 
FUKUCHI21

) to deviate in behaviour from free electrons. 
The rq's are calculated similarly as in the case of alkali metals. The 

results are tabulated in Table AlII and shown in Figs. ll, 12 and 13 for the 
case of (b). The r,[(T) calculated by (18) in given in Fig. 14, in comparison 
with the experimental results obtained by RUBIN, ALTMAN and JOHNSTON'), and 
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SIMMONS and BULLUFFI7). The agreement between the theoretical and the 
experimental values is satisfactory. 

It should be noted that the respective contributions of the first, second 
and third terms of (37) to Iq differ markedly from those of alkali metals, 
notwithstanding the same order of magnitudes of the resultant values. 

Conclusion 

The dispersion relation of circular frequency w versus wave number vector 
q and polarization vector eq, which the present author has previously derived 

by extending HARTREE-FoCK method, is proved to be valid as a function of 
lattice constant or atomic volume, hence 1,/= -d log wid log V of any vibrational 
mode is readily evaluated. 

Griineisen constant I is given by the mean of Iq with weights (liwIKTY x 
exp (liwIKT) {exp(nw/KT)-l} 2. The I of alkali metals thus derived at high 
temperatures T'?.8 are 1.24, 1.46, 1.76 and 1.93 for Na, K, Rb and Cs, 
respectively, which are compared with the respective experimental values 1.25 
~ 1.37, 1.34~ 1.41, 1.48~ 1.86 and 1.29~ 1.60. The I at lower temperatures is 
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also worked out predictively. In the case of Na, the r decreases monotonously 
as T tends to OaK, but in the case of K, it has a maximum at about T= 
lOOK. 

Frequency versus wave vector relations as well as r(T) of eu are calculated 
similarly for the cases of the HARTREE energies of an electron k = 0 being 
-3.33 eV, -3.70 eV and -4.07 eV. As for the exchange repulsive potential 
between ion·cores, the central force potential of BORN-MAYER type is assumed, 
the two constants involved being adjusted to the observed longitudinal and 
transversal frequencies at the largest q of (1,1,1) branch. The theoretical 
results are in conformity with experimental results by JACOBSEN2'l, RUBIN, 
ALTMAN and JOHNSTON51, and SIMMONS and BULLUFFI7). 

In conclusion, it has been shown that the extention of the HARTREE-FoCK 
method enables us to calculate from first principles the thermal expansion 
coefficients or Grlineisen constants as functions of temperatures, as well as the 
absolute magnitude of electrical conductivities, frequencies of normal vibrations, 
and consequently elastic constants and heat capacities or DEBYE temperatures 
of monovalent metals. The agreements of the theoretical values with 
observations are found satisfactory. 

The present method will further be applied to elucidate the nature of 
electrical conductivity of transition metals23

), the change of electrical conductivity 
under pressure, the temperature variation of compressibility and the martensitic 
transformation of Li and Na at low temperatures. 
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Appendix 

TABLE A 1. The Yq versus wave number vector q = (;r/r 0) (if, 0, 0), 
q = (-;r/ro)(q, q, 0) or q =(;r/ro)(q,il, ij) for Na and K. 
The first column gives the value of q, the second, 
third and fourth colu mns give respectively the con­
tributions of the first (I), the second (II) and the third 
(III) terms of Eq. (37). The Yq'S are given in the 
last column. 

(i) q =in-Jro) (q, 0, 0) 

(L) Longitudinal :node eq=(l, 0,0). 

q ( I ) (II) (III) rq 

0.2 Na 0.448 0.192 0.984 1.623 
K 0.452 0.217 1.191 1.860 

0.4 Na 0.446 0.197 0.981 1.624 
K 0.449 0.23:2 1.22:3 1.903 

0.6 Na 0.446 0.194 0.828 1.468 
K 0.447 (L~35 LOn 1.723 

0.8 Na 0.448 0.182 0.56:3 1.193 
K 0.449 (U2-l 0.712 1.385 

1.0 Na 0.449 0.177 0.443 1.069 
K 0.450 0.219 0.575 1.244 

(T,,') Transversal mode eCj =0 (0, 1,0) or (0,0,1) 

q (I) (II) (Ill) r(l 

0.2 Na 0.454 0.158 0.153 0.764 
K 0.453 0.EJ3 0.192 0.838 

0.4 Na 0.452 0.165 0.260 0.878 
K 0.451 0.204 0.335 0.990 

0.6 Na 0.450 0.172 0.364 0.987 
K 0.450 0.213 0.475 1.1::17 

0.8 Na 0.449 0.176 0.422 1.047 
K 0.450 0.217 0.549 1.216 

1.0 Na 0.449 0.177 0.443 1.060 
K 0.450 0.219 0.573 1.242 

~---"'::-.-----=-~'---'---=-~. 
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(ii) q = (,,/ro)(ij, ij, 0) 

(L) Longitudinal mode eq=(1/12, 1/12, 0). 

ij (I) 
______ 1 _ 

(II) (III) rq 

0.1 Na 0.453 I 0.187 0.686 1.326 
K 0.450 0:22:3 0.790 1.463 

0.2 Na 0.452 0.192 0.762 1.406 
K 0.448 0.234 0.917 1.598 

0.3 Na 0.451 0.195 0.819 1.465 
K 0.446 0.:!:39 1.011 1.697 

0.4 Na 0.451 0.196 0.852 1.499 
K 0.445 0.243 1.069 1.757 

0.5 Na 0.451 0.197 0.863 1.510 
K 0.445 0.:!44 1.089 1.778 

(Til Transversal mode eq=(l/IT, -1/12 , 0) 

ij 
I 

(I) (II) (m) 
I 

rq 
.. _ .. _----, ---- ---------------_._----

0.1 Na 0.786 - 1.005 1.137 1.217 
K 0.639 - 0.587 1.498 1.550 

0.2 Na 0.752 -- 0.890 1.123 0.984 
K 0.628 - 0.537 1.218 1.309 

0.3 Na 0.767 - 0.946 1.:!85 1.106 
K 0.637 - 0.578 1.416 1.475 

0.4 Na 0.799 - 1.061 1.601 1.339 
K 0.655 - 0.652 1.777 1.780 

0.5 Na 0.812 - 1.105 1.718 1.425 
K 0.661 - 0.680 1.914 1.895 

...... _-

(T2 ) Transversal mode eq=(O, 0,1) 

ij 
I 

(I) 
I 

(II) (III) I r" _L -------- ---------

0.1 Na 0.45:'1 0.159 0.145 0.758 
K 0.455 0.193 0.181 0.830 

0.2 Na 0.454 0.157 0.127 0.738 
K 0.456 0.191 0.159 0.806 

0.3 Na 0.454 0.158 0.138 0.750 
K 0.455 0.19:1 0.174 0.882 

0.4 Na 0.161 0.161 0.155 0.759 
K 0.454 0.196 0.197 0.847 

0.5 Na 0.453 0.162 0.160 0.775 
K 0.454 0.197 O.:!04 0.855 

-202-



Lattive Vibration and Thermal Expansion of Monovalent Metals 

(iii) q = (7r/rol (g, g, g) 

(L) Longitudinal mode eq=(1/13, 1/13, 1/(3) 
-----------~----- ------._-_._==_. ,,;=== 

0.1 

0.2 

0.3 

0.4 

0.5 

Na 
K 

Na 
K 

Na 
K 

Na 
K 

Na 
K 

(I) 

0.448 
0.450 

0.44(} 
0.447 

0.445 
0.446 

0.446 
0.446 

0.447 
0.4'17 

(II) 

0.187 
0.224 

0.194 
0.235 

0.197 
0.241 

0.196 
0.242 

0.193 
0.239 

(III) 

0.612 
0.708 

0.693 
0.837 

0.755 
0.942 

0.783 
1.005 

0.775 
1.021 

(TI,.) Transversal mode eq=(l/I2', -1/12:, 0) or (1/16,1/16, -2/(6) 

(I) (II) (1II) 

0.1 Na I 0.445 0.163 0.265 
K 0.456 0.201 0.337 

0.2 Na 0.452 0.176 0.470 
K 0.452 0.220 0.622 

0.3 Na 0.449 0.185 0.638 
K 0.450 0.230 0.854 

0.4 Na 0.448 0.190 0.731 
K 0.448 0.236 0.973 

0.5 Na 0.447 0.193 0.775 
K 0.447 0.239 1.021 
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1.397 
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0.873 
0.995 
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1.272 
1.534 

1.369 
1.657 
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TABLE A II. Circular frequency UJ'1 versus wave number vector 
q = (r./ro) (i1, 0, 0), q~(rrlro\(q, q, 0) or q =(rr/ro)(q, (, Ii) 
for Cu. The first column gives values of ~, the 
second, third, fourth and fifth columns give respect­
ively the contributions of Ec+ E 1, ElI, EN and their 
sum in Eq. (9) in units of Ne'. The circular frequ­
encies are given in the last column in units of 
(Ne'/MY/' = 1.35 X 1013 sec 1. 

(i) q=(rr!'-o) (g, 0, 01 

(L) Longitudinal mode eq=(l, 0, 0) 

I 

-~I 
0.2 (b) 

(c) I 

i 
(a) I 

0.4 (b) I 
(c) I 

( a) 
0.6 (b) 

(c) 

(ai 
0.8 (b) 

(c) 

(a) 
1.0 (b) 

( c) 

12.202 
12.202 
12.202 

11.227 
11.227 
11.227 

9.978 
9.978 
9.978 

8.93 
8.93 
8.93 

8.52 
8.52 
8.52 

__ L __ En _~~I ~~._~ __ s_u_m __ -c---_____ ll)y. ____ _ 

- 12.417 
- 12.494 
- 12.573 

-' 12.102 
-- 12.412 
-- 12.727 

-- 11.816 
- 12.464 
- 1:3.1:-\4 

~ 11.66 
-- 12.6::\ 
-- 13.6:\ 

- 11.59 
- 12.68 
- 13.82 

1.305 
1.421 
1.539 

4.695 
5.098 
5.509 

8.828 
9.559 

10.300 

u.n 
13.10 
14.08 

l3.38 
14.44 
15.50 

1.091 
1.129 
1.1(i8 

3.819 
3.9n 
4.010 

6.990 
7.07:\ 
7.144 

9.:\9 
9.41 
9.:38 

10.30 
10.28 
1(1.21 

1.044 
1.063 
1.081 

1.954 
1.978 
2.002 

2.644 
2.66D 
2.67:1 

3.06 
:).07 
:-\.06 

3.21 
3.21 
3.20 

==~= .. ----.-'--~-=~---.----~-

(7\,,) Transversal mode eq=(O, 1, 0) or (0,0,11 

g 

0.21bl l 
(c) 

(a) r 

0,4 (b) i 

(el 

(a) I 

0.6 (b) r 

(c) 'I 

( a) 
0.8 (b) I 

(c) I 

(a) I 
1.0 (b) i 

(c) I, 

EC+E_'1_--,---___ E_II_ __I ___ :~~ ___ I __ ~~':_~~... llh 

0.182 
0.182 
0.182 

0.670 
0.670 
0.670 

l.294 
1.294 
1.294 

1.82 
1.82 
1.82 

2.02 
2.02 
2.02 

0.093 
0.107 
0.122 

0,459 
0.524 
0.595 

1.054 
1.200 
1.356 

1.62 
1.84 
2.07 

1.86 
2.11 
2.:17 

0.508 
0.535 
0.562 

1.841 
1.939 
2.037 

3.492 
:-\.679 
3.868 

4.83 
5.09 
5.36 

5.34 
5.63 

0.597 
0.6LO 
0.622 

2.052 
2.085 
2.11 :2 

3.731 
3.773 
3.807 

5.03 
5.08 
5.11 

5.50 
5.55 
5.59 

II 

0.773 
O.7g1 
0.788 

1.433 
1.444 
1.453 

1.932 
1.942 
1.951 

2.24 
2.25 2.26 
2.35 
2.36 
2.:36 

--------:-----~~. --------~ ~--.--~-

-- 204 --



Lattice Vibration and Thermal Expansion of !vIonovalcnt Metals 

(ii) q=(rc/ro) (q, q, 0) 

(L) Longitudinal mode eq=11/1~·, 1/1 ~ ,0) 

~~ .. ~·~~··I·· Ec+Er 

0.2 ib\ ! 
(e) 

(a) I 

0.4 Ib) I 
(e) , 

(a) 
OJ) Ib) 

(e) I 

I 

(a) I 
0.75(b) I 

(e) ! 

12.121 
12.121 
12.121 

lO.500 
10.500 
10.500 

7.41 
7.4l 
7.41 

4.6l 
4.61 
4.61 

Ell 

- 12.637 
-- 12.840 
- 1:-).047 

- 12.354 
~- 12.995 
-J:l.()58 

- 9.74 
~~ 10.55 
-- 11.40 

5.99 
- 6.60 
- 7.23 

(TI ) Transversal mode eq=(1/lz, -1/12 ,0) 

i 
(a) I 

0.2 (b) I 
(e) 

(a) 
0.4 (b) 

(e) 

(a) 
n.!) (b) 

( e) 

la) 
0.75(b) 

(e) 

Ec+El 

0.055 
0.055 
0.055 

0.326 
0.326 
0.326 

0.94 
0.94 
0.94 

1.5l 
1.51 
1.51 

Ell 

0.000 
0.000 

-- 0.000 

0.l82 
0.210 
0.2:'\9 

0.73 
0.84 
0.95 

1.3l 
1.49 
1.67 

(T2 ) Transversal mode eq= (0,0, 1) 

En sum 
.. -~.--.-..... -----, 
3.080 
3.345 
3.612 

8.573 
9.~96 

1O'<)~6 

10.22 
11.0·1 
lUl6 

8.28 
8.87 
9.47 

0.304 
0.304 
0.:-)05 

1.305 
1.333 
1.365 

2.96 
3.07 
3.20 

4.26 
4.47 
4.6S 

2.564 
2.626 
2.686 

6.nO 
6.80l 
6.868 

7.89 
7.89 
7.87 

6.90 
6.88 
6.85 

sum 

0.359 
0.:-)59 
O.:-)(i() 

1.449 
1.449 
1.45~ 

3.16 
3.1S 
3.19 

4.46 
4.49 
4.51 

1.601 
1.621 
1.640 

2.592 
2.6lO 
2.621 

2.81 
~.81 
~.SI 

2.6:3 
~.6~ 
~.62 

0.599 
0.599 
0.600 

1.204 
1.204 
1.~O;) 

1.7S 
1.79 
1.79 

2.11 
2.1~ 
2.12 

.. ..:::------;.-=-:-:--=--==------= 

q . E('-!-El I Ell I ER I sum liJ.! 

-~~2 ib\ ---g:~~~ ·----gJig---r- i:g~i---~il~:-----i:g~~--· 
(c) 0.393 0.40S 1.157 1.142 1.069 

(a) 1.741 2.065 4.003 3.679 1.91S 
0.4 (b) 1.741 2.323 4.255 3.673 1.917 

(c) 1.741 2.598 4.508 3.652 1.911 

(a) 4.22 5.58 8.14 6.77 2.60 
0.6 Ib) 4.22 6.20 8.70 6.74 2.60 

(e) 4.22 6.84 9.30 6.68 2.58 

(a) i 6.45 8.60 11.08 8.93 2.99 
0.75 Ib) i 6.45 9.46 11.97 8.91 2.99 

(e) I 6.45 - lO.37 12.76 8.85 2.98 
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(iii) q=(rr/ro)(ij, ij, ij) 

(Ll Longitudinol mode eQ = (1/1 :3, 1/13-, 1/13 ) 

Ec+Er Ell sum 
-.~---------

(a) 12.456 - 12.635 1.348 1.169 1.081 
0.1 (b) 12.456 - 12.720 1.464 1.200 1.095 

(e) 12.456 - 12.807 1.581 1.230 1.109 

(a) 12.167 - 13.123 4.878 3.923 1.981 
0.2 (b) 12.167 - 13.174 5.298 3.991 1.998 

(e) 12.167 - 13.835 5.721 4.052 2.013 

(a) 11.81 - 13.94 9.24 7.11 2.67 
0.3 (b) 11.81 -- 14.66 

i 
10.04 7.16 2.68 

(e) 11.81 - 15.41 10.84 7.24 2.69 

( a) 11.53 -- 14.72 12.77 9.58 3.10 
0.4 (b) 11.53 -- 15.77 13.87 9.63 3.10 

(c 1 11.53 -- 16.06 14.98 9.65 3.11 

( a) 11.42 - 15.04 14.12 10.50 3.24 
0.5 (1) 11A2 - 16.22 

I 

15.33 10.54 3.25 
(e) 11.42 - 17.44 16.56 

I 
10.54 

I 
3.25 

.. _. -_ ... --

(T, ,2) Transversal mode eq = (1/12 , --1/12- ,0) or (1/,16-, 1/1"6-, -2/16) 

ij Ec+Er En Ell sum Wq 

(a) I 0.056 0.019 0.193 0.235 0.485 
0.1 (b) 0.056 0.022 0.203 0.237 0.487 

(e 1 0.056 0.025 0.210 0.241 0.491 

(a) 0.200 0.060 0.715 0.854 0.924 
0.2 (b) O.:WJ 0.069 0.736 0.867 0.931 

( e) 0.200 0.079 0.759 0.880 0.938 

(al 0.38 0.10 1.35 1.63 1.28 
0.3 (b) 0.38 0.12 1.39 1.66 1.29 

(e) 0.38 0.13 1.44 1.68 1.30 

(a) 0.22 0.19 1.87 2.20 1.48 
0.4 (b) 0.52 0.22 1.94 2.23 1.49 

(e) 0.52 0.26 2.01 2.27 1.50 

(a) 0.57 0.21 2.07 2.43 1.53 
0.5 (b) 0.57 0.25 2.13 2.45 1.57 

(e) 0.57 0.28 2.20 2.48 1.58 
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TABLE AlII. The YQ versus wave number vector q = (:r/rol (q, 0,0), 
q = (71"/ro)(q, q 0) or q =(71"/1'0) (q, q, q) for Cu. The first 
column gives the value of q, the second, third and 
fourth columns give respectively the contributions 
of the first (I), the second (II) and the third (III) terms 
of Eq. (37). The rq's are given in the last column. 

(i) q=(n:/ro)(q,O,O) 

(L) Longitudinal mode eq=(l, 0, 0) 

q (I) (II) (Ill) rq 
._---_ .. _---_ .. , 

----~---.-.----

(a) 0.099 2.181 0.079 2.161 
0.2 (b) 0.129 2.124 0.059 2.054 

(e) 0.159 2.094 0.037 l.972 

( aj 0.115 2.190 0.093 2.l68 
0.4 (b) 0.151 2.192 0.073 2.113 

(e) 0.187 2.174 0.050 2.037 

(a) 0.132 2.288 0.112 2.269 
0.6 (b) 0.176 2.263 0.094 2.182 

(c) 0.221 2.269 0.071 2.119 

(a) 0.145 2.333 0.130 2.317 
0.8 (b) 0.197 2.324 0.114 2.242 

(e) 0.250 2.351 0.091 2.192 

(a) 0.149 2.343 0.136 2.:-l3() 
l.0 (b) 0.202 2.341 0.123 2.262 

(e) 0.260 2.375 0.099 2.214 

(T',2) Transversal mode eq=(O, 1, 0) or (0,0,1) 

q (I) (II) (III) r'l 

(a) 0.074 l.833 0.026 1.933 
0.2 (b) 0.062 l.829 0.023 l.913 

(ei 0.048 1.798 0.018 l.864 

( a) 0.052 1.932 0.037 2.020 
0.4 (b) 0.035 1.940 0.033 2.008 

(e) 0.018 1.919 0.027 1.964 

(a) 0.032 2.016 0.046 2.094 
0.6 (b) 0.013 2.035 0.042 2.090 

(e) 0.008 2.024 0.034 2.050 

(a) 0.020 2.069 0.053 2.142 
0.8 (b) 0.002 2.095 0.048 2.141 

(e) 0.025 2.091 0.040 2.106 

(a) 0,Ol5 2.091 0.055 2.162 
1.0 (b) 0.008 2.121 0.050 2.163 

(e) 0.032 2.119 0.042 2.129 
. ... -:=-:-~--=-= 
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(ii) q = (rc/ro)(ij, ij, 0) 

(L) Longitudinal mode eq = (1/12 -, 1/1 2, 0) 

ij _--+ ____ (_1_) ---i-- __ (_II_) __ ..-__ (I_II_)_---'I ____ r_q .. ____ " 

(a) 
0.2 (b) 

(e) 
(a) 

OA (b) 
(e) 

( a) 
0.6 (b) 

(e) 

(a) 
0.75 (b) 

( e) 

0.101 
0.137 
0.172 

0.138 
0.184 
0.230 

0.148 
0.199 
0.253 

0.100 
_. 0.144 

0.191 

2.184 
2.142 
2.127 

2.315 
2.293 
2.3o:i 

2.339 
2.3:i2 
2.360 

2.149 
2.127 
2.141 

(TI ) Transversal mode eq=(1/,r2, -1/12,0) 

ij 

(a) 
0.2 (b) 

(c) 

(a) 
0.4 (b) 

( e) 

(a) 
0.6 (b) 

(e) 

( a) 
0.75 (b) 

(e) 

( I) 

0.077 
0.077 
0.076 

0.050 
0.040 
0.030 

0.033 
0.016 
0.002 

0.035 
0.002 
0.019 

(T2 ) Transversal mode eq=(O, 0, 1) 
---- ._- -"._-- "---

ij (I) 

(a) 0.o:i5 
()"i (b) 0.015 

(e) 0.006 

(a) 0.044 
OA (b) 0.079 

(e) 0.117 

(a) 0.101 
0.6 (b) 0.147 

(e) 0.196 

( a) 0.120 
0.75 (b) 0.169 

(e) 0.221 

(II) 

1.400 
1.267 
1.186 

1.526 
1.421 
1.357 

1.618 
1.534 
1.484 

1.670 
1.597 
1.554 

.-'" --- "-"--------

(II) 
-_._-----------

1.638 
1.567 
1.525 

1.931 
1.891 
1.882 

2.151 
2.134 
2.152 

2.231 
2.220 
2.244 
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0.000 
0.071 
0.0~9 

0.117 
0.098 
0.074 

0.130 
0.114 
0.091 

0.114 
0.102 
0.067 

(III) 

0.000 
0.000 
0.000 

0.021 
0.019 
0.015 

0.038 
0.034 
0.028 

0.048 
(J.()44 
0.o:i6 

I 

---------

(III) 

0.046 
0.041 
0.034 

0.091 
0.083 
0.071 

O.ll~ 
0.107 
0.090 

0.126 
0.113 
0.073 

2.173 
2.076 
2.004 

2.293 
2.207 
2.147 

2.322 
2.247 
2.198 

2.163 
2.085 
2.016 

1.476 
1.344 
1.262 

1.596 
1.480 
1.402 

1.688 
1.584 
1.511 

1.745 
1.643 
1.571 

rq 

1.719 
1.623 
1.552 

1.978 
1.895 
1.836 

2.168 
2.094 
2.045 

2.236 
2.11;4 
2.096 



(iii) 
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q = (n/ro)(li, Ii, Ii) 

(L) Longitudinal mode eQ=(l/IT, 1/13, 1//3), 

Ii (I) (ll) I (III) rq 
I 

(a) 0.077 2.097 0.081 2.101 
0.1 (b) O.1l0 2.051 0.064 2.005 

(e) 0.143 2.031 0.044 1.932 

(a) 0.122 2.261 0.106 2.245 
0.2 (b) 0.164 2.231 0.088 2.155 

(e) 0.206 2'230 0.064 2.088 

(a) 0.150 2.262 0.126 2.:138 
0.3 (L) 0.198 :>.348 0.107 2.256 

(e) 0.249 2.:366 0.082 2.199 

(a) 0.167 2.423 O.13B 2.394 
0.4 (b) 0.220 2.421 0.119 2.319 

(e) 0.276 2.451 O'()93 2.26B 

(a) 0.172 2.444 0.142 2.,114 
0.5 (b) 0.288 2.446 0.123 2.:'341 

(e) 0.286 2.481 0.097 2.292 

(T, ,2) Transversal mode eQ=(l/IT, --I/lz-, 0) or (1/16-,1/16, --2/16) 

Ii (I) (II) (1Il) r'l 

(a) 0.0-9 1.440 0.013 1.532 
0.1 (L) 0.072 1.341 0.012 1.425 

(c) 0.065 1.26:3 0.009 1.3:07 

(a) 0.082 1.431 0.012 1.525 
0.2 (b) 0.076 1.426 0.010 1.412 

(e) 0.069 1.252 0.008 1.329 

( a) 0.085 1.420 0.010 1.515 
0.3 (I,) 0.079 1.:315 0.009 1.403 

(e) OJ)7;) 1.239 0.007 1.319 

(aJ (J.074 1A57 0.015 1.546 
0.4 (b) 0.066 U49 0.013 1.428 

(c) 0.060 U10 O.Oll 1.381 

(a) 0.073 1.460 0.015 1.5.\8 
0.5 (L) 0.066 1.357 0.01:3 1.436 

(e) 0.058 1.283 0.010 1.352 
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