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By 
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Abstract 

This paper clarifies some central ideas behind the calculation in a foregoing paper by the 

present author, This Journal, 9, 87 (1961), which has dealt with the kinetics of a complex 

reaction system consisting of elementary reactions whose rates vary linearly with their affinities, 

special attention being paid to the condition under which a steady (or quasi-steady) state is 

established. An analogy with the calculation of molecular vibrations (e. g., E. B. WILSON) or 

that of the rotational and vibrational relaxations of molecules (HERMAN and SHULER) is 
pointed out. 

An understanding of the behavior of a complex reaction system is obtained 
from a set of simultaneous differential equations!)2), each of which is the "rate 
equation" of a constituent elementary step (elementary reaction) of the system. 
For instance, the important concept of a steady state of a complex reaction 
system is discussed, i.e., the conditions for and the characteristics of a steady 
state are examined in connection with the properties of the solutions of the 
above simultaneous differential equations3

)4). It seems, however, that the dif­
ficulty with the mathematical treatment of such simultaneous differential equa­
tions prevents us from developing a sufficiently general theory. Monomolecular 
systems (namely, complex reaction systems consisting solely of first order re­
actions) are rather exceptional; the differential equations in this case can be 
treated by simple linear algebra and the solutions are expressed in terms of 
eigenvalues, eigenvectors, relaxation times, etc. Actually many authors') have 
discussed the general theory of such "linear" systems. This kind of algebra 
is of wide use in various problems in physics and chemistry, a well-known 
example familiar to chemists being the theory of molecular vibration5

). Actually 
MATSEN and FRANKLIN') have discussed an interestng analogy between the 
theory of monomolecular systems and the theory of molecular vibrations. 

In the foregoing papers?)'), hereafter referred to as I and II, the present 
author has dealt with kinetics of a complex reaction system consisting of 

*) The Research Institute for Catalysis, Hokkaido University, Sapporo. 

-1-



2 

Takashi NAKAMURA 

elementary steps whose rates vary linearly with their affinities. Here we have 
another "linear system", which can be treated also by simple linear algebra. 
The rate law that the rate of an elementary step is proportional to the affinity 
of the step is a sort of limiting law, i. e., it can be shown to hold in the 
neighborhood of equilibrium of an elementary step irrespective of its "order"*). 
The purpose of the present paper is to reexamine the calculations in II, and 
to elucidate certain central ideas contained therein. The author hopes that the 
present paper is helpful for reading I and II, especially the latter which is 
a little bit lengthy. 

In II we have started with the rate equation, 

s 
(l/Ls)dfs/dt = I: Xst(ft-fie)) , s = 1,2, "', S, ( 1 ) 

t=1 

which is the same as (II-9)**). PRIGOGINE9
) and MEIX:-JER'O)***) have dis­

cussed similar rate equations in their thermodynamical theory of irreversible 
processes. In (1) we have assumed the linear relation (II-3), i. e., the rate 
dfs/dt (fs=the extent') of the s-th reaction) is assumed to be proportional to 
the force X, (= the affinity divided by temperature T), namely 

(2 ) 

while MEIX:-JER lO
) has considered the more general linear relation (II-4), which 

IS written as 

s 
dfs/dt = :I: LstX, . (3 ) 

t--l 

The use of (2) rather than (3) is due to the fact that the S reactions considered 
in (1) are elementary steps rather than macroscopic reactions****), i. e., they are 
assumed to be "kinetically" independent. The right hand side of (1) expresses 
the linear relation between the force Xs and the displacement from the equi­
librium, f,-f;c). Introducing new variables qs defined by 

( 4 ) 

we rewrite (1) as 

*) Cf. Section 3 of I. 
**) Eq. (II-9), for instance, stands for Eq. (9) of II. The notations in the present paper 

are defined in II. 
***) Cf. MEIXNER's (Ref. 10) Eq. (IS). Eqs. (II-4) and (II-S) correspond to MEIXNER's Eqs. 

(13) and (5), respectively. See also PRICO~INE'S (Ref. 9) Chapter 6. 
****) In this connection, see the discussion leading to (I -36) in Section 3 of I. In the 

derivation of (I -34) we can as well use the activities of reactants in place of the con­
centrations. 
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s 
dqs/dt = L: 2s,q, , s=I,2,···,S (5 ) 

t=l 

where 2s, is defined by 

(6 ) 

The solution of the simultaneous equations (5) is well-known: The change 
of qs with time is described in terms of S normal modes, each of which decays 
exponentially, i. e., the change of the s-th mode is expressed as 

const. x e- tj
" • 

The relaxation time 's occurring in the above expression is given by '8 = - As' " 
where As is the s-th eigenvalue calculated from th2 secular (determinantal) 
equation, 

det (281 - AOs,) = 0 , (7 ) 

where 0"" is KRONECKER'S delta. As pointed out by MEIXNER, the S eigen­
values obtained from (7) are all real and negative; hence 's>O for s= 1, 2, "', S. 

The above mathematical result implies that the chemical change in the 
system is expressed as a superposition of S chemical reactions, each of which 
corresponds to one of the S normal modes and hence decays exponentially. 

The reaction system whose kinetics is expressed by (1) is a closed system 
in the thermodynamical sense'). Suppose that there are N chemical species 
participating in the reactions and their chemical potentials are denoted by 
Pi (i = 1, 2, ... N). Let us now bring the system into contact with a reservoir 
(a reservoir of "particles") which contains some of the N chemical species and 
exchanges them with the system. The system becomes an open system and 
we can assume that the chemical potentials of M chemical species (M<N) 
in the system are kept constant by the exchange with reservoir: thus we 
write as 

for i -::;, M, (8 a) 

where the constant P~ is the chemical potential of the i-th species in the 
reservOIr. On the other hand, Pi with !'vi < i -::;, N varies with time: By virtue 
of (II-14) and (II-l7), 

Pi = Ple) + L:RT(bit/Nie))(~,-f;;e)) for i> M, (8 b) 
1 

where R is the gas constant, Ni the number of mole of the i-th chemical 
species, bi " the stoichiometric coefficieint') of the i-th chemcial species in the 
s-th elementary step, and the superscript (e) designates the value at equilibrium. 

3 
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After HIRSCHFELDER the above M chemical species will be called principal 
chemical species'lBl. In Section 2 of I and in Section 2 of II we have noticed 
that the condition (8 a) means an addition of an external constraint to the 
system and this kind of constraint is a necessary condition for a "true" steady 
state to be established in the system. Eventually the force X" (= the affinity 
divided by temperature T) will be expressed as 

Xs = - L: pibislT = (- L:°p;bis - 'L.*pibis)IT 
i 'i 'i 

In (9), L: denotes the sum over all the chemical species, i=I,2, .. ·,N; L:0 IS 
i i 

the sum over the principal chemical species, i = 1,2, ... , A1; L: * is the sum 
i 

over i=M+ 1, ]\,1+2, .. ·,N (thus L: = 'L. 0+ 'L.*). The third term in the square 
brackets in (9), L: p\elbiS vanishes since the superscript (e) designates the equi-

i 

librium value. Using (2) and (9) we have the rate equation, 

dqsldt = Z~ + L: Z:'q, , s=I,2, .. ·,5, (10) 
t 

where Z~ and Z:, are essentially the same as X~ and X:, m (II, 20) : i. e, by 

virtue of (8) they are expressed as 

1 

Z~= -L82L:0(p~_p;Cl)biSIT (11 a) 
i 

and 

(11 b) 

The solution of (10) has been discussed m II. Again 5 normal modes need 
to be determined by solving the secular equation, 

det (Z:'-A*os,l = o. (12) 

The important point is that some of the 5 eigenvalues A,: determined from 
(12) are zero although the rest are negative. The existence of zero eigenvalues 
here reminds us of a similar situation in the calulation of molecular vibrations lll . 

The 3n >: 3n secular equation for the calculation of the normal vibrations of 
an n-atomic molecule takes the form, 

det (!jk-AOjk) = 0 , (13) 

provided that the potential energy matrix [!jk] is calculated in terms of the 
mass-weighted cartesian displacement coordinates lll . In the case of a non-linear 
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molecule, six of the 3n roots of (13) are known to be zero"). This is due to 
the fact that nuclear displacements corresponding to the translational and rota­
tional motion of the molecule as a whole do not change the potential energy 
of the molecular vibration. The normal coordinates corresponding to these zero 
eigenvalues can readily be found by the standard method"). For instance, the 
normal coordinate corresponding to the translational motion in the x-direction 
is given by 

n 1 

'1}, = const. x 1: m" 2" q3,,-2 , 
fl=l 

where m" is the mass of the a-th nucleus and qj is the j-th mass weighted 
cartesian coordinate*). 

Now we ask what the normal coordinates corresponding to the zero eigen­
values of (12) are like. We will write the relation between the variables q, III 

(10) and the relevant normal coordinates '1}t determined from (12) as 

8 

q, = 1: T 8t'1}t , (14 a) 
t·_·1 

In (14 a) the constant coefficients T,t form an S x S orthogonal matrix'>, and 
the coefficients 7,t are the same as that occurs in (II-21) and are written as 

Thus we have the inverse relation, 

8 SIR 

'1}t = I: q,T,t = 1: q,7,t/L? = 1: (r;,-r;~e»)7st/L" (14 b) 
8=1 8-1 s=l 

The eigenvalues Ai are written as 

8 8 

Aio", = I: 1: Z;8 T rt T81< . (15) 
t _.1 8-=-1 

Assuming that the first P eigenvalues A;~ (t= 1, 2, "', P; P<S) are equal to 
zero, we have, from (11 b) and (15), the following relation: 

s s ]. 1 

For t-::;'P, O=-R1:*1: 1:bi,Lr2Trtbi,L82"Tst/Nle) 
i r = J S -1 

= - R Lt * (f, bi,L} T,.t Y / Ni') = - R ~ * (t, bi,JrJ/ Nie) 

(16) 

Since Ni') > 0, we have, from (16), the relation, 

*) The variable qj here is defined by Eq. (2), Section 2-2 of Ref. 5. 
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s 
.L: bi,l,.t = 0, provided that i>M and t-:::;'P. (17) 
r,,,,l 

Our conclusion is that when the t-th normal coordinate 1}t corresponds to 
a zero eigenvalue, the coefficients, 7,t,1u, ···,7St in (14) satisfy (17); i.e., they 
have the property of the stoichiometric numbers which have been introduced 
by HORIUTI and the present author:2

)7) (see I) as a useful concept in dealing 
with a steady state of a complex reaction system. Thus the number of the 
zero eigenvalues P turns out to be equal to the number of reaction routes12

)7) 

defined by these authors. The solution of the rate equations (10) is readily 
written down in terms of the normal coordinates 'Y) •. For a normal mode corre­
sponding to a zero eigenvalue, 'Y). takes the form, 

(s-:::;'P) (18) 

and for a normal mode corresponding to a non-zero eigenvalue, 'Y). takes the 
form, 

'Y)8 = c. + d. exp ( - t/rn , (s>P) (19) 

where as) bS) c. and d. are constants, and 

Thus the reaction associated7) with a zero-eigenvalue mode has a constant rate 
(steady reactions) and survives at the steady state while that associated7

) with 
a non-zero eigenvalue mode dies down (i. e., d'Y)./dt-> 0) during the initial in­
duction period. Also we can easily showS) that the chemical species with index 
numbers greater than A1 [ef. Eqs. (8a) and (8b) above] are what are called 
intermediates in chemical kinetics. Eqs. (14 a) and (17) imply that the reactions 
associated with zero-eigenvalue modes do not change the concentrations of the 
intermediates; thus the concentrations of the intermediates change during the 
induction period but attains a constant value in the steady state. 

We have so far considered the establishment of a steady state under 
a specially contrived condition, i. e., by attaching the reservoir to the system. 
A case of more practical interest, namely, the establishment of a quasi-steady 
state in a closed system has also been considered in II. In a closed system 
a "true" steady state can not be established'), but an approximately steady 
state, i. e., a quasi-steady state is expected under a certain condition. To see 
this we will start with the assumption that the concentrations of the chemical 
species with i=1,2, oo',M (principal chemical species) are much greater than 
those of the chemical species with i=M+1, M+2,oo·,N(intermediates): thus 

when i-:::;,M and j>M. (20) 
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The change of all the chemical potentials is given by the same expression 
as (8b): 

S 

Pi = p;e) + L: RT(bu/Nie))(~,_~;C)) , i=I,2, .. ·,N. (21) 
t-=l 

The rate equations of this closed system are given by (5), and, as we have 
seen, the chemical change in the system is described as a superposition of S 
reactions decaying exponentially with relaxation times Ts (s= 1, 2, "', S). The 
relaxation times can be calulated from the eigenvalues As of the matrix [Z8'] 
in (5). 

The important point is that the solution of (5) under the condition (20) 
is closely connected with the solution of (10). To see this, we divide the 
matrix [Z8'] into two parts, [Z~,] and [Z:,] [d. (1), (2), (6), (9) and (21)]: 

Z'" = Z~, + Z:, , (22 a) 
1 

Z.~, = -(L.,L,)2 R L:°bisbit/N?), (22 b) 
i 

1. 
Zit = -(LsL t )2 R L: * bisbu/N?) , (22 c) 

i 

where Z:; is the same as that occurs in (10) and (11 b). Using the normal 
coordinates 7}. defined by (14) and (15), we rewrite (5) as 

s 
dr;s/dt = L: (Y;, + A: 08 ,) 7}, , s=I,2, "',S (23) 

,-] 

where 
S 8 S S 

Ysot = L: L:Z,:vTus Tv, = -R L: L: (L:°biubiv/NY))luslvi' (24) 
U-lv·-l 1/.,-111=1 i 

Combining the relation (20) with (22) and remembering the definitions of L:0 
and L: *, we observe that [Z8";] differs only slightly from [Zs,]; i. e., in the 
division (22 a), we may call [Z8;] the dominant part. It should be noted that 
the dominant part [Zs;] has been diagonalized in (23). Also we have seen the 
relation, 

A;*=O for s":::;'P; A.: <0 for s>P. 

Starting with (23), the detailed discussion in II has arrived at the following 
conclusions. [1] The chemical change with time in the system is described 
as a superposition of P slowly decaying reactions (slow reactions with long 
relaxation times, T8=A;') and S-P rapidly decaying reactions (transient re­
actions with short relaxation times). After the induction period in which the 
transient reactions die away, there remain the P slow reactions. [2] To a good 
approximation, the normal modes of the slow reactions and those of the transient 

7 
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reactions can be calculated separately owing to the large difference between the 
relaxation times of the slow reactions and those of the transient reactions. 
This large difference, in tum, results from the large difference in dp;ldt (the 
rate of the change of the chemical potential Pi) of the principal chemical 
species and the intermediates: From (21) we have 

s 
dpt/dt = L; RT(bitINi(e)) (d;,ldt) , 

1=1 

and combining this expression with the condition (20) we find the difference in 
dpt/dt mentioned above. This is just the kind of thing HERMAN and SHULER13

) 

have found in their calculation of the rotational and vibrational relaxation of 
rotating oscillator molecules in a gas: Owing to the large order of magnitude 
difference in efficiency of the translational-rotational and translational-vibrational 
energy transfer, there is very little coupling between the vibrational and rotational 
relaxation. [3] Thus the chemical change in the system after the induction 
period is described by the equations, 

s=1,2, ... ,p, (25) 

which are obtained from the first P equations (s= 1, 2, ... , P) of (23) by omitting 
the terms involving r;p-!l, r;p+2, ... , 7}s and making use of the fact that A; vanishes 
when s-::;'P; thus in (25) the matrix [Y~,] is Px P rather than S x S. Of par­
ticular importance is the fact that Eq. (25) is equivalent*) to the rate equations 
of the overall reactions in the steady state12

)l) , 

P P 

L: Ks,(dB,ldt) = L: A 8 ,(B,-Ble)), s=1,2, ... ,p (26) 
1=1 1=1 

which have been considered in 1. In (26), B, is the extent of the t-th overall 
reaction, and K 8 , and As, are written as 

s 
K IT = " (IlL) 1/ 8\/1) sl L...J u u u , 

U-·l 

s s 
A 8,IT = - R L: L: (L;0 biUbi,,/Ni(e)) J.!~SiJ.!~') , 

u- 1 1J-~ 1 i 

where the stoichiometric numbers J.!;:) of HORJUTI and the present author12)?) 
again occur. The significance of the rate equations (26) has been fully discussed 
in I, where (26) has been derived from the assumption or the approximation 
(steady state approximation' )-')) that the change in the amounts of the inter­
mediates with time is negligible [d. (1-16)]. Our conclusion is that the use 

*) Combining (1-47) and (1-48) we obtain the same equation as (26). The equivalence of (25) 
and (26) has been proved in Appendix of It 
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of this assumption and hence of the rate equations for the overall reactions 
(26) is justified to a good approximation under the condition (20). In II the 
possible deviation from the results of the steady state approximation has also 
been mathematically discussed. 
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