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SOME APPLICATIONS OF TIIE METHOD OF 

TRANSFER· MATRIX TO THE VIBRATION OF LATTICES 

WITH FREE BOUNDARIES* 

By 

Takashi ASAHI** 

(Received September 30, 1963) 

Abstract 

The vibration of lattices of one, two and three dimensions with free boundaries is studied 

by the method of transfer-matrix, making use of an artifice, the "method of image". The 

effects of isotopic impurity atoms in the inside of the lattice or on one of its surfaces are 

investigated in detail. Main results obtained are as follows: (1) A one-dimensional lattice 

with an isotopic impurity at one of its ends has a localized moqe if the mass of the impurity 

is smaller than half of the mass of host atoms. (2) A two-dimensional lattice with one 

light isotopic impurity on one of its edges may have a localized mode. For the case in which 

the impurity is at the center of an edge or at a corner, an analytical expression for the critical 

value of the impurity mass for the appearance of the localized mode is obtained. (3) If all 

the atoms composing an edge of two-dimensional lattice are light isotopes with the same mass, 

there may appear surface modes, the frequencies of which may lie in the frequency band of 

unperturbed spectrum. (4) The dispersion relation for the eigenfrequencies of the lattice 

containing an impurity at an arbitrary lattice site is obtained. 

Some discussions are given finally on the relation between our method and the con­

ventional method of GREEN's function. 

1. Introduction 

Recently it was shown by the author!) that the method of transfer-matrix, 
which had been devised by HORI and ASAHI2

) to treat the problems of the 
vibration of linear lattices, is applicable to the lattices with any dimension. The 
application to higher-dimensional lattices have hitherto been confined, however, 
exclusively to the case of cyclic boundary conditions. In this paper the lattices 
with free boundaries are treated. 

Linear lattices with free ends have been treated by MA TSUDA 3). In § 2 
of this paper it is shown that the free-end condition can be taken into account 

*) A part of this work was presented at the International Conference on Lattice Dynamics 
held at Copenhagen in August, 1963. 

**) Department of Physics, Hokkaido University, Sapporo. 
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more simply. In § 3 an one·dimensional lattice with an isotopic impurity atom 
at one of its end is considered. The condition for the appearance of the localized 
mode is examined and found to be in accordance with the result of MATSUDA. 

In § 4, a two·dimensional regular monatomic lattice with free edges is 
considered by the generalized method of transfer·matrix. In this case one must 
introduce an artifice, the "method of image", in order to take the free edges 
into account. Once this is done, however, the calculation is straightforward. 
In § 5, two·dimensional lattices with isotopic impurity atoms on one of the 
free edges are considered, and the following results are obtained: 

( 1 ) A two·dimensional lattice with one light isotopic impurity on one of 
the edges may have a localized vibrational mode. For the case in which the 
impurity lies at one of the comers or at the center of the edge, the expression 
for the critical value of mass of the impurity for the appearance of the localized 
mode is obtained analytically. From this it is seen that the localized mode 
appears less easily for the former than for the latter and for the one·dimensional 
lattice with an impurity at one of its ends. 

( 2 ) If all the atoms on one of the edges of the lattice are light isotopes, 
there appear surface modes which damp towards the inside of the lattice. The 
frequencies corresponding to these surface modes may lie both inside and outside 
the band. 

The treatments for two·dimensional lattices are easily generalized to three· 
dimensional ones. In § 6, the calculations similar to that in § 4 are performed 
for a three·dimensional regular monatomic lattice with free surfaces. In § 7, a 
three·dimensional lattice with an isotopic impurity on one of the surfaces is 
considered. The results similar to those for two·dimensional lattices are obtained. 

In § 8, it is shown that the results which have been obtained by the usual 
GREE;-<'S function method can be got as special cases of those which are de· 
duced by the transfer·matrix method. 

Throughout the paper, it is assumed that there are nearest·neighbor inter· 
actions only. It should be remarked that this assumption is essential for the 
validity of the "method of image". 

2. One-Dimensional Regular Monatomic Lattices 
with Free Ends 

At first consider an one·dimensional lattice with free ends composed of N 
equally spaced atoms of the same kind. Let the mass of atom be M, and the 
nearest·neighbor force· constant K. Assuming the time factor exp (iwt), we 
have the equation of motion for the displacement u (l) of the atom at the lattice 
point l: 
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-Mw'u(l) = K[ {u(l-I)-u(l)} (I-oz) + {u(l + I)-u(l)} (1- OZ.N) ] ' 

(2.1) 

where the KRONECKER deltas in Eq. (2.1) are introduced in order to take into 
account the free ends l = 1 and N 

Eq. (2.1) is equivalent to the homogeneous equation 

-Mw2u(l) = K[ u(l-I)-2u(l) +u(l+ Ilj , (2.2 a) 

or 

u (l + 1) = (2-Mw2jK)u(l)-u(l-I), I;2l;2N, (2.2 b) 

with boundary conditions 

u(O) = utI) and u(N+ 1) = u(N). (2.3) 

Introducing the state vector x(l) and the transfer matrix T by 

'u(l) ) 
x(l)= (U(l-I) (2.4 a) 

and 

T- , = (r -1) 
1 0 

(2.4 b) 

where 

r=2-Mw'jK, (2. 4 c) 

Eqs. (2.2 b) and (2.3) can be written in vector-matrix forms: 

x(l+I) = Tx(l) , I;2l;2N, (2.5a) 

1 
x(I) = (1) utI) , (2.5 b) 

x(N+ 1) = (~) u (N). (2.5 c) 

The transfer matrix T can be transformed into the diagonal form: 

T=PAP-- 1
, (2.6 a) 

where 

(2.6 b) 
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and 

p== (~' :2), 
P'===~~-i2-(-~ -~:), 

A, == [r±(r2 -4)i-}/2. 
2 

Putting Mal = 4K sin" 8, we obtain 

r = 2 cos 28 , 

A, = exp ( ± i28) , 
2 

and 

T I =(S(l+l) -Sill ) 
Sill -S(l-l) , 

where 

Sill == sin2l8/sin 28. 

From Eq. (2.5a) we get 

x(N+ 1) = T Nx(l) . 

Combined with Eqs. (2.5 b, c) and (2.8 a), this gives 

(~)u(N) = T N G)U(I) 

(
'S(N+ 1)-S(N)) 

= S(N)-S(N-l) u(I), 

and consequently 

Au(I)=O, 

where 

A===S(N+l)-2S(N)+S(N-l) . 

A non-trivial solution of Eq. (2.10a) exists if and only if 

A=O. 

This condition leads to the equation 

tan 8 sin 2N8 = 0 . 

From Eq. (2.12) we find 

8=K7r/2N, K=0,1,2,···,N-l. 
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Substituting Eq. (2.13) in Eq. (2.7 a) we obtain the well known eigenfrequencies: 

Mw; = 4K sin' 10< , (2.14 a) 

where 

10, = nrj2N, /C = 0, L ···,N-l. (2.14 b) 

From Eqs. (2.4 a), (2.5 a) and (2.8 a), it follows that 

u(l) = [S(l)-S(l-I)]u(I). (2.15) 

Substituting Eq. (2.8 b) and (2.14) into Eq. (2.15) we obtain the wave form of 
the normal vibration corresponding to the eigenfrequency w,: 

u(l) = cos {(2l-1) 10, } sec 10< u(l) . (2. 16) 

3. One-Dimensional Monatomic Lattice with an 
Isotopic Impurity Atom at its End Point 

We consider next the case in which the Nth atom in the regular mona­
tomic lattice treated in § 2 is replaced by an isotopic impurity atom with mass 
M'. When we write the equation of motion in the form of a vector-matrix 
equation as before, only one transfer matrix T' connecting x(N) with x(N+ 1) 
comes out to be different from that of the regular lattice T: 

x(N+l) = T'X(N) , 

where 

(,' -1) T ' == 
1 ° 

and 

" == 2-M'w'jK. 

Defining the parameters 

Q==(M'-M)jM 

and 

i5 == QMw2jK 

we obtain 

T' = T- (~ ~). 
In the same way as in § 2, we get the equations 

x(N+ 1) = T ' TN-lx (l) 

and 
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(~) u(N) = T'T.Y-' (~) u(l) 

=[(S(N+l)-S(N)) _O(S(NJ-S(N-l))]U 1 . 
S(N)-S(N-l) 0 _ () 

(3.3 b) 

The condition for the existence of a non-trivial solution is 

A-oB= 0, (3.4a) 

where 

A == S(N+ 1)-2S(N) +S(N-l) (3.4 b) 

and 

B==S(N)-S(N-l) . (3.4 c) 

This leads to the equation: 

tan 8 sin 2N8 [1 + +0 (1 + cot 8 cot 2N8)J = 0 , (3.5 a) 

or 

sin8 cos (2N-l) 8[ tan (2N-l)8+ (1 +2Q)tan8] = 0 . (3.5 b) 

Then we have 

tan (2N-l)8+ (1 +2Q) tan 8 = 0, (3.6) 

which coincides with the result obtained by MATSUDA 3). From this it will be 
seen that the effect of the impurity is to decrease or increase the eigenfrequencies 
according as Q > 0 or Q < o. The values of perturbed eigenfrequencies cannot, 
however, exceed those of the neighboring unperturbed frequencies. Moreover, 
the maximum eigenfrequency runs out from the frequency band if Q < - t. 

The wave forms of the normal modes corresponding to the eigenfrequencies 
in the band are sinusoidal also in the present case. On the contrary, the normal 
mode corresponding to the extra-band eigenfrequency decays exponentially as 
the distance from the impurity increases. We shall call this mode "damping 
mode". 

In order to evaluate the extra-band frequency we have to put 

8 = n/2 + ie , (3.7 a) 

where 

e}>l/N. 

This restriction is necessary for the spatial localization of the damping mode. 
Substituting Eq. (3.7 a) into Eq. (3.5), we get 
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1 + 2Q cosh e(cosh c -sinh c) 3=: 0, 

where we used an approximation: 

coth2Ne::::::l. 

From Eq. (3.7b) we obtain the relation between Q and e: 

Q = - (1 + exp( _2c))-1. 

(3.7 b) 

(3.7 c) 

This shows that there is a critical value of Q for the appearance of the 
damping mode: 

1 Qc= --. 
2 

The wave form of the damping mode comes out to be 

where 

u(l) = cos{(2l-1)(J}sec(Ju(l) 

= (_ly-l sinh {(2l-1) c: cosech c' u (1) 

= (_I)N-Z sinh{(2l-1)e}cosech{\2 N-l) c}u(N) 

-(-I)NZ exp { -2(N-I)e}u(N) , 

exp( -2Nc)::::::O. 

4. Two-Dimensional Regular Monatomic 
Lattices with Free Edges 

(3.7 d) 

(3.8 a) 

(3.8 b) 

(3.8 c) 

In a previous work I), we generalized the transfer-matrix method to higher 
dimensional lattices with the cyclic boundary condition. In this section we shall 
apply the generalized method to a two-dimensional regular monatomic lattice 
with free edges. In the same way as in § 2, the effect of these free edges can 
be replaced by suitable boundary conditions. Assuming the nearest-neighbor 
interaction, the equation of motion for one of the components of atomic dis­
placement u (l, m) at a lattice point (l, m) can be written in the form: 

-Mw2u(l, m)=KI [{u(l-l, m)-u(l, m)} (l-o z,l) 

+ {u(l+ 1, m)-u(l, m)} (1- oz,s,)] 

+K2[ {u(l, m-l)-u(l, m)} (l-om,l) 

+ {u(l, m+ 1)-u(l, m)} (1- Om,s)], (4.1) 
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where Kl and K2 are force-constants for different directions. The equation (4.1) 
is equivalent to the homogeneous equation 

-Mulu(l, m) =Kl [u(l-l, m)-2u(l, m)+u(l+ 1, m)] 

+K2[ u(l, m-l)-2u(l,m)+u(l, m+l)], (4.2 a) 

with boundary conditions 

u(O, m) = u(l, m), 

u(N1 + 1, m) = u(~, m) , 
(4.2 b) 

u(l, 0) = u(l, 1), 

and (4.2 c) 

u(l, N2+ 1) = u(l, N 2), 

Define, as in § 1, the state vector x(l, m) and the transfer matrix T by 

x(l, m)== , (
U(l,m) ) 
u(l-l, m) 

and 

(
r(l, m) -1) 

T(l, m) == 1 0 ' 

where 

r(l, m) ==2-[ M(l, m)w+K2J'(l)]/K1 , 

J'(l) u(l, m) ==- u(l, m-l)-2u(l, m)+u(l, m+ 1). 

Then we can write Eqs. (4.2) in vector-matrix forms: 

x(l + 1, m) = T(l, m)x(l, m) , 

1 
x(l,m) = (l)u(l,m), 

1 
x(Nl+l,m)= ( lu(~, m), 

1 

x(l, 0) = x(l, 1) , 

x(l, N,+ 1) = x(l, N,), 

l-:5.l-:5.Nl' l-:5.m-:5.N2' 

By the use of Eq. (4.5 a), we obtain the equation 

x(l, m) = Sx (1, m) , 

where 
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S= T(l-I, m) T(l-2, m)···T(I, m). 

In the matrix elements of S, there appear products of the operators iF (l). In 
reference (1) it was noted that, in calculating the matrix elements of S, we 
may disregard the dependence of if (l) on 1 and treat the products of L/'(I)'s 
(which should be regarded in general as operating on x(l, m), not merely on 
u (l, m)) as higher-order difference operators in the usual sense, if 

T(l-2, m-I) = T(l-2, m) = T(I-2, m+ 1), 

T(l-3, m-2) = T(l-3, m-I) = T(l-3, m) 

= T(l-3, m+ 1) = T(l-3, m+2), 

T(l-4, m-3) = T(I-4, m-2) .. · = T(l-4, m+3), 

T(I, m-l+2) = T(I, m-l+3) .. · = T(I, m+I-2). 

The proof of this fact will be given in the Appendix. It means that the equation 
of motion must be the same along each line of constant l in the triangular 
region indicated in Figure 1. This region may be called the "domain of depend­
ence" of x (l, m) in the sense that the value of x (I, m) should be influenced by 
any change in initial value x (1, m) or in the structure of the lattice (values of 
masses and force constants) in this region. 

The dependence of L/2 (I) on l cannot be disregarded III S if there are 
impurities or edges in this domain of dependence, except for the case in which 
these affect each line of constant l uniformly. If there is an isotopic impurity 
at (l, m), on the other hand, the equations of motion become different from 
these for the regular lattice in the region indicated in Figure 2. This region 
may be called the "region of influence" of the isotope at (I, m). In such a 
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region of influence, the dependence of .:1'(l) on l cannot be neglected III the 
transfer matrices. 

In the present case the lines m = 1 and m = N2 are the edges of the lattice. 
In view of the above considerations, the values of x(l, m) in the region A 

indicated in Fig. 3 cannot be calculated from 
)1J x(l, m), m = 1,2, ... ,N" by regarding the LI2 (ll's 

• • • 
• • 

• • • • A • • 
• • • • 

Fig. 3. 

in S as independent of l. This situation 
makes the calculation much more involved 
compared to the case of cyclic boundary con­
dition. In order to avoid such a complica­
tions, we use the following artifice. Let us 
imagine the lattice extended indefinitely to­
wards both m-directions, but impose the con­
dition that displacements should be symmetric 
with regard to the lines m = 1/2 and m = N, 
+ 1/2. In other words, we imagine that there 

exist an infinite number of mirror images with respect to the two lines of the 
original finite lattice. This amounts to requiring the same symmetry to both 
the values of the initial vectors x(l, m) and the equations of motion for all 
lattice points. Moreover, the above symmetry requirement with regard to two 
lines may be replaced by the simultaneous requirements of the symmetry with 
regard to one of the lines and of a cyclic condition with the period 2N2• In 
the system composed of all the mirror images and the original system, the 
above condition of uniformity of the equation of motion along the m-direction 
is satisfied so that it is no more necessary to bother about the complications 
due to the l-dependence of LI'(l)'s. Moreover, the boundary conditions of free 
edges (Eq. (4.5 c)) are automatically satisfied in this system. The extra lattices 
are not connected dynamically to the original lattice, its edges being left free. 

The above artifice of introducing the mirror images of the original system 
is evidently analogous to the "method of image" in the theory of the partial 
differential equation. In what follows we use this method throughout, so that 
we may drop the argument l of LI'(l) everywhere. 

In order to satisfy the above-mentioned requirements the initial displace­
ment u (1, m) must be expanded as 

2Nz-l 

u(l, m) = .L; c1,ZI,(m) , (4.6 a) 
11 -- 0 

where 

(4.6b) 
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and 

f1=0,1,···,2M-l, 

smce it should be periodic with the period 2Nz • 

The symmetry with respect to the line m = M + 1/2, 

u(l, m) = u(l, 2M-m+ 1), 

requires that 

ell =:::::: - C2Nz-11 • 

Especially 

CN, =0. 

(4.6 c) 

(4.6 d) 

Further, the value of displacements must be real. From this it follows that 

Co = co* and c,' = -CZN,-,,* 

Using Eq. (4.6d), these relations become 

(4.6 e) 

Then it is clear that only M real coefficients c,,'s, f1=0, .. ·,N2 ·--1, are independent 
of each another. 

With the initial value u(l,m) given by Eq. (4.6a), the equation to be 
solved is 

x(l + 1, m) = Tx(l, m) , 

It x(l, m) = (~)U(I, m), 

(
1 

x(N1+l,m) = lu(N1,m), 
1, 

(4.7 a) 

1-;:;' 1-;:;' N, and - co < m < co . 

(4.2 b) 

The transfer matrix can be transformed to the diagonal form: 

T=PAP' (4.8 a) 

where 

(4.8 b) 

(4.8e) 

(4.8 d) 
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and 

Al = {r±(r'-4)l} /2. , (4.8e) 

The l-th power of T is given by 

Tl = 1 (A~+I_A;t-1 -(Ai-A;) ) 
A,-A, Af-A; -(Af-l-A;-l)' 

(4.9) 

From Eqs. (4.4 b) and (4.8 e), it is seen that the matrix element r and con­
sequently Al are operators involving the operator Ll'. , 

The functions Z,,(m), (11=0,1,"',2N,-1), in the expansion (4.6a) are the 
eigenfunctions of the operator Ll2

, as well as of r and AI' Consequently, if , 
we put 

(4.10) 

and 

,11=0,1, .. ·,N2 , 

then 

Lll -4sin'Xp I 
r Z,,(m) = 2 cos20t, Z,,(m). 

Al exp( ±2iO,.) 

(4.11) 

2 

From Eq. (4.7 a) we obtain 

x(N; + 1, m) = T N 'x(l, m) for all m. (4.12) 

Combined with Eqs. (4.7 b) and (4.9), this reduces to 

(~) urN;, m) = TN, C)U(l, m) 

= 1 (·A;V'~I_A2V'+I_ (At', -A.V,y) u(l m) 
Al - A2 At"-A.v,- (AiV,-I_A;,,-I) , . 

(4.13) 

If we substitute Eqs. (4.6a) and (4.11) into Eq. (4.13), it follows that 

(1) ("T ) = 2"~1 (-S,,(N,+l)-St,(NI))Z ( ) 
U .1'(1' rn L..J Cll II m , 

1 rn St,(N;)-S,,(N;-l) 
(4.14 a) 

where 

S,,(l) = sin 210tJsin 20" = S2v,_p(l) . (4.14 b) 

From Eq. (4. 14a), we get 

for all m, (4.15 a) 
,1=0 

where 
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(4.15 b) 

By the use of the orthogonality relation of the eigenfunctions Z,,(m), 
2N2 -1 

L: Zp*(m)Z,(rn) = 2N,op" (4.16) 
m=O 

Eq. (4.15a) is reduced to 

p=O,I, ···,N,-I. (4.17) 

The condition for Eq. (4.17) to have a non-trivial solution IS 

.N2 -1 

TT Ap = 0. (4.18 a) 
p. c-~ 0 

Using Eqs. (4.15 b) and (4.14 b), we get 
N 2 -1 

TT sin 2N18" tan 8 p = ° . (4.18 b) 
/f-O 

Consequently, we have 

8p = 1CTC/2N1 , p=o, 1, ···,N,-1 and IC=O, 1, ···,N1-l . 
(4.19) 

Introducing this into Eq. (4.10), we get the eigenfrequencies of the square 

lattice with free edges: 

Mm; (IC, p.) = 4Kl sin'~, + 4K2 sin'X" , (4.20) 

where 

~, = IC7r/2N1 , 1C=0,1"",N1 -l, 

and 

XI' = pIT/2N" p.=0, 1, ···,N,-1 . 

Consulting Eqs. (4.12)--(4.14), we can obtain the normal mode belonging 

to the eigenfrequency mo(IC', p.') : 

x(l, rn) = T 1
-

1x(l, m) 

'N,-l (S (l)-S (l-l) ) 
= Eo CI

' S:(l-I/- Sp(l-2) ZJm), 

where the parameters 8/s are defined by Eq. (4.10), i. e., 

Mm;(IC', p') = 4Kl sin' ~" + 4K2 sin2Xp ' 

= 4Kl sin2 8p + 4K2 sin2 Xp 

and 

p=O,I, ···,N2 -1. 
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If we assume that the accidental degeneracy does not occur m the frequency 
spectrum, that is, the frequencies specified by different pairs of IC and fl may 
not be identical, then all the coeficients c/s except only one C,," must vanish 
on account of Eq. (4.17). Consequently, we get 

fl' *' 0 

f1' = 0 

= (2 -o"'o)c,,, sec SO<' cos {(2l-1)so" }eos {(2m -1) X",}. (4.21) 

From this result it is clear that there does not come out any surface mode. 
In view of the fact that the partial difference equation (4.2 a) is of the 

type which allows the "separation of variables", the results obtained above are 
what may be naturally expected. 

5. Two-Dimensional Monatomic Lattice with Isotopic 
Impurities on one of the Edges 

At first consider a finite monatomic square lattice with an isotopic impurity 
atom at a lattice point (N" j) on its edge. 

When we write the equation of motion in the vector-matrix form as in 
§4, only one transfer matrix T' connecting x(N"j) with x(N,+l,j) comes out 
to be different from that of the regular lattice T. If the extra lattice is intro­
duced in order to avoid the complication pertaining to the products of difference 
operators, the impurity transfer-matrix T' appears at the points which meet the 
symmetry requirements described in § 4 : 

x(N, + 1, m) = T'x(N" m), m=j,2N,-j+1,··· 

where 

T' = (T' -1) 
10' 

r' = 2-(M'u/+K2il2)jK, 

and M' is the impurity mass. 
If we introduce the parameters Q and 0 by 

Q= (J..1'-M)jM, 0= QMuljK" 

then T' becomes 

T' = T- (~ ~). 
-146-
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For m*j, 2N2-j+1,···, we get, as before, 

x(N, + 1, m) = T S 'x(l, m) , 

which turns out to be 

m*j, 2N2-j+1, ... , 

2S2 ,,1 

I: c"A"Z,,(m) = 0, m*j, 2N,-j+1, .. ·. 
JI-l 

For m = j, we obtain from Eqs. (5.1 a) and (5.2 b) 

x(N, + 1, m) = T'TS ,-lx(l, m), 

This IS seen to be equivalent to 
2.N2 -1 

I: c,,(A,,-oB,.) Zp(m) = 0 

where 

and 

m=j,2N2 -j+1, .. ·. 

(5.3) 

(5.4) 

(5.5) 

(5.6 a) 

(5.6 b) 

Bp = Sp(N,)-Sp(N,-1). (5.6 c) 

Using the orthogonality relation (4.16) and the symmetry condition (4.6d), 
we obtain from Eqs. (5.4) and (5.6 a) a system of equations: 

{ a N,-l {} cpAp-cos (2j-1)X p}-.I: (2-o,o)c,B,cos (2j-1)X, =0, 
N.d 

/1=0,1, .. ·,N2 -1 . (5.7) 

The condition for the existence of a non-trivial solution IS 

Let us at first seek the eigenfrequencies which are not affected by the presence 
of impurity. If there is no accidental degeneracy in the unperturbed spectrum, 
then the unperturbed eigenfrequency satisfying the equation Ap = ° remains to 

be eigenfrequency if and only if cos { (2j-1)X,,} =0, since the equations Ap=O 

and E" = ° cannot be satisfied simultaneously. Thus the unperturbed normal 
mode which has a node at the impurity site remains to be a normal mode. 
In order to get other eigenfrequencies, it is convenient to rewrite Eq. (5.5) as 
follows_ Since none of the quantities A" vanishes for these frequencies, it 
follows that 

(5.9 a) 

or 
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From Eqs. (5.6b,c), we obtain 

B" = _ cos(2~ -1)0" 
A." 2 sin 0 ~ sin 2~O ~ 

= - (1 + cot 0" cot 2N10~) / 2 . 

Substituting Eq. (5.10 b) into Eq. (5.9 b), we get 

[; f 1 2N, -1 2 • _ J 1 _ 
1+-

1
1+- L: cos {(2; I)X" cot8l'cot2~O"J - 0, 

2 N. ,FO 

where we used a simple relation 

(5.9 b) 

(5.10 a) 

(5.10 b) 

(5.11) 

From these equations we can readily obtain the following conclusions: None 
of these eigenfrequencies can be equal to unperturbed ones. There is, however, 
a one-to-one correspondence between them, and the corresponding pair coincide 
with each other when the impurity disappears. All the perturbed eigenfre­
quencies are larger or smaller than the corresponding unperturbed frequencies, 
according as Q<O (light impurity) or Q>O (heavy impurity). The former 
cannot however exceed the neighboring unperturbed frequencies. 

From these results it is clear that only one eigenfrequency may become 
extra-band frequency which is larger than any unperturbed eigenfrequencies in 
the case of Q<O. In what follows let us discuss this particular frequency. 
Defining the variables c/s by 

p=O,I, ···,N2 -1 , 

we get 

cot 8" cot2N18,,~ -tanhe", 

where we assumed that 

l. e., 

(5.12) 

This assumption is necessary in order that the normal mode corresponding to 
the extra-band frequency is spatially localized around the impurity. The equation 
(5.11) is then transformed to 

QMu/ f _ 1 2N,-1 2{ ._ 1 _ 
1+ 2Kl II N. ,~o cos (2; I)X,,}tanhc"J -0. (5.13 a) 
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From Eq. (4.10) and (5.12) it follows that 

t h = (Ma/-4Kl-4K,sin'Xp )1 an 10" • 
Mw' - 4K, sin' X p 

(5.13 b) 

To determine the critical value of Q below which the extra·band frequency 
appears, put Mw' = 4Kl + 4K, in Eqs. (5.13). After simple calculations, it 
follows that 

1+ ('~') f1_-.l."'I:l plcosXpl cos'{(2j-1)Xp}J1 =0, 
. 1-P'. l !..fz p~O .; 1-p' sin' X" 

(5.14 a) 
where 

° ~p =.; K,/(K1 +K,)< 1. (5.14 b) 

The critical value Qc depends on the posItion of the impurity. Only two 
special cases A and B are examined in the following. 

Case A. First we examine the case in which the impurity is located at 
the center of the edge (2j -1 = N,). Using the relation 

cos' {(2j-1)X p : = cos'(prr/2) 

_ f 1, p=0,2, .. ·,2Nz-2 

-1o, p=1,3,···,2N2 -1, 

we can reduce Eq. (5.14a) to 

1+ ( 2Qc ') f1-.l..z:;' Plco~X,,1 11=0 
1-p' . l N, I' (l-p' sm' X ,.)"2 I 

(5.15) 

(5.16) 

where the prime indicates the summation over even p only. If N z is large, 
so that the sum may be replaced by an integral, Eq. (5.16) becomes 

1+( 2Qc )(1-~\'+ pcosxdx 1=0. 
1-p' l rr • 0 (l-p' sin' X). J 

Using the well·known relation 

j+ p cos X dx _. -lp ------'"'------. -.,.--. - SIn , 
o (l-p'sm'X)l! 

we get 

1 1-p' 
Qc = -2 1-(2/rr)sin- 1p 

(5.17) 

(5.18) 

(5.19) 

The variation of Qc as the function of the parameter p IS shown in Fig. 4 
(curve A). 
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Case B. In a case where the impurity is located at the corner point 
(j = 1), we get the equation 

1+( 2Qc ')11 __ 1_2'2::.,.-1, pco~'X" 1 1=0. 
I_p2 l N. p-o (l-p2 sm2 Xp )" J 

(5.20) 

For the large number lV2 it becomes, as before, 

1 + ( 2Qc ) 11-~J+ p cos' xdx 1 = O. 
I_p2 ,l n 0 (l_p2 sin2 Xl! J 

(5.21) 

Using the well-known relation 

J
+ cos' ~dX 1 = ~1~ {(I-P') -~(1-2p2)sin-lp}, 
o (l-p2 sm2 X)" 2p 2 P 

(5.22) 

we obtain 

1 I-p' 
Qc = - 21-(2/n){(I-p'H/P-(1-2P')/p"sin- 1p} 

(5.23) 

Fig. 4 (curve B) shows the variation of Qc for this case as the function of p. 

~c 'dp 

T 0.2 0.4 0.6 0.8 /.0 )lIN. 
~ 

f= ,/to 
- 0.' -0./ 1='/3 
-0.:>. -0.:>' 

f= , 
- 0-3 A -0.3 

:1= :l. 

-a4 -0.4-
1=/0 

-as -g.!; 

-0.6 
'""Yk

: 

-0.7 

Fig. 4. Fig. 5. 

When K, < K 1 , the value of p' is smaller than !, and becomes zero as 
K,--O. This limit corresponds to the case of independent linear chains extended 
in I-direction. Hence it is natural that here both curves in Fig. 4 give the 
same value Qc= -i-, which moreover coincides with that obtained in §2 for 
the linear lattice. On the other hand, p' is larger than t when K, > K 1 , and 
becomes unity as Kl--0. This limit corresponds to the case of independent 
linear chains extended in m-direction. Since in Case B the position of the 
impurity is symmetric with respect to two directions, it is a matter of course 
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that the curve B is symmetric about its center, and gives Qr = -l for p2 = l. 
On the contrary the position of the impurity is' asymmetric with respect to 
two directions, in Case A, and the curve A gives a different value Qc = O. This 
means that for the linear chain with an impurity at its center, the localized 
mode appears as soon as its mass becomes lighter than that of host atoms. 
That the curve A gives higher values of Qc in the right half than in the left 
half of the figure means that, if the force constant in the longitudinal direction 
is larger than that in the lateral direction, as is usually the case, the vibration in 
the direction of the edge is more easily localized than that in the direction 
normal to the edge, for the impurity situated at the center of the edge. 

For the mode corresponding to the extra·band frequency of the two· 
dimensional lattice with an impurity on the edge, it is almost clear, from the 
arguments of the previous paper'!' that it is composed of the partial waves 
which are localized in l·direction. In Case B the same argument applies also 
to m-direction, on account of the symmetry mentioned above. The mode is 
thus localized in both directions. Although in Case A such an argument based 
on the symmetry is not valid, it is highly probable that the mode is also localized 
around the impurity site. 

Nex.t let us consider a two-dimensional lattice, one of the edges of which 
(l=~) is entirely composed of impurities of the same kind. We have then, 
in the same way as above, 

x(N, + 1, m)= T' T N ,-lX(1, m) , 

which reduces to 

2-'-"2- 1 

L: c"(A,,-oB,,)Z"(m) = 0, 
/1=0 

1~m~2N2 . 

The condition for existence of a non-trivial solution is 

-'-\"2- 1 

D~ 1T (A"-oB,,) =0. 

Consequen tly, 

or 

A"-oB,, = 0, 

tanB" sin 2N,B" {1 + (0/2)(1 + cotB" cot 2N,B")} = 0, 

p=0,1,"·,N2 -1. 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

The roots of the first factor of this equation are quite similar to those in the 
one-dimensional case. For the roots of the second factor, however, the situation 
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is remarkably different. There may be complex roots for some values of Q. 
The eigenfrequencies corresponding to these roots may lie both inside and 
outside the frequency band of the unperturbed spectrum. In fact, substituting 
fJ,,=;r/2+ic p (cp>O) into the second factor of Eq. (5.28), we obtain 

Q = _ 1 exp (cp ) cosh c,' 
2 cosh2 cp+(K2/K,) sin2 Xp 

(5.29) 

From this we can find the critical values Q" for the appearance of the complex 
roots fJ p : 

Q 1 K, 
,,= -2 K,+K

2
sin2X

p 

(5.30) 

It follows that 

(5.31) 

This means that the eigenfrequencies corresponding to the complex roots may 
appear more easily from the high-frequency region than from the low-frequency 
region of the band. The variation of some of Q/s as functions of the para­
meter f=K,/K2=(I- p2)/p' is shown in Fig. 5. 

It may readily be shown, in the same way as in § 2, that the normal modes 
corresponding to these eigenfrequencies damp exponentially as the distance from 
the edge composed of impurities increases: 

u(l, m):::::::'(-I)N,-1 exp {-2(N!-l)c,,} urN"~ m). 

6. Three-Dimensional Regular Monatomic Lattices 
with Free Boundaries 

(5.32) 

In the same way as in § 4, it is readily shown that the generalized transfer­
matrix method is applicable to a three-dimensional regular monatomic lattice 
with free boundaries. 

The equation of motion for one of the components of atomic displacement 
u(l, m, n) at a lattice point (l, m, n) can be written in the form: 

-Mw'u(l, m, n) = K! [{u(l-l,m, n)-u(l, m, n)} (l-o z) 

+ furl + 1, m, n)-u(l, m, n)} (1-01,NJ] 

+K2[ furl, m-l, n)-u(l, m, n)} (I-om,!) 

+ furl, m + 1, n)-u(l, m, n)}(I-om,N,l] (6.1) 
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+K3[ furl, m, n-l( -u(l, m, n)} (1-0",,) 

+ furl, m, n + 1)-u(l, m, n) }(I-on ,NJ] _ 

The equation (6.1) is equivalent to the homogeneous equation 

-Mw'u(l, m, n) = K, [u(l-l, m, n)-2u(l, m, n)+u(l+ 1, m, n)] 

+ K,[ u(l, m-l, n)-2u(l, m, n)+u(l, m+ 1, n)] 

+K3[ u(l, m, n-l)-2u(l, m, n)+u(l, m, n + 1)], 

(6.2 a) 

with boundary conditions 

J u(O,m,n)=u(l,m,n), 

l urN, + 1, m, n) = u(N" m, n), 

J u(l, 0, n) = u(l, 1, n) , 

l u(l, N,+ 1, n) = u(l, N" n), 

J u(l, m, 0) = u(l, m, 1) , 

l u(l, m, N3+ 1) = u(l, m, N 3), 

1 ;;;;,.l;;;;,.N" 1 ;;;;"m;;;;"N" 1 ;;;;"n;;;;"N3 • 

(6.2 b) 

(6.2 c) 

(6.2 d) 

Introducing, as before, the state vector x(l, m, n) and the transfer matrix 

T by 

and 

where 

_ (u(l, m, n) ) x(l, m, n) - , 
u(l-l, m, n) 

_ (T(l, m, n) -1) T(l,m,n) -

1 ° 
T(l, m, n) = 2 - {M(l, m, n)a/ + K,d;(l, n) + K3d;(l, m)} / K, 

J;(l, n)u(l, m, n) = u(l, m-l, n)-2u(l, m, n)+u(l, m+ 1, n) 

(6.3 a) 

(6.3 b) 

(6.3 c) 

(6.3 d) 

d;(l, m)u(l, m, n) = u(l, m, n-l)-2u(l, m, n)+u (l, m, n+ 1), 

(6.3 e) 
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we can write Eqs. (6.2) in vector-matrix forms: 

x(l + 1, m, n) = T(l, m, n) x(l, m, n) , 

f x(l, m, n) = (i )u(l, m, n), 

1 x(N, + 1, m, n) = (i )u(N" m, n), 

f u(l, 0, n) = u(l, 1, n), 

I u(l, N 2 + 1, n) = u(l, N 2 , n), 

f u(l, m, 0) = u (1, m, 1), 

l u(l, m, N,+ 1) = u(l,m,N3 ). 

(6.4 a) 

(6.4 b) 

(6.4 c) 

(6.4 d) 

In order to avoid the complication pertaining to the products of difference 
operators, the extra lattices which satisfy the same symmetry requirements as 
in § 4 are introduced both in m- and n-directions. Then we can drop the 
arguments about the difference operators and expand the initial displacement 
u(l, m, n) in the form: 

where 

2N2-12.iVa -l 

u(l, m, n) = L; L; cl"Z,,,(m, n), 
/1=-=0 1.'-' 0 

f C"' = c:' . 
1 C,IIJ = -C2N z-IIII = -c,1 2Na -1I =·C2.J.V

2
·-/1 2.V

3
-1.I' 

XI' = f1-7r/2N" 

¢, = lm/2N3 , 

f1- = 0,1, "',2N,-1, 

).I=0,1,"·,2N,-1. 

(6.5 a) 

(6.5 b) 

(6.5 c) 

(6.5 d) 

With the initial value u (1, m, n) given by Eq. (6.5 a), the equation to be solved is 

x(l+ 1, m, n) = Tx(l, m, n), (6.6 a) 

f x(l, m, n) = (Du(l, m, n), 

l x(N; + 1, m, n) = (i) u(N" m, n), 

(6.6 b) 

1-;;;"1-;;;" N" - 00 < m, n < 00 • 

The transfer matrix T can be transformed to the same diagonal form as 
in Eq. (4.8). The relations between the function Z,,,(m, n) and the operators 
J;, Ji, r and A; which appear in the matrix elements of T are quite similar 
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to those in Eq. (4.11). That is, if we put 

Mal = 4Kl sin' Op,+ 4K, sin'X,,+ 4K3 sin' rp, 

it follows that 

L/;} -4sin
2

X" } 
L/' -4 sin

2 rp 
3 Z,,,(m, n) = 'Z,,,(m, n). 

r 2 cos 20,,, 

Al exp (±2iOp ,) , 

(6.7 a) 

(6.7b) 

(6.8) 

To solve the equation of motion we use the method of solution adopted 
m § 4 (Eqs. (4.12)~(4.15)). We obtain 

where 

2Nz--12Na-1 

L: L: cl"A,,,Z!,,(m, n) = 0, for all (m, n) , 

A", = S,,,(N.,+1)-2S,,,(NI )+S,,,(NI -1) 

S,,,(l) = sin2l0p ,/sin20,,,. 

(6.9 a) 

(6.9 b) 

(6. 9 c) 

By the use of the orthogonality relation of the functions Z,,,(m, n), 

2ATZ 2.N3 

z::; L: Z;, (m, n)Z,,'" (m, n) = 2N22N3a"p a,,' . 

the equation (6.9a) is reduced to 

cl"A,,,=O. 

The condition for Eg. (6.11) to have a non-trivial solution IS 

(N2 -1 • .N3 -·1) 

IT A,,, = O. 
(",,)=(0,0) 

or 
(~V2-1.N3-1) 

IT sin 2N., 0 p' tan 0 p' = 0 . 
(p,,)~(O,O) 

Consequently we obtain 

0,,, = K1r / 2N., , 

where 
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fl.=o,I,···,M-I, 

lJ=O,I,···,N,-I. 

Introducing this into Eq. (6.7 a), we get the eigenfrequencies of the three­
dimensional lattice with free boundaries: 

where 

MW~(K, fl., lJ) = 4K, sin' \0, + 4K, sin' Xp + 4K3 sin' rp, , 

\0, = Klr I 2N, , 

X" = fl.lr 12M, 
rp, = lJlr/2N3, 

K = 0, 1, ···,~-I, 

fl.=o,I,···,M-I, 

lJ=0,I,···,N3- 1 . 

(6.13 a) 

(6.13 b) 

(6.13 c) 

(6.13 d) 

If we assume, as in § 4, that the accidental degeneracy does not occur in 
the frequency spectrum, we can readily obtain the normal mode belonging to 
the eigenfrequency Wo(K, fl., lJ) : 

u(l, m, n) = (2-opo)(2-o,o)c,,, sec \0, 

>( cos { (2l-I) \0, }cos{ (2m -1) X" }cos ~ (2n -l)rp,}. (6.14) 

7. Three-Dimensional Monatomic Lattice with Isotopic 
Impurities on one of the Boundaries 

First we consider a three-dimensional monatomic lattice with an isotopic 
impurity on one of the boundaries. In the same way as in § 5, we can extend 
the formulas in § 6 to include the effect of the impurity at a lattice point 
(~,j,k). 

Introducing, as before, the extra lattices, we write the equation of motion 
in vector-matrix forms: 

x(l + 1, m, n) = T'x(l, m, n), 

I

l=N" 

m=J' 2N-J·+I··· 
,2 " 

n =k, 2N,-k+I,···, 

(7.1 a) 

x(l + 1, m, n) = Tx(l, m, n) , otherwise, (7.1 b) 

f xiI, m, n) = (i) urI, m, n), 

1 x(N, + 1, m, n) = (i)u(~, m, n), 
(7.1 c) 

where 

T'= T-(~ ~), 
-156-



and 

and 

Some Applications of the Method of Transfer-Matrix to the Vibration of Lattices 

a =QMa//K
" 

Q=(M'-M)/M, (7_ 1 d) 

Mal = 4K, sin' (JI" + 4K2 sin' X" + 4K, sin' i/J, , 

2N::-12 .. V 3 -1 

u(l,m,n)= L; L; c,,,Zp,(m,n). 

From Eqs. (7.1 a) and (7.1 b) we obtain 

x("M + 1, m, n) = T'TN
, 1 x(l, m, n) , 

(m=)- 2N -). + 1 ... 
,2 " 

'In=k 2N-k+l ... 
,3 " 

(7.2 a) 

x("M + 1, m, n) = T N 'x(l, m, n) , 

Combined with Eqs. (7.1 c), we get 

otherwise. (7.2 b) 

2N
2
-!2N

3
-1 

L; I: cl"(A1,,-15Bp.)Z,,,(m, n) = 0, 

and 
2J.V2 -12N3-1 

I: L; cl"Ap,Zp,(m, n) = 0, 

where 

and 

(m=j, 

In=k, 

otherwise, 

(7.3 a) 

(7.3 b) 

(7.3 c) 

(7.3 d) 

By the use of the orthogonality relation (6.10), the equations (7.3) are reduced to 

0= cl"Ap,-cos {(2j-l)Xp}cos((2k-l)i/J,} 
a N -I N-, 

X --- ±; ± cp'" (2-15"0) (2-15"0) cos {(2j-l)XI"} cos {(2k-l)i/J,.} 
N zN 3 !I'---o-O ~'-o 

X B
1
,·,·. (7. 4) 

The condition for the existence of a non-trivial solution is 

D == (N'-lT"-') A,u, - _15_, ",£IN£I (2-151'0)(2-15'0) cos'{(2j-l)X
1
,} 

(",,)~(o,o) N,N3 I' -0 ,'-0 

x cos'{(2k-l)i/J, }B,,, TT A,,,,, = O. (7.5) 
(1"")*(''') 

From this we can find the perturbed eigenfrequencies which resemble in char­
acter to those in § 5. The unperturbed eigenfrequency corresponding to the 
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unperturbed normal mode which has a node at the impurity site remains to 
be a perturbed eigenfrequency. 

In order to get other eigenfrequencies which are affected by the presence 
of impurity, we rewrite Eq. (7.5) as follows: 

o 2N,-12N,-1 f 1 { } B 
1---- L: L: cos'l(2j-1)X"jcOS' (2k-1)1', -"-' = o. 

MM "~o ,_0 A,,, 
(7.6 a) 

This turns out to be 

(7.6 b) 

where we used the following relations: 

B,,, = -(1+cot(J",cot2NlJ",)/2, 
A~ . 

2'~' cos' {(2j -1) x,,} = N2 , 
p.,..(J 

and 

"E'cos'{(2k-1)1',} = N,. 
,-, 

From these results it is seen that there may be only one extra-band eigen­
frequency in the case Q < 0 which is given by 

QMu/ ( 1 ,N,-l'N,-l f } { } 1 
1+--;-t1--- L: I: cos'Pj-1)X" cos2 (2k-1)1', tanhel" =0 

2K MN, 1'-0 ,~O J 

and 

tanhe = (Mw2-:-4K2sin'x,,-4K,sin'1', -4K"'-_)~ 
I" Mw2 - 4K2 sin' X" - 4K3 sin'1', 

where we put 

(J", = IT /2 + ie~, 

and assumed that 

coth 2N,e,,, ::: 1 , z.e., el',;P1/N, . 

(7.7 a) 

(7.7b) 

Substituting the value Mw' = 4K, + 4K, + 4K, into Eq. (7.7 a), we obtain the 
critical value Qc below which the extra-band frequency appears: 
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1- 2Qc(K, +K,+K3) f 1 __ 1_'~"~' cos'{(2j-1)X
p 
}cos2 {(2k-1)¢.} 

K, l N,N3 ,FO '00 

x( K,cos'X.+K3COS'¢, )il=O. (7.8) 
.. K, + K, cos' X" + K3 cos' ¢' J 

Next we consider a three-dimensional lattice, one of the surfaces of which 
(l = N ,) is entirely composed of impurities of the same kind. This is a straight­
forward generalization of the case in § 5 (Eqs. (5. 24)-(5. 32)). 

From Eqs. (7.2a) and (7.3a), we get 

for all (m, n) . (7.9) 
ft -0 }.I = 0 

By the use of the orthogonality relation (6.10) of the functions Z".(m, n), we 
obtain the condition for Eq. (7. 9) to have a non-trivial solution: 

r p=O,l,···,N,-l, 

\ 1!=0,1,···,N3- 1 . 
(7.10) 

From this we find the relation between the value of Q and the complex 
root {)",: 

Q = _ 1 exp (e.,) cosh e., 
2 cosh' e,,,+ (K,/K,) sin' X.+ (K3/K,) sin' ¢. 

(7.11) 

where we put 

(),,, = rc/2+ic,,, (e.,>O). 

The critical value Q., for the appearance of the complex root ().. IS gIven by 

Q., = - -2
1 

K K . ,K, K . , 
I + ,sm X. + 3 sm ¢, 

(7.12) 

In the same way as in (§ 6), we get the normal mode corresponding to the 
root ()". of Eq. (7.10): 

u(l, m, n) = (2-o"0)(2-o,0)C,,. sec{),,, 

x cos{(2l-1){)., }cos{ (2m -l)X,,}cos{ (2n -1)¢.} . 

Especially, for the complex root ()". it follows that 

u(i, m, n)~ (-l(,-lexp {-2(N,-1)e.,} urN;, m, n), 

where 

urN"~ m, n)-cos{(2m-1)X.}cos{(2n-1)¢.} , 

and we assumed that e '" » 1 / N; . 
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8. Lattices with an Isotopic Impurity Atom 
at its any Point 

So far we have considered the lattices with impuntIes at its extremity. 
The method of transfer-matrix is effective also for the lattices with an impurity 
at its any point. In this section, however, we show that we can deduce directly 
from the results obtained in the sections 5 and 7 the conclusions for such cases. 

Case (A). If we put N, = 1 in § 5, the lattice is reduced to the one­
dimensional lattice with an impurity at the lattice point (j). 

From Eqs. (5.6 b, c), it follows that 

AI' = -4 sin'e" = M(w~(p)-w')/ K" (8.1 a) 

and 
(8.1 b) 

w here we used 

"A1w' = 4K, sin'B" + 4K, sin' X" , 
and 

Mw; (p) = 4K, sin' X" . 

In order to get the eigenfrequencies affected by the presence of the impurity, 
we substitute Eqs. (8.1) into Eq. (5. 9b): 

1 + Qw' _l_'''t' cos' {(2j -l)X,,} = 0 . (8.2) 
M I'~O w'-w;(p) 

Case (B). If we put N, = 1 in § 7, the lattice is reduced to the two­
dimensional lattice with an impurity at the lattice point (j, k). 

From Eqs. (7.3), it follows that 

and 
B I,,=l, 

where we used 

Mw' = 4K, sin'e!" + 4K2 sin' XI' + 4K3 sin' rp, 
and 

Mw~(p, li) = 4K,sin' X,,+ 4K3 sin'rp,. 

The equation (7.6a) turns out to be 

(8.3 a) 

(80 3 b) 

1 2N,-12N'-'cos'{(2i-1)X }cos2 {i2k-1)d.} (8.4) 
1 + Qw' -- L: I: 'J 2" 2 ' Y' = 0 . 

N2N3 "~o ,~O w -Wo(p, li) 
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Case (C). The formulas obtained in Cases (A) and (B) are easily gener­
iodized to the three-dimensional lattice with an impurity at the lattice point (i. j. k) : 

1 + Qw2 __ I_2ZI:-'2"I:'2·~'cos2{ (2i-I)\D,}co~2{ (2~ -1) XI,}cos2{(2k-I)cjJ,} 
N,N,N3 ,~o I'~O ,~O W -WorK, {l,!.J) 

= 0, (8.5) 
where 

MW;(K, {l, !.J) = 4K, sin2 10, + 4K2 sin2 XI' + 4K3 sin' 1', . 

It. is readily seen that the above results are no other than the usual one 
obtained by GREE;\f'S function method, in which the equation of motion is solved 
by expanding the displacements in eigenfunctions which satisfy the homogeneous 
equation of motion with the imposed boundary conditions. 
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APPENDIX 

In this appendix we show that the difference operators Ll2 (l) which are 
originally dependent on the positions in !-direction can be treated as if they did 
not depend on l under suitable conditions. 

From Eqs. (4.4) it follows that 

x(l+ 1, m) = T(l, m)x(l, m) 

= C(l, m)I-fLl2 (l) -1) (U(l,m) ) 
o u(l-I, m) 

__ (r(l, m)I-fLl2(l) -1) o T(l-I,m)x(l-I,m) , 

where we put 

r(l, m) = 2-M(l, m)w2 
/ K" 

and 
f=K2 /K,. 

Using the definition of Ll2(l), Eq. (4.4c), we get 

LI'(l) [T(l-I, m)x(l-I, m)l, 

= Ll2(l) u(l, m) 
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(A. 1 a) 

(A. 1 b) 

(A. 1 c) 

(A. 1 d) 
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= u(l, m-I)-2u(l, m)+u(l, m-I) 

= [T(l-I, m-I) x(l-I, m-I)-2T(l-I, m)x(l-I, m) 

+ T(l-I, m+ I)x(l-I, m+ 1)1, 

where the suffix indicate the component of vector. 

If we assume that 

T(l-I, m-I) = T(l-I, m) = T(l-I, m+ 1), 

then the equation (A. 2) is reduced to 

(A. 2) 

(A. 3) 

J2(1)[T(l-I, m)x(l-I, m)] = [T(l-I, m)JI2(l-I)x(l-I, m)] 
-1 1 

where we defined the new difference operator JI2 (l) by 

JI2(l)x(l, m) = x(l, m-I)-2x(l, m)+x(l, m-I). 

(A. 4 a) 

(A. 4 b) 

Since the operator J'(l-I) contained within T(l-I, m) on the right-hand side 
of Eq. (A. 4 a) can be replaced by JI2(l-I), it follows that 

L/'(l)[T(l-I, m)x(l-I, m)] = L/12(l-I) [T(l-I, m)x(l-I, m)]. 
1 1 

(A. 4 c) 

Combined with Eq. (A. 1 c), we conclude that the operators L/'(l) and L/2(l-I) 
which appear in T(l,m) and T(l-I,m) respectively can be replaced by L/12 (l-I) 
provided that the equation of motion satisfy the condition (A. 3). Consequently, 
we can rewrite Eq. (A. 1 c) as follows: 

x(l+ 1, m) = T(l, m):T(l-I, m)x(l-I, m) 

= S (u(l-I, m)) 
u(l-2,m) 

(
SI! S12) 

= T(l-2, m)x(l-2, m) 
S21 S22, 

(A. 5) 

where the matrix element Sll is a polynomial of the second order with respect 
to the operator L/12 (l-Il, S12 and S21 are of the first order, and S22 is a con­
stant. In the same way as in Eq. (A. 2), we obtain 

L/12(l-I)[T(l-2, m)x(l-2, m)J, 

= L/"(l-I) u(l-2, m) 

= l T(l-2, m-I)x(l-2, m-I)-2T(l-2, m)x(l-2, m) 
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+T(l-2,m-1)x(l-2, m-1)], 
2 

(A. 6 a) 

jl2 (l-l) [T(l- 2, m)x(Z:- 2, m) 1 
1 

= [T(l-2, m-1)x(l-2, m-1)-2T(l-2, m)x(l-2, m) 

+ T(l-2, m+ 1)x(l-2, m+ l)J (A. 6 b) 
1 

and 

jl4(l-l) [T(l-2, m)x(l-2, m)] 
1 

= jl4(l-l) u(l-l, m) 

= L {u(l-l, m-2), u(l-l, m-1), "-, u(l-l, m+2)} 

=L{[T(l-2,m-2)x(l-2,m-2)J ,"', 
1 

T(l-2, m+2) x(l-2, m+2)J } , (A. 6 c) 
1 

where the function L is a suitable linear combination of arguments. 
If we assume that 

T(l-2, m-2) = T(l-2, m-1) = ... = T(l-2, m+2), 

then it follows that 

jl2(l-l) x(l-l, m) = jl2(l-2) T(l-2, m) x(l-2, m), 

and 

jl4(l-l)x(l-l, m) = jl4(l-2) T(l-2, m)x(l-2, m), 

(A. 7) 

(A. 8 a) 

(A. 8 b) 

where in the right-hand side the operator j2(l-2) contained in T(l-2, m) is 
replaced by the operator j'2(l-2). Combined with Eq. (A. 5), we conclude 
that the operator jf2 (l-l) contained in the matrix S can be replaced by the 
operator j'2 (l- 2) provided that the equation of motion satisfy the condition 
(A.7). 

From these results it is clear that the difference operator j2 (l) at any lattice 
point (l, m) can be replaced by the operator j'2 (1) provided that the same kind 
of conditions as Eqs. (A. 3) and (A. 7) are satisfied all over the "domain of 
influence" of the point (l, m). 
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