Instructions for Use

Title
ON THE MECHANISM OF THE OXIDATION OF SULFUR DIOXIDE PART Ⅰ:Determination of the Stoichiometric Number by means of 35S

Author(s)
KANEKO, Yoshihisa; ODANAKA, Hideo

Citation
JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 13(1): 29-43

Issue Date
1965-07

Doc URL
http://hdl.handle.net/2115/24790

Type
bulletin

File Information
13(1)_P29-43.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON THE MECHANISM OF THE OXIDATION OF SULFUR DIOXIDE PART I

Determination of the Stoichiometric Number by means of 35S

By

Yoshihisa KANEKO* and Hideo ODANAKA*

(Received March 10, 1965)

Abstract

Stoichiometric number of the rate-determining step of catalyzed oxidation of SO$_2$

$$2\text{SO}_2 + \text{O}_2 = 2\text{SO}_3$$

in the presence of Pt catalyst was determined at 424°, 430° and 440°C by following the reaction up to equilibrium by observing β-ray count of 35S in SO$_2$ and SO$_3$ and their partial pressures and by determining the equilibrium constant.

The stoichiometric number $\nu(r)$ was found 2. It follows from the result that the rate-determining step is one of last two steps of the sequence,

$$\text{O}_2 \rightarrow 2\text{O(a)} \quad \text{(i)}$$

$$\text{SO}_2 \rightarrow \text{SO}_2(a) \quad \text{(ii)}$$

$$\text{O(a)} + \text{SO}_2(a) \rightarrow \text{SO}_3, \quad \text{(iii)}$$

provided that the reaction followed the sequence.

The present result is in agreement on the one hand with the $\nu(r)$-value derived from the data of REITER7) incorporated with that of KNIETSCHE9) at 600°C in equilibrium and on the other hand with the conclusion arrived at previously by BORESKOV11).

I. Introduction

It has generally been accepted that the observation of stoichiometric number provides a powerful method of determining the mechanism of chemical reaction1-5).

The present work is concerned with the determination of the stoichiometric number of rate-determining step of catalytic oxidation of sulfur dioxide to sulfur trioxide, i.e.

$$2\text{SO}_2 + \text{O}_2 = 2\text{SO}_3$$

in the presence of platinum catalyst. Assuming that reaction (1) proceeds

*) The Faculty of Liberal Arts, Utsunomiya University, Utsunomiya, Japan.
through the sequence of steps,

\[\text{O}_2 \rightarrow 2\text{O}(a) \quad (A) \]
\[\text{SO}_2 \rightarrow \text{SO}_2(a) \quad (B) \]

and

\[\text{O}(a) + \text{SO}_2(a) \rightarrow \text{SO}_3 \quad (C) \]

we see that the stoichiometric numbers of steps (A), (B) and (C) are respectively 1, 2 and 2. According to the theory of steady reaction, the stoichiometric number \(\nu(r) \) of rate-determining step is expressed as:

\[\nu(r) = \frac{-\Delta F}{RT \ln (V_+/V_-)} \quad (2) \]

where \(V_+ \) or \(V_- \) is the forward or backward unidirectional rate of the overall reaction at the steady state, \(-\Delta F \) its affinity and the other notations are of usual meanings.

It has now been found experimentally that the stoichiometric number of rate-determining step of reaction (1) is 2 at ca. 1/2 atm total pressure in the temperature range from 424 to 440°C. Principle of the determination of \(\nu(r) \), experimental procedures and results are described in what follows.

II. Determination of \(\nu(r) \)

Eq. (2) is developed as below for the practical determination of \(\nu(r) \). The \(\Delta F \) in (2) is expressed in terms of partial pressures \(P^{\text{SO}_2}, P^{\text{SO}_3}, \) and \(P^0 \) of sulfur dioxide etc. and equilibrium constant \(K \) as:

\[-\Delta F = RT \ln \left\{ \frac{(P^{\text{SO}_3})^2 P^0 \cdot K}{(P^{\text{SO}_2})^2} \right\} \quad (3) \]

The \(V_- \) in (2) is now connected as follows with the rate of transfer of \(^{35}\text{S} \) from sulfur dioxide to sulfur trioxide, provided that the isotopic effect on \(V_+ \) and \(V_- \) is ignorable and \(^{35}\text{S} \) atoms are transferred in either direction only through reaction (1); the rate of transfer of \(^{35}\text{S} \) from sulfur dioxide to sulfur trioxide is then expressed either as

\[-\frac{d(n^{\text{SO}_2} Z^{\text{SO}_3})}{dt} \text{ or as } 2(Z^{\text{SO}_3} V_+ - Z^{\text{SO}_3} V_-), \]

hence

\[-\frac{d(n^{\text{SO}_2} Z^{\text{SO}_3})}{dt} = 2(Z^{\text{SO}_3} V_+ - Z^{\text{SO}_3} V_-), \quad (4) \]

where \(Z^{\text{SO}_2} \) and \(Z^{\text{SO}_3} \) are the atomic fraction of \(^{35}\text{S} \) in sulfur dioxide and in sulfur trioxide respectively and \(n^{\text{SO}_2} \) is the number of moles of sulfur dioxide in the reaction system. The coefficient 2 on the right side of (4) cares for the number of sulfur atoms thus transferred by every act of reaction (1). Since \(Z^{\text{SO}_2} \) and \(Z^{\text{SO}_3} \) are proportional to the specific \(\beta \)-ray counts \(C^{\text{SO}_2} \) or \(C^{\text{SO}_3} \) of \(^{35}\text{S} \) in sulfur dioxide or sulfur trioxide respectively, we have from (4)

\[\frac{d(n^{\text{SO}_2} C^{\text{SO}_3})}{dt} = 2(C^{\text{SO}_3} V_+ - C^{\text{SO}_3} V_-). \quad (5) \]
On the Mechanism of the Oxidation of Sulfur Dioxide Part I

The overall rate of reaction (1) is written as

\[V = V_+ - V_- = -\frac{1}{2} \frac{dn^\text{SO}_2}{dt}. \]

Eliminating \(V, V_+, V_- \) and \(\Delta F \) from (2), (3), (5) and (6), we have

\[\nu(\tau) = \frac{\log \left\{ \left(\frac{P^\text{SO}_2}{P_0} \right)^2 \right\}}{\log \left\{ 1 - \frac{(C^\text{SO}_2 - C^\text{SO}_3)}{dC^\text{SO}_2} \right\} \frac{d \ln P^\text{SO}_2}{dC^\text{SO}_2}}. \]

The stoichiometric number \(\nu(\tau) \) of reaction (1) is now determined according to (7) by observing the quantities \(K, P^\text{SO}_2, \ldots \) on the right side of (7) in course of the progress of reaction (1).

III. Materials

Sulfur dioxide: “First grade” reagent of Na\(_2\)SO\(_3\) from KOSO Chemical Co. Ltd., Tokyo was decomposed by concentrated sulfuric acid; gas evolved was washed with conc. sulfuric acid, condensed with liquid nitrogen bath and non-condensable gas evacuated. The condensed gas was now distilled three times from \(-80^\circ C\) to liquid nitrogen temperature in order to remove the last trace water, which upset the experiment by forming sulfuric acid with sulfur trioxide. Final sample thus purified was about one nineth of the original in volume.

Oxygen: “First grade” reagent of KMnO\(_4\) from the same company was thermally decomposed and the evolved gas purified by repeating twice the fractional distillation, reserving the first three fourth in each time as distillate.

Sulfur trioxide: Sulfur trioxide was distilled from “First grade” reagent of 50% fuming sulfuric acid from the same company directly into the reaction system.

Radioactive sulfur dioxide: Sulfuric acid containing \(^3\)S from COMMISARAT A L'ENERGIE ATOMIQUE, France was converted into barium sulfate by a usual method. The 1:1.6-mixture of \(^3\)S containing barium sulfate and dried red phosphorous was burnt in a stream of oxygen according to JOHNSON's method\(^8\). Radioactive sulfur dioxide thus obtained was purified by distilling once from \(-80^\circ C\) to liquid nitrogen temperature reducing the quantity of sample to one third of the original.

Platinum catalyst: 10.2 gm platinum gauze of 0.1 mm diameter wire from TOKURIKI & Co. Ltd., Tokyo was electrolytically platinized freshly for every series of experiments respectively conducted at 440\(^\circ C\), 430\(^\circ C\) and 424\(^\circ C\).

IV. Apparatus

(i) Reaction System.

Fig. 1 shows the reaction system including reactor R of 2.5 cm diameter.
glass tube with catalyst bed, i.e. a pack of platinized platinum gauze mentioned in III of 6 cm height. F is an electric furnace with a thermojunction in a blind tube, preliminarily calibrated at the boiling point of pure sulfur and inserted in the catalyst bed as illustrated in Fig. 1. The temperature of the catalyst was kept constant within 0.5°C by combining the junction with a thermoregulator of the electric furnace. P is a pump with which reacting gas is circulated through the circuit of the reaction system. R_p is a triply folded glass tube through which the reacting gas is preheated. Bd is a BOURDON’S gauge, with its needle dipped in vacuum oil to prevent its vibration caused by the operation of pump P. Fl is a flow meter consisting of glass spring, glass float and conical glass tube (1.5 or 1.0 cm diameter at its upper or lower end respectively). Sampling tubes Sp's with breakable joints are set in parallel with each other in the circuit. Flask V_1 and V_2 are respectively of one liter.
volume, which provide the reaction system with an appropriate capacity of 4.1 liter. B₁, ..., B₄ are breakable joints, and S₁, ..., S₄ are constrictions for sealing.

The reaction system is kept at 90°C in order to prevent the adsorption or condensation of the reacting gas on the glass wall.

(ii) Apparatus for Separation of SO₂ and SO₃.

Fig. 2 shows the apparatus for separation of SO₂ and SO₃ from the sampled gas. Sp is a sampling tube, T₁ a trap, G glass wool, S₁, S₂ and S₃ are constrictions for sealing and B₁ and B₂ breakable joints.

(iii) β-ray counter.

The KAKEN (the Institute of Physical and Chemical Research, Tokyo) NO. 57071 Scintillation Counter was used for β-ray count.

V. Experimental Procedure

Experiments of Oxidation and Decomposition described below have been conducted consecutively at each temperature of 440°, 430° and 424°C. Oxidation and Decomposition conducted at each temperature will be called a series of experiment. Procedures of Oxidation, Decomposition and Separation of SO₂ and SO₃ from samples of gas in Sp's to determine the β-ray counts of ³⁵S in the components are described below respectively under the headings Oxidation, Decomposition and Separation.

Oxidation; Mixture of sulfur trioxide, sulfur dioxide, radioactive sulfur dioxide and oxygen was circulated through the catalyst bed in the reaction
system, and the total pressure and \(\beta\)-ray counts of sulfur dioxide mixed with radioactive one and of sulfur trioxide in the reaction system were followed with time in course of the reaction as follows.

Keeping the temperature of the reactor at 450°C and that of the other parts of the reaction system A at 90°C, the whole system was evacuated through constrictions \(S_1'\) and \(S_2'\) up to \(10^{-5}\) mmHg. Constrictions \(S_1'\) and \(S_2'\) were sealed to shut off A from the vacuum line and then \(S_1'\) and \(S_2'\) sealed to isolate the reactor from the other parts of A. One of the breakable joints \(B_3's\) was now opened, a recorded amounts of the 1:2 mixture of oxygen and sulfur dioxide mixed with radioactive one was admitted into A and the one of constrictions \(S_1's\) communicated with the opened one of \(B_3's\) was sealed off. Sulfur trioxide was now allowed to expand into A by opening one of the \(B_3's\), keeping the pressure outside higher than inside to prevent a backward flow, and the constrictions \(S_1's\) above and below the opened one of \(B_3's\) were sealed off. The gases thus admitted were mixed by circulating them for half an hour by means of \(P\).

The temperature of the reactor was now adjusted to the desired one of the reaction, \(S_1\) was sealed, one of \(B_3's\) and one of \(B_2's\) were opened and the gas mixture was circulated through the reactor, the resulting pressure change being followed with time by Bourdon's gauge \(B_d\). Sulfur trioxide and sulfur dioxide mixed with radioactive one in the reaction system are denoted by \(SO_3\) and \(SO_2\) respectively in what follows.

Sampling tubes \(S_p's\) were sealed off successively along with the progress of the oxidation toward the equilibrium. The \(SO_2\) and \(SO_3\) were separated from the sampled gas, converted respectively into \(BaSO_4\) as described below, and the \(\beta\)-ray count of \(^{35}\)S of the respective samples of \(BaSO_4\) was measured. As the equilibrium was attained, \(T\) was immersed in liquid nitrogen, the gas being circulated meanwhile. \(T\) containing condensed \(SO_2\) and \(SO_3\) was now sealed off by the constrictions \(S_3\) and \(S_2\). The reaction system was then evacuated by opening both bypass \(B_x\) and one of \(B_3's\) up to \(10^{-5}\) mmHg to provide for the Decomposition.

Decomposition: Sulfur trioxide was circulated in the reaction system and the total pressure finally attained was determined to establish the value of the equilibrium constant \(K\) at each temperature as follows.

The amount of sulfur trioxide admitted was equal in moles to the sum of those of \(SO_2\) and \(SO_3\) in the preceding Oxidation at the same temperature. The total pressure in equilibrium should equal that in the preceding Oxidation, since the number of moles of oxygen used in the latter experiment was half as much as that of \(SO_2\).
Separation: Two traps T₁ each containing 5 ml of 0.1 N HCl solution were fused to the sampling tube Sp as shown in Fig. 2 (A), immersed in liquid nitrogen and evacuated to 10^{-5} mmHg for 30~40 min. Tap C was now closed, breakable joint B₁ opened and SO₂ and SO₃ in the sampling tube were condensed in T₁. Opening tap C, residual gas in the space below tap C was purged down to 10^{-4} mmHg. T₁ was now removed from the vacuum line by sealing off S₁ and S₂, shaken for a while to allow HCl solution to absorb SO₂ and SO₃ at room temperature. T₁ was now fused to T₂ which contains 25 ml of 0.2 N NaOH solution, as shown in Fig. 2 (B). T₂ was immersed in liquid nitrogen and evacuated for half an hour. S₂ was now sealed off and B₂ opened. The content of T₁ kept at 70°C was distilled into T₂ cooled by liquid nitrogen, which was completed without pumping within about three hours leaving a small amount of liquid in T₁. T₂ was cut off at the dotted line in Fig. 2 (B), bromine water poured in and the resulting solution was filtered in order to remove pieces of glass in it. The residue on the filter was washed with pure water, and the wash was added to the filtrate, SO₂⁻ in the filtrate was converted into BaSO₄, weighed and its specific β-ray count C_{BaSO_4} was determined from the β-ray count of the BaSO₄ and its weight by a usual method²).

SO₂⁻ in the residual liquid in T₁ was similarly converted into BaSO₄, weighed and its specific β-ray count C_{SO_2} determined. The ratio r of the weight of BaSO₄ from SO₂ to that from SO₃ gives the ratio of the number of moles of SO₂ to that of SO₃. Partial pressure P_{SO_2} of SO₂ and that P_{SO_3} of SO₃ were determined from the observed total pressure P as $P_{SO_2} = P/(3/2 + r)$ and $P_{SO_3} = P/r(3/2 + r)$.

It has been confirmed by control experiments that sampled SO₂ and SO₃ were thus separated quantitatively and that exchange of ³⁵S between SO₂ and SO₃ did not take place without the catalyst within experimental error.

IV. Result

The results of Oxidation and Decomposition consecutively conducted at each temperature of 440°C, 430°C and 424°C are summarized in Tables 1 to 3. “Time of reaction” is the time elapsed from the beginning of the circulation of gas mixture through the catalyst bed until the sampling.

Figs. 5 to 7 shows the plots of C_{SO_2} and C_{SO_3} against log P_{SO_2} at 440°C, 430°C and 424°C respectively, from which the values of $d \ln P_{SO_2}/dC_{SO_2}$ have
Yoshihisa Kaneko and Hideo Odanaka

TABLE 1. Series of Experiments at 440°C

Series (i) SO₂ oxidation

<table>
<thead>
<tr>
<th>Time of reaction</th>
<th>Total pressure</th>
<th>(P_{SO₂})</th>
<th>(P_{SO₃})</th>
<th>(C_{SO₂})</th>
<th>(C_{SO₃})</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>cm Hg</td>
<td>cm Hg</td>
<td>cm Hg</td>
<td>c.p.m.mg⁻¹</td>
<td>c.p.m.mg⁻¹</td>
</tr>
<tr>
<td>0</td>
<td>33.55</td>
<td>10.60</td>
<td>15.30</td>
<td>264</td>
<td>0</td>
</tr>
<tr>
<td>4.3</td>
<td>32.15</td>
<td>13.40</td>
<td>12.50</td>
<td>263</td>
<td>57</td>
</tr>
<tr>
<td>9.8</td>
<td>30.90</td>
<td>15.90</td>
<td>10.10</td>
<td>261</td>
<td>90</td>
</tr>
<tr>
<td>27.8</td>
<td>28.15</td>
<td>21.40</td>
<td>4.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.8</td>
<td>26.80</td>
<td>24.10</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.8</td>
<td>26.75</td>
<td>24.20</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.0</td>
<td>26.74</td>
<td>24.22</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.0</td>
<td>26.74</td>
<td>24.22</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Series (ii) SO₃ decomposition

<table>
<thead>
<tr>
<th>Time of reaction</th>
<th>Total pressure</th>
<th>(P_{SO₃})</th>
<th>(P_{SO₂})</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>cm Hg</td>
<td>cm Hg</td>
<td>cm Hg</td>
</tr>
<tr>
<td>0</td>
<td>25.90</td>
<td>25.90</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>26.70</td>
<td>24.30</td>
<td>1.61</td>
</tr>
<tr>
<td>58</td>
<td>26.70</td>
<td>24.30</td>
<td>1.61</td>
</tr>
</tbody>
</table>

been determined with the aid of prism⁴).*) The stoichiometric number \(\nu(\tau) \) of the rate-determining step is now determined according to (7) at several values of \(\Delta F \) from the values of \(d\ln P_{SO₂}/dC_{SO₂} \) thus determined and the contemporaneous values of \(C_{SO₂} \) and \(C_{SO₃} \). Fig. 8 shows \(\nu(\tau) \) thus determined plotted against the affinity \(\Delta F \).

*) It may be seen as below that the successive sampling does not affect the value of \(d\ln P_{SO₂}/dC_{SO₂} \), or, in other words, its value actually observed by sampling equals what would result without sampling.

We have identically

\[
\frac{d\ln P_{SO₂}}{dC_{SO₂}} = \frac{dP_{SO₂}/dt}{P_{SO₂}} \left| \frac{dC_{SO₂}}{dt} \right|
\]

The sampling excludes now partially the volume of A and its content by the same fraction less than 1%. This varies the numerator and the denominator of the right side of the above equation by the same factor, admitted that the rate of oxidation or that of \(^3\)S transfer remains respectively the same at a given partial pressure \(P_{SO₂} \) of SO₂, which uniquely defines the total pressure and the composition of the gas mixture under the condition of the present experiment. It follows that the left side of the above equation remains the same function of \(P_{SO₂} \), hence \(d\ln P_{SO₂}/dC_{SO₂} \) is not affected by the sampling, although the numerator and the denominator of the right side varies individually.
On the Mechanism of the Oxidation of Sulfur Dioxide Part 1

TABLE 2. Series of Experiments at 430°C

Series (i) SO₂ oxidation

<table>
<thead>
<tr>
<th>Time of reaction hr</th>
<th>Total pressure cm Hg</th>
<th>P_{SO_2} cm Hg</th>
<th>P_{SO_3} cm Hg</th>
<th>C_{SO_2} c.p.m.mg⁻¹</th>
<th>C_{SO_3} c.p.m.mg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>37.40</td>
<td>8.45</td>
<td>18.40</td>
<td>302</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>35.95</td>
<td>11.35</td>
<td>15.50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>32</td>
<td>33.70</td>
<td>15.85</td>
<td>11.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>56</td>
<td>32.05</td>
<td>19.15</td>
<td>7.70</td>
<td>293</td>
<td>180</td>
</tr>
<tr>
<td>84</td>
<td>31.04</td>
<td>21.20</td>
<td>5.64</td>
<td>289</td>
<td>184</td>
</tr>
<tr>
<td>107</td>
<td>30.41</td>
<td>22.40</td>
<td>4.44</td>
<td>285</td>
<td>193</td>
</tr>
<tr>
<td>130</td>
<td>30.01</td>
<td>23.21</td>
<td>3.61</td>
<td>282</td>
<td>195</td>
</tr>
<tr>
<td>170</td>
<td>29.52</td>
<td>24.19</td>
<td>2.65</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>325</td>
<td>28.62</td>
<td>25.90</td>
<td>0.95</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>361</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>391</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Series (ii) SO₃ decomposition

<table>
<thead>
<tr>
<th>Time of reaction hr</th>
<th>Total pressure cm Hg</th>
<th>P_{SO_3} cm Hg</th>
<th>P_{SO_2} cm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28.21</td>
<td>26.90</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>28.60</td>
<td>26.02</td>
<td>0.90</td>
</tr>
<tr>
<td>335</td>
<td>28.63</td>
<td>25.91</td>
<td>0.90</td>
</tr>
<tr>
<td>372</td>
<td>28.60</td>
<td>26.00</td>
<td>0.92</td>
</tr>
</tbody>
</table>

It may be concluded from the result in Fig. 8 that the stoichiometric number $\nu(r)$ of reaction (1) is 2 in the present experimental condition.
Fig. 3. Total pressure vs. time of reaction

① or ② shows the total pressure at 440° or 430°C observed by Oxidation experiments (cf. V).
③ or ④ shows the total pressure at 440° or 430°C observed by Decomposition experiments (cf. V).

Horizontal broken lines indicate the total pressure finally attained.

Fig. 4. Total pressure vs. time of reaction

⑤ or ⑥ shows the total pressure observed at 424°C by Oxidation experiments (cf. V) or Decomposition experiment respectively.

Horizontal broken line shows the total pressure finally attained.
Fig. 5. C^{30}_{2} and C^{30}_{4} vs. log P^{30}_{2}, 440°C.

Fig. 6. C^{30}_{2} and C^{30}_{4} vs. log P^{30}_{2}, 430°C.
Fig. 7. C^{SO_2} and C^{NO}, vs. log P^{SO_2}, 424°C.

Fig. 8. $\nu(s)$ vs. Affinity.
VII. REITER's Experiment

Reiter\(^5\) has observed the unidirectional rate in equilibrium of reaction (1) by means of \(^{35}\)S, in the presence of Pt-catalyst over the temperature range from 600\(^\circ\) to 674\(^\circ\). He measured also the overall rate \(V\) of the oxidation over the temperature range from 420\(^\circ\) to 600\(^\circ\) quite off from equilibrium.

The unidirectional rate \(V_{+,e}\) in equilibrium allows us to determine in accordance with the equation\(^7\)

\[
\nu(x) = -\frac{V_{+,e}}{RT\left\{\frac{\partial V}{\partial (\Delta F)}\right\}_e},
\]

whereas the value \(\left\{\frac{\partial V}{\partial (\Delta F)}\right\}_e\) of \(\frac{\partial V}{\partial (\Delta F)}\) in equilibrium is not available from Reiter's result. However, Knetsch\(^10\) observed \(V\) early as a function of \(\Delta F\) up to the neighbourhood of equilibrium at 600\(^\circ\)C in the presence of platinum catalyst. Fig. 9 illustrates the relation observed by Knetsch, where the scale of \(V\) is changed so as to identify his data of \(V\) at \(-\Delta F=3.82\) Kcal numerically with that measured by Reiter at the same value of \(-\Delta F\). The \(V\) is thus given as a function of \(\Delta F\) up to equilibrium in Reiter's scale, on
TABLE 3. Series of Experiments at 424°C

<table>
<thead>
<tr>
<th>Time of reaction (hr)</th>
<th>(p_{SO_2}) (cm Hg)</th>
<th>(p_{SO_3}) (cm Hg)</th>
<th>(C_{SO_2}) (c.p.m.mg(^{-1}))</th>
<th>(C_{SO_3}) (c.p.m.mg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39.11</td>
<td>9.41</td>
<td>19.81</td>
<td>325</td>
</tr>
<tr>
<td>19</td>
<td>37.19</td>
<td>13.19</td>
<td>16.00</td>
<td>—</td>
</tr>
<tr>
<td>35</td>
<td>36.10</td>
<td>15.40</td>
<td>13.79</td>
<td>323</td>
</tr>
<tr>
<td>66</td>
<td>34.28</td>
<td>18.99</td>
<td>10.20</td>
<td>320</td>
</tr>
<tr>
<td>137</td>
<td>31.91</td>
<td>23.81</td>
<td>5.41</td>
<td>314</td>
</tr>
<tr>
<td>169</td>
<td>31.39</td>
<td>24.79</td>
<td>4.40</td>
<td>311</td>
</tr>
<tr>
<td>320</td>
<td>30.10</td>
<td>27.40</td>
<td>1.82</td>
<td>—</td>
</tr>
<tr>
<td>355</td>
<td>29.90</td>
<td>27.80</td>
<td>1.41</td>
<td>—</td>
</tr>
<tr>
<td>390</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>420</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Series (ii) \(SO_2 \) decomposition

<table>
<thead>
<tr>
<th>Time of reaction (hr)</th>
<th>(p_{SO_2}) (cm Hg)</th>
<th>(p_{SO_1}) (cm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.21</td>
<td>0</td>
</tr>
<tr>
<td>328</td>
<td>29.88</td>
<td>1.40</td>
</tr>
<tr>
<td>441</td>
<td>"</td>
<td>1.40</td>
</tr>
</tbody>
</table>

which base Reiter’s value of \(V_{+,e} = 0.85 \text{ ml/min.} \) is given. The value of \(\{\partial V/\partial JF\}_e \) is thus obtained in Reiter’s scale from the inclination of the tangent to the curve in Fig. 9 at \(JF = 0 \), as \(2.3 \times 10^{-2} \text{ ml/min. cal.} \). Combining this value of \(\{\partial V/\partial JF\}_e \) with the above value of \(V_{+,e} \), \(\nu(r) \) is calculated at 1.8 in accordance with (8), in agreement with the present result over the temperature range from 424° to 440°C.

VIII. Discussion

It follows from \(\nu(r) = 2 \) of reaction (1) that the rate-determining step is either (B) or (C) but not (A), if the reaction followed the sequence. Reiter\(^9\) concluded from his experimental result under some kinetic assumption that the rate-determining step can not be (A), which is in conformity with the present result as well as the conclusion derived by incorporating his result with the Knietsch’s data without any kinetic assumption.

Boreskov\(^10\) has introduced the concept of molecularity \(m \), i.e. the number of chemical species involved in the rate-determining step, which is determined as
On the Mechanism of the Oxidation of Sulfur Dioxide Part I

\[m = \frac{E_2 - E_1}{Q} \] \hspace{1cm} (9)

\(E_1 \) or \(E_2 \) is the activation energy of the forward or backward unidirectional reaction and \(Q \) is the heat of reaction in accordance with the chemical equation, where the coefficient of the chemical species in question is normalized to unity, e.g., as \(\text{SO}_2 + \frac{1}{2} \text{O}_2 = \text{SO}_3 \) with the coefficient of \(\text{SO}_2 \) normalized to unity. He thus determined \(m = 1 \) for \(\text{SO}_2 \) from the values of \(E_1, E_2 \) and \(Q \) observed by Taylor\(^2\) in the presence of Pt catalyst over the temperature range from 665° to 700°C. This conclusion states in terms \(\nu(r) \) that \(\nu(r) = 2 \) as referred to the chemical equation (1).

We have seen so far that \(\nu(r) \) measured experimentally by the present author under the condition off and in equilibrium throughout at temperatures from 424° to 440°C agrees with the conclusion of Boreskov\(^11\) near 700°C as well as that derived from the incorporated results of Reiter\(^9\) and Kniet\(\text{s}h\(^10\)) in equilibrium at 600°C, which suggests that the same mechanism is operative over the temperature range from 400° to 700°C under the condition off and in equilibrium throughout.

Acknowledgements

The authors wish to thank Professor J. Horiuti, Res. Inst. Catalysis, Hokkaido University and Professor T. Titani, Tokyo Metropolitan University, for their kind advices and valuable discussions on the present work.

References

1) J. Horiuti, This Journal 5, 1 (1956).
2) J. Horiuti and N. Takezawa, ibid, 8, 127 (1960).
3) A. Matsuda and J. Horiuti, ibid, 10, 14 (1962).
8) V. L. Frumpton, Science, 107, 323 (1948).
10) R. Knietsh, Ber. 34, 4069 (1901).